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Abstract

In this paper, a fine-to-finer segmentation task is inves-

tigated driven by region and contour features collabora-

tively on Glomerular Electron-Dense Deposits (GEDD) in

view of the complementary nature of these two types of fea-

tures. To this end, a novel network (Co-Net) is presented to

dynamically use fine saliency segmentation to guide finer

segmentation on boundaries. The whole architecture con-

tains double mutually boosted decoders sharing one com-

mon encoder. Specifically, a new structure named Global-

guided Interaction Module (GIM) is designed to effectively

control the information flow and reduce redundancy in the

cross-level feature fusion process. At the same time, the

global features are used in it to make the features of each

layer gain access to richer context, and a fine segmentation

map is obtained initially; Discontinuous Boundary Super-

vision (DBS) strategy is applied to pay more attention to

discontinuity positions and modifying segmentation errors

on boundaries. At last, Selective Kernel (SK) is used for

dynamical aggregation of the region and contour features

to obtain a finer segmentation. Our proposed approach

is evaluated on an independent GEDD dataset labeled by

pathologists and also on open polyp datasets to test the gen-

eralization. Ablation studies show the effectiveness of dif-

ferent modules. On all datasets, our proposal achieves high

segmentation accuracy and surpasses previous methods.

1. Introduction

Glomerular disease is the main cause of kidney failure

worldwide. It is now recognized that slow progression to

end-stage renal disease occurs in up to 50% of affected pa-
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Figure 1. (a) Examples of GEDD diversity: GEDD drastically dif-

fer in size, shape and spacial representation and they have massive

fracture and discontinuities; (b) and (c) are examples of GEDD

segmentation produced by UNet and PraNet; (d) segmentation

map generated by Co-Net. Previous models struggle at saliency

information extraction and discontinuity boundary segmentation.

tients [27]. Therefore, the importance of early diagnosis and

treatment is accepted globally. Currently, the most effec-

tive examination is based on the identification of Glomeru-

lar Electron-Dense Deposits (GEDD) in scanning electron

micrographs [14]. However, the complex representation of

GEDD leads it time-consuming and into a dilemma for both

pathologists and computers. As shown in Figure 1 (a), the

GEDD often vary in space and appearance and have huge

quantity differences and individual distinctions. Besides,

with blurred boundary and fractured texture, they usually

change over time [15]. Therefore, realizing accurate seg-

mentation of GEDD is pressing and significant for auxiliary

diagnosis.

Recent years have witnessed the remarkable success of

segmentation networks in various medical image applica-

tions. The Fully Convolutional Network (FCN) is a com-

monly used architecture to preserve the spatial information

[25]. Inspired by FCN, UNet [30] achieved a more detailed
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fusion of multi-scale features through skip concatenations

on the encoder-decoder structure. Some following methods

[40, 17, 36] aim to improve the architecture of U-net and

achieve boosted performance. Despite some progress, these

methods still face dilemmas when being confronted with

tasks that require a high degree of precision, especially for

complex spatial features and edge details. In fact, a finer

segmentation is usually driven by both region and bound-

ary information. Some works have been carried out based

on each aspect. Some [3, 13] obtained regional saliency

information by fusing cross-layer features, but the neglect

of semantic gaps often affects the effectiveness of feature

mining and fusion as pointed out in [37]. Then the gated

mechanism [21] and global features [22] were considered

to control information propagation and bridge semantic gap.

In addition, several works introduced boundary information

into networks by utilizing contour map [35, 11]. However,

most of them still struggled at discontinuity positions and

were not readily applicable to our task. Moreover, [28, 34]

made use of both kinds of information; however, they ex-

ploited both the region and boundary information simulta-

neously in a single end-to-end framework without taking

the differences between them into account. Therefore, it is

still challenging to design a network driven by both region

and boundary features and obtain a fine-to-finer result.

