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Abstract

Aleatoric uncertainty captures noise within the obser-
vations. For camouflaged object detection, due to similar
appearance of the camouflaged foreground and the back-
ground, it’s difficult to obtain highly accurate annotations,
especially annotations around object boundaries. We ar-
gue that training directly with the “noisy” camouflage map
may lead to a model of poor generalization ability. In this
paper, we introduce an explicitly aleatoric uncertainty esti-
mation technique to represent predictive uncertainty due to
noisy labeling. Specifically, we present a confidence-aware
camouflaged object detection (COD) framework using dy-
namic supervision to produce both an accurate camou-
flage map and a reliable “aleatoric uncertainty”. Different
Jfrom existing techniques that produce deterministic predic-
tion following the point estimation pipeline, our framework
formalises aleatoric uncertainty as probability distribution
over model output and the input image. We claim that, once
trained, our confidence estimation network can evaluate the
pixel-wise accuracy of the prediction without relying on the
ground truth camouflage map. Extensive results illustrate
the superior performance of the proposed model in explain-
ing the camouflage prediction. Our codes are available at
https://github.com/Carlisle-Liu/OCENet

1. Introduction

Deep learning systems have found popularity in real-
world applications, e.g. autonomous driving. However, fail-
ures of such Deep Neural Network (DNN) models can lead
to catastrophic consequences, raising questions on their re-
liability. Thus, it is critical to be able to interpret the DNN
model predictions in terms of uncertainty. Conventionally,
two main types of uncertainties [22] exist in exiting deep
nerual networks, namely aleatoric uncertainty representing
the noise inherent in the data distribution, e.g. annotation
ambiguity and epistemic uncertainty that captures the un-
certainty in the model prediction. Epistemic uncertainty can
be reduced by having enough data observations.

A good deal of research has been done to model the two
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Figure 1. Prediction of our confidence-aware COD network. Red
indicates low confidence and blue indicates high confidence. From
left to right: input image, ground truth, prediction without confi-
dence as guidance, and with confidence as guidance, and confi-
dence map. For easier samples in the first and second rows, the
low-confidence regions mainly distribute along object boundaries.
For hard samples in the third and fourth rows, our confidence map
can effectively identify the false-positive regions (third row) lead-
ing to their removal and true-negative regions (fourth row) greatly
improving coverage of the second object which is difficult to see.
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types of uncertainties. They usually adopt the Bayesian
Neural Network (BNN) framework [37, 48, 34, 17, 5, 49,
32, 3, 16, 25, 53, 1]. The main issue of BNN for uncer-
tainty estimation is the intractable posterior inference, and
S0 most existing uncertainty estimation techniques focus on
designing approximate posterior inference. Among them,
[39] learns a discriminator to distinguish between predic-
tion and ground truth, where the output of the discriminator
is defined as a confidence map or inverse uncertainty map.
[36, 8] optimise the confidence estimation network with a
ranking loss that assigns higher uncertainties to wrongly
predicted samples or pixels. Specifically, [36] develops
a correctness ranking loss that enforces that samples with
higher accuracy have higher confidence, and [8] proposes a
loss function that maximises the difference between the es-
timated confidences of correct predictions and wrong pre-
dictions. [46] presents a multi-task learning loss function
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derived by maximising the Gaussian likelihood with respect
to the noise parameters representing Homoscedastic uncer-
tainties, which is a type of aleatoric uncertainty that is inde-
pendent of the input image.

Camouflage is defined as a state where the object has dis-
guised appearance that is indiscernible from its surround-
ings, which is a widely applied technique in the world
of animals to conceal themselves, deceiving predators into
making false judgements. This is achieved through vari-
ous camouflage techniques, e.g. disruptive colouration, self-
decoration, cryptic behaviour, efc. [2, 6, 15]. This natu-
ral occurrence also inspires the development of artificial
camouflage, such as military camouflage [2]. The indis-
tinguishability of camouflaged animal poses a great chal-
lenge to annotation which becomes more prone to noisy la-
bels. We propose to capture such annotation inconsistency
by modelling the aleatoric uncertainty.

The existing techniques [22, 40] for aleatoric uncertainty
estimation involve an extra variance estimation module to
represent the aleatoric uncertainty. The unbounded variance
is maximised at wrong predictions in order to minimise the
loss, with an L2 regularisation employed to prevent it from
becoming infinitely large. Differently, we propose an in-
novative Online Confidence Estimation Network (OCENet)
to model the aleatoric uncertainty in the camouflaged ob-
ject detection. We dynamically derive the difference be-
tween prediction and ground truth as supervision for the
uncertainty estimation module within our OCENet. With
this setting, our OCENet is able to identify wrongly clas-
sified areas as uncertain and assign low uncertainty values
to correctly predicted areas. As shown in Fig. 1, our esti-
mated confidence map is able to assign high uncertainty to
under-segmentation, over-segmentation, phantom segmen-
tation where false foreground predictions are distant from
the target object, and object boundaries where errors are
prone to occur.

We summarise our main contributions as: 1) We pro-
pose an innovative Online Confidence Estimation Network
(OCENet) to model the aleatoric uncertainty for camou-
flaged object detection. It outputs pixel-wise uncertainty
revealing both true-negative and false-positive predictions
to prevent the network becoming overconfident; 2) Our
OCENet provides an initial evaluation of the prediction
without relying on the ground truth; 3) We further present
a difficulty-aware learning camouflaged object detection
framework to effectively utilizing the aleatoric uncertainty
for hard-negative mining. Experimental results show su-
perior performance of our model in explaining the model
prediction.

2. Related Work

Confidence estimation has become an active research
field in deep neural network based tasks, which is usually

related to uncertainty estimation [22, 54] that models the
uncertainty of model predictions. Two main uncertainties
have been widely studied, namely aleatoric uncertainty and
epistemic uncertainty [22]. Aleatoric uncertainty captures
the natural randomness in data arising from noise in the data
collection, e.g. sensor noise. Epistemic uncertainty captures
the lack of representativeness of the model which can be ex-
plained away with increasing training data [22].

Aleatoric uncertainty modeling: The basis assumption for
aleatoric uncertainty estimation is that the model parame-
ter 6 is fixed and unknown, which leads to non-Bayesian
Neural Networks based framework. [24] presents a net-
work which yields a probabilistic distribution as output in
order to capture such uncertainty. [44] employs a teacher-
student paradigm to distill the aleatoric uncertainty. The
teacher network generates multiple predicative samples by
incorporating aleatoric uncertainty for the student network
to learn. [25] uses an adversarial perturbation technique to
generate additional training data for the model to capture
the aleatoric uncertainty.

Epistemic uncertainty modeling: The epistemic uncer-
tainty estimation models aims to estimate the distribution
of the model parameter set p(f|D), where the 6 follows