Unlike most existing methods, pathologists usually use

as abundant region information as possible to guide contour

modification to obtain finer segmentation results when fac-

ing the above challenges. Based on this, in this paper, a

dynamic integrated network Co-Net is proposed with two

boosted decoders for a fine-to-finer segmentation. Specifi-

cally, Co-Net mines the region features precisely and gets

the segmentation through the fine decoder to guide the con-

tour correction of the finer decoder. Meanwhile, an inter-

active mechanism is employed to promote both decoders

to obtain a finer segmentation. As shown in Figure 2,

the overall framework consists of three parts: (1) Global-

guided Interaction Module (GIM) uses the dynamically ex-

tracted global features as guidance to control the progres-

sive feature fusion in a gated manner, and initially obtains

a fine segmentation map; (2) Discontinuous Boundary Su-

pervision (DBS) with an attention-based module [5] further

modifies segmentation map, which makes the model pay

more attention to the boundary especially discontinuity po-

sitions; (3) Through using channel-wise attention [16], Se-

lective Kernel (SK) integrates features from both decoders

to achieve a finer segmentation.

The contributions of this paper are four-fold.

1. A novel collaborative region-contour-driven network

is proposed to perform fine-to-finer segmentation of

medical images.

2. We design a gated cross-level feature fusion module

GIM to bridge the semantic gap to obtain the fine seg-

mentation. A gated structure effectively controls the

information flow to reduce redundancy, and the fea-

tures of each layer gain access to richer context with

the help of global features.

3. DBS with an attention-based module pays more at-

tention to contour and modifies error on discontinu-

ous textures under the guidance of fine segmentation

above; SK achieves further integration.

4. Our model is evaluated on a new GEDD dataset and

surpasses the aforementioned models by a large mar-

gin. The excellent performance on the polyp datasets

also verifies the generalization of Co-Net.

2. Related Work

2.1. Medical Image Segmentation

Medical image segmentation task faces the challenges of

mining finer details and lacking sufficient data compared

with networks used in natural image segmentation such as

SegNet [2] and DeepLab [4]. Since a U-shaped network

called UNet [30] was proposed, it has been widely used in

various medical image segmentation tasks like [26, 1] for

its effective skip-connection. Further, many improvements

have been made based on UNet. Among previous works,

Zhou et al. [40] rebuilt nested networks with dense connec-

tions to capture aggregated features; ResUNet [36] intro-

duced residual connection into UNet structure and in [7],

Dolz et al. designed a multi-modal UNet to handle multi-

scale contexts. Although the skip-connection can supple-

ment information in the decoding process, a single decoder

is not sufficient for segmentation tasks that need to consider

the influence of multiple factors.

2.2. Region Context Features Fusion

In medical image segmentation tasks, cross-level feature

fusion has received growing attention for effectively inte-

grating region context information. Some fusion strategies

progressively fused multi-scale features in a top-down man-

ner, e.g. the feature pyramid network (FPN [23]), lead-

ing to information redundancy and dilution. Other works

directly aggregate multi-scale features from different and

distant layers. For example, in [22], Li et al. aggregated

multi-scale features from different layers into feature maps

that have access to both the high-and low-level information.

However, in [37], Zhang et al. pointed out that it is less

effective to directly integrate low-level and high-level se-

mantic information, due to the semantic gap and spatial res-

olution. They proposed a new framework to bridge the gap

between low-level and high-level features.

Based on their views, some novel fusion strategies were

proposed. In recent work, Liu et al. [24] designed a relative
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Figure 2. Overview of the proposed Co-Net with duplex decoders structure.

global calibration module to achieve the cross-scale infor-

mation interaction. Li et al. [21] proposed a Gated Fully

Fusion to selectively fuse features from multiple levels us-

ing gates. Inspired by these, in the process of cross-level

feature fusion, our model uses a designed gated structure

to control the information flow, and introduces global infor-

mation as a guidance to bridge the semantic gap.

2.3. Boundary Refinement

Since the segmentation network is still facing a dilemma

over accurate object edge segmentation, boundary informa-

tion has drawn increasing attention. Zhao et al. [38] de-

signed two modules to extract salient edge and salient ob-

ject features respectively, and then fused these with a one-

to-one guidance module. Zhou et al. [39] proposed an in-

teractive transmission mechanism to guide the network to

learn the correlation between the region and boundary fea-

tures. Zhang et al. [35] utilized an edge guidance module in

the early encoding layers to learn the edge-attention repre-

sentations. Fang et al. [11] employed a light U-Net structure

in an additional branch to extract the polyp’s edge.

However, these works do not yet meet the requirements

of the finer segmentation, especially for the segmentation of

the electron density. Besides, though many works paid spe-

cial attention to the correlation [38, 39] between the region

and contour features, the segmentation errors caused by the

fractured textures are hard to mitigate.

3. Our Approach

In this section, we propose a novel Collaborative Region-

Contour-Driven Network (Co-Net) that can perform fine-to-

finer segmentation. As shown in Figure 2, a global fea-

ture is dynamically extracted from sharing encoding layers

with layer-wise weights. Taking the global feature as guid-

ance, one new designed branch (Global-guided Interaction

Module, GIM) gradually integrates cross-level features in a

gated controlling way to initially obtain a fine segmentation.

Further, Discontinuous Boundary Supervision (DBS) with

an attention-based module modifies the segmentation map.

Then, Selective Kernel (SK) integrates features to produce

the finer output.

3.1. Fine Decoder with GlobalGuided Interaction
Module

The essential basic task in cross-level feature interaction

is to aggregate useful information together. The progressive

fusion of FPN [23] often causes dilution of semantic fea-

tures. Further, ExFuse [37] was designed to bridge seman-

tic gap between high- and low-level features. Considering

that global features also have access to both semantics and

fine details, in this paper, we design a novel gated structure

to control cross-level feature interaction guided by global

features to obtain a fine segmentation.

Specifically, features {Fi ∈ R
Hi×Wi×ci}Li=1

(L = 5)
are extracted from different layers of the encoder, where

features are ordered by their depth in the network and

Hi, Wi, ci are the height, width, and channels’ number
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Figure 3. Core Modules: (left) Discontinuous Boundary Supervision (DBS); (right) Selective Kernel (SK).

of Fi, respectively. Inspired by SENet [16], we align the

layer level of the encoding feature with the channel level

in the SE block, and implement the Squeeze-and-Excitation

operation to each layer to learn the correlation between dif-

ferent layers, giving different attention representations to

them. We apply global average pooling to encoding fea-

tures {Fi}, i ∈ {2, 3, 4, 5}, respectively, and further con-

catenate them to construct a fused multi-scale representa-

tion Q ∈ R
C×1, C =

∑
5

i=2
ci. A layer-wise fusion weight

Φ ∈ R
1×4 is obtained through operating two fully con-

nected layers over Q. Further, the original features can be

updated by F̂i = Fi∗Φi. With the help of series upsampling

and concatenation operation, the global context feature can

be generated as

F = F̂2 ⊕ UP (F̂3)⊕ UP (F̂4)⊕ UP (F̂5). (1)

In order to give full play to the guidance and supplemen-

tary role of global feature F , and to make the progressive

integration more refined, we design the gated progressive

feature fusion, in which the feature of each layer has access

to F and the multi-level features can be integrated steadily

(the effectiveness is shown in 4.3).

Specifically, as shown in Figure 2, a fusion mechanism

is firstly applied between adjacent levels. The combina-

tions of 3 × 3 convolution, BatchNorm and ReLU (V )

are associated with features (Fi−1, Fi) respectively to fit

them in and obtain the consistent further features. Af-

ter that, the multiplication-fusion is formally defined as

U = Vi−1(Fi−1) ·Vi(Fi); it helps the fusion outcome com-

bine the properties of both the Fi−1 and Fi and suppress

redundancy on both sides. The addition-refining followed,

F̃ = V (F + V (U)), in which some useful information can

be regulated again. Then, a gated structure is designed to

further integrate features under the interference of F . We

perform sigmoid operations over F̃i, F̃i−1 and global fea-

ture F to get their respective gate maps Ai, Ai−1 and Ag .

Then, addition-based fusions with different weight configu-

rations are associated with F̃i and F̃i−1 respectively, which

are

Bi = (1 +Ai) · F̃i + (1−Ai)(Ai−1 · F̃i−1 +Ag · F)

Bi−1 = (1 +Ai−1) · F̃i−1 + (1−Ai−1)(Ai · F̃i +Ag · F)

(2)

where + means element-wise addition and · denotes

element-wise multiplication broadcasting in the channel di-

mension. As shown in Figure 2, Bi−1 is used for deep su-

pervision and Bi is the input of the next GIM.

3.2. Finer Decoder with Discontinuous Boundary
Supervision

It is worth noting that in the clinical diagnosis of com-

plex pathological images, the pathologist locates the suspi-

cious area and then inspects local tissue to accurately dis-

tinguish the deposits’ contour and pattern. Inspired by this,

we design a finer decoder that is complementary to the fine

decoder and focuses more on the contour. With the help

of fine segmentation P̂ , the sequential attention modules

guide the network to give more attention to the segmenta-

tion boundary to make up for the deficiency of the fine de-

coder. Then DBS is used to modify discontinuous positions

in pixel level.

To achieve this, same as [5], we utilize the Reverse

Attention (RA) mechanism to erase the current predicted

salient regions in the features and guide the network to ex-

ploit the missing details. To further amend the boundaries,

we propose a fine-grained approach DBS to mitigate the

fracture misalignment. Specifically, applying some tradi-

tional edge detection methods (Gaussian filter, Canny edge

detector) to the row images, we firstly get the edge maps.

As shown in Figure 3 (left), through multiplying the edge

maps by our segmentation maps and masks, respectively,

ED and EG are obtained. Then the DBS module can lever-

age additional pixel-level supervision to modify errors on

discontinuity .
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Figure 4. The attention area of region locating feature and contour

correction feature.

3.3. Correlation Analysis & Selective Kernel

In order to increase the interpretability of our model, we

first visualize the attention area of region locating feature

from fine decoder and contour correction feature from finer

decoder to analyze the correlation of them.

Figure 4 (a) shows the result of subtracting P̂ from D̂

and (b) shows the opposite result. Compared (a) and (b), we

can see that the D̂, going through the DBS, precisely high-

lights the segmentation around the contour and discontinu-

ity positions more. While P̂ pays more attention to salient

object regions. Thus, during the fine-to-finer segmentation

process of GEDD, acting like a human vision system, the

model pays different levels of attention to object region and

boundary, which are actually not independent.

To finally achieve a dynamic integration of features (P̂

and D̂) obtained from two decoders, we employ a simplified

SE block from the SENet [16].

In fact, the cross-level region features {Pj}
5

j=2
from fine

decoder and the discontinuous boundary features from finer

decoder are not independent. Acting like human experts,

our model pays more attention to cross-level region features

from the start to locate the dense stuff accurately. Then

it needs more discontinuous boundary information to cor-

rect the wrong depiction of edges with the help of DBS.

As shown in Figure 3 (right), the input features D̂ and P̂

are firstly concatenated as S ∈ R
W×H×C , hc is the feature

among each channel, and SK shrinks S in spatial dimen-

sions as:

zc =
1

W ×H

H∑

i=1

W∑

j=1

hc(i, j), (3)

where z = {z1, · · · , zC} ∈ R
C , S = {s1, · · · , sC}. Then

the channel-wise weights are calculated through performing

fully connected layers over z. Multiplying the weights to

the corresponding features, we get a finer prediction M .

3.4. MultiLevel Joint Loss Function

In order to optimize region structure and boundary detail

segmentation collectively, our loss function is composed of

two parts: discontinuous boundary loss Ldisc, and multi-

scale integrated feature loss Linte.

In [29] Qin et al. designed the weighted IoU loss and

binary cross entropy (BCE) loss for highlighting the impor-

tance of some hard pixels as L = Lw
IoU + Lw

BCE . How-

ever, restricted on image element, the pixel-level loss ne-

glects the crucial structural information. [33] proposed a

new ms-ssim loss; it can not only concentrate on the simi-

larity of the structure, but also provide different weights for

different resolutions. Therefore, our basic loss is denoted as

L = Lw
IoU + Lw

BCE + LMS−SSIM . Considering the DBS

strategy, we design Ldisc as:

Ldisc =λ1L(G, P̂up) + λ2L(G,M) + λ3

5∑

i=3

L(G,D
up
i )

+ λ4L
w
BCE(EG, ED),

(4)

where λ1 = 1, λ2 = 1, λ3 = 0.25, λ4 = 0.15 and G

denotes ground truth, P̂ , M , Di, Eg and Ed are features

noted in Figure 2 and Figure 3.

As shown in Figure 2, the supervision of multi-scale fea-

tures generated by the GIM can be calculated as Linte =∑5

j=2

1

2j−1 L(G,P
up
j ), where higher level loss has smaller

weight due to the larger error existing in that higher fea-

tures. Thus the final loss function is defined as: Ltotal =
Ldisc + Linte.

4. Experiments

To demonstrate the effectiveness and generalization of

the proposed method, we conduct experiments on GEDD

dataset and several open datasets of polyp segmentation.

4.1. Dataset

We note that there is no public GEDD dataset, a se-

rious drawback to the research on diagnosing Glomerular

diseases. Accordingly, in this paper, some electron micro-

graphs are collected from the clinical diagnosis, which con-

tains IgA nephropathy (IgA), Lupus Nephritis (LN) and

Type Cases (%) Gender (M:F) Age Images/Case

IgA 46.0% 5:4 7∼69 1∼3

LN 17.4% 1:6 10∼67 1∼4

MN 36.6% 8:5 24∼75 1∼4

Table 1. Statistics of GEDD dataset.

Membranous Nephropathy(MN). They are all grayscale im-

ages of 2048 × 2048. We keep 217 images in the dataset af-

ter the pathologists’ strict examination. 80% of the dataset

is randomly selected as the training set and the remaining

20% as the test set. Table 1 shows the statistics.

Besides, for generalization evaluation, we conduct ex-

tra experiments on five polyp segmentation datasets, ETIS,
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Methods mean Dice mean IoU Fw
β Sα Emax

φ MAE Infer time

UNet 0.605 0.462 0.531 0.775 0.922 0.018 22.43

UNet++ 0.385 0.262 0.333 0.596 0.829 0.029 28.10

SegNet 0.162 0.091 0.161 0.516 0.528 0.026 21.27

ResUNet 0.439 0.294 0.363 0.649 0.847 0.026 43.61

PraNet 0.584 0.430 0.535 0.759 0.951 0.018 40.38

Co-Net(Ours) 0.797 0.669 0.761 0.851 0.978 0.010 42.45

∆ +31.7% +44.8% +42.2% +9.8% +2.8% +44.4% -

Table 2. Comparison with different state-of-the-art methods on GEDD dataset. The basic evaluation metrics, mean Dice, mean IoU and

MAE, are significantly higher for Co-Net compared to other competing models. Meanwhile, our model is also outstanding in F
w
β , Sα

and E
max
φ that can further evaluate the pixel-level and global-level similarity. The Infer time (ms) is calculated by averaging over whole

test dataset with mini batch size 1 and an image of 2048 × 2048 resolution. We see that Co-Net has an advantage over other models

as balancing accuracy and time consume well. The accuracy percentage increase of our model compared to the state-of-the-art results is

represented by ∆. (The best result is highlighted in bold and the second best result is underlined.)

CVC-300 CVC-ColonDB ETIS-LaribPolypDB
Methods

mean Dice mean IoU Infer. mean Dice mean IoU Infer. mean Dice mean IoU Infer.

UNet 0.677 0.561 23.88 0.510 0.441 20.92 0.398 0.304 22.97

UNet++ 0.610 0.503 31.00 0.494 0.381 26.57 0.303 0.227 29.93

SegNet 0.778 0.671 19.86 0.501 0.420 19.36 0.285 0.226 21.33

ResUNet 0.298 0.200 43.71 0.342 0.248 41.89 0.266 0.184 44.03

PraNet 0.871 0.797 38.39 0.709 0.640 35.71 0.628 0.567 37.15

Co-Net(Ours) 0.872 0.798 39.61 0.687 0.618 37.98 0.641 0.582 39.54

Table 3. Comparison with different state-of-the-art methods on three polyp datasets (CVC-300, CVC-ColonDB and ETIS-LaribPolypDB).

CVC-ClinicDB, CVC-ColonDB, EndoScene, and Kvasir

[19, 18, 31, 32, 20]. Then we follow the same training set-

tings in PraNet [10]. The images from Kvasir, and CVC-

ClinicDB are used for training and the total number is 1450.

We take PraNet as a reference and construct extra testing

data composed of images from CVC-ColoDB (380 images),

ETIS (196 images) and EndoScecne (60 images).

4.2. Implementation Details and Comparative Ex
periments

Implementation Details. Due to the GEDD images’ high-

resolution, we uniformly set all images to a fixed size of 512

× 512. The initial weights of the encoder network come

from Res2Net [12] pretrained on ImageNet. A multi-scale

training strategy {0.75, 1, 1.25} is used in training. We set

the batch size to 4 with synchronized batch normalization

and adopt Adam optimizer with a learning rate of 1e−4.

Our Co-Net is based on Pytorch framework. An end-to-

end training process (50 epochs) is trained with NVIDIA

TITAN Xp GPU. During inferring, we resize each image to

512× 512 and feed it to Co-Net with batch size 1 to predict.

In the polyp segmentation task, the implementation de-

tails are the same as GEDD segmentation, except that the

training and inferring size is set to 352, the training batch

size is 16 and the epoch number is 100.

Evaluation Metrics. We use mean Dice, mean IoU and

MAE (mean absolute error) for comprehensively quanti-

tative evaluation [6]. Besides, as in [8, 9], giving further

consideration to the model performance, we employ “Fw
β ”

(weighted Fβ measure), “Sa” (structural similarity metric)

and “Emax
φ ” (enhanced-alignment metric).

Comparative Experiments. We compare our Co-Net with

UNet [30], UNet++ [40], SegNet [2], ResUNet [36] and

PraNet [10]. As shown in Table 2, our method outperforms

five state-of-the-art methods on all metrics on GEDD. And

some visualization results are shown in Figure 5. SegNet

does not exhibit a competitive result. The reason is sup-

posed because of the lack of substantial details without skip-

connection. And the U-shaped network bridges this gap and

concatenations are effective. However, the comparison of

UNet and UNet++ indicates overly dense concatenations

lead to performance degradation. Furthermore, although

UNet roughly achieves parity with PraNet on quantitative

results, the visualized figure shows that PraNet performs

better in detailed boundary processing, which also indicates

the effectiveness of the boundary information. Moreover,

ResUNet is incapable of extracting abundant contextual in-

formation in its encoder, resulting in a significante accuracy

drop. Accordingly, we employ Res2Net as sharing encoder

to enhance the feature robustness.

Table 3 shows the segmentation results on polyp datasets

and some detailed results visualization are provided in Fig-

ure 6. Our model still has a stable performance on the polyp

datasets. Especially in many challenging cases, such as in
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Figure 5. GEDD segmentation results of different methods.

Figure 6. Polyp segmentation results of different methods.

ETIS dataset, our model has advantages in the capture of

complex spatial features and the refinement of complex tex-

tures. We can also see in Table 2 and 3 that our model has

provided a good balance between accuracy and speed.

4.3. Ablation Study

To evaluate the effectiveness and interactivity of each

module of the proposed method, we compare Co-Net with

its four variants on GEDD dataset in Table 1 to provide

deeper insight into our model.

Specifically, the baseline model refers to a U-shaped

framework with RA module [10]. We add different com-

ponents to the baseline in turn to investigate their effec-

tiveness. As shown in Table 4, “Baseline+GIM” only adds

GIMs on the baseline; “Baseline+DBS” only applies DBS

to the baseline; “Baseline+GIM+DBS” adds GIM and DBS
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Figure 7. GEDD segmentation results of ablation study (Failed segmentations are marked in red circles).

Methods mean Dice mean IoU F
w
β Sα E

max
φ MAE

Baseline 0.584 0.430 0.535 0.759 0.951 0.018

+GIM 0.763(↑ 30.7%) 0.625(↑ 45.3%) 0.715(↑ 33.6%) 0.832(↑ 9.6%) 0.968(↑ 1.8%) 0.011(↑ 38.9%)

+DBS 0.747(↑ 27.9%) 0.604(↑ 40.5%) 0.703(↑ 31.4%) 0.841(↑ 10.8%) 0.973(↑ 2.3%) 0.012(↑ 33.3%)

+GIM+DBS 0.731(↑ 25.2%) 0.588(↑ 36.7%) 0.684(↑ 27.9%) 0.830(↑ 9.4%) 0.951(-) 0.012(↑ 33.3%)

Ours 0.797(↑ 36.5%) 0.669(↑ 55.6%) 0.761(↑ 42.2%) 0.851(↑ 12.1%) 0.978(↑ 2.8%) 0.010(↑ 44.4%)

Table 4. Ablation study on GEDD dataset. Both “+GIM” and “+DBS” have high segmentation accuracy indicating the need to use region

and contour information. The simple combination of two modules (“+GIM+DBS”) brings worse results than the use of any single module,

proving the influence of information redundancy. Our model further shows the effectiveness of SK.

modules to the baseline at the same time, and simply con-

catenates the two outputs as a prediction. By comparing

them with “Baseline”, it is apparent that each separate mod-

ule can significantly improve segmentation accuracy, es-

pecially mean Dice and mean IoU show an increment of

around 30%. Further, as shown in Figure 7, according

to “Baseline+DBS”, “Baseline” and Ours, we can see the

DBS strategy is necessary for modifying the error caused

by the discontinuous texture. It is helpful to guide model to

achieve a finer segmentation. The different results of “Base-

line+GIM”, “Baseline” and Ours suggest that this module

enables the network to more accurately capture structural

information and finely segment salient region. By compar-

ing “Baseline+GIM+DBS”, “Baseline” and Ours, it can be

seen that directly concatenating the outputs will cause infor-

mation redundancy and performance degradation, and the

SK module can effectively alleviate this problem.

Module Variants
GEDD

mean Dice mean IoU MAE

Ours 0.797 0.669 0.01

(A) 0.763 0.625 0.012

(B) 0.769 0.627 0.011

(C) 0.770 0.633 0.011

Table 5. The effectiveness of gated mechanism and global feature.

To assess the effectiveness of the combination of each

component in GIM, we conduct extra experiments. First,

we try to temporarily remove the progressive fusion and

gate structure in GIM, and transmit the global feature F
to RA (A). Then, we simply concatenate global feature and

two adjacent features F̃i−1 and F̃i to replace gated fusion

(B). Also, the synthesis mechanism of the global feature

has been changed, such as direct concatenation (C). Table 5

provides result comparisons. It is apparent that neither rely-

ing on global features alone nor directly integrating encod-

ing features as global guidance is not satisfactory. Besides,

the meticulous gated structure fusion is indeed helpful for

the global feature to play a better guiding role and it is con-

ducive to better fusion.

5. Conclusion

In this paper, we proposed a novel collaborative region-

contour-driven Network (Co-Net) for the fine segmenta-

tion task. This network, driven by region information and

boundary information, performed fine-to-finer segmenta-

tion. Taking the correlation of the region and contour in-

formation into account, the network extracted multi-scale

features through a sharing encoder, and first generated a

global feature to guide a progressive cross-level feature fu-

sion in GIMs with an information filtering gate of fine de-

coder. Meanwhile, the fine segmentation obtained above

was transmitted towards the finer decoder. Through DBS

with an attention based module, the inaccurate segmenta-

tion at discontinuity positions drew more attention and was

revised in pixel-level. Benefiting from these two collabora-

tive decoders, the fine-to-finer segmentation pattern driven

by region-contour feature, simulating people vision system,

was a dynamic and integrated approach. Extensive exper-

iments on both the independent GEDD dataset and open

polyp segmentation datasets well demonstrated the effec-

tiveness and robustness of the proposed network.
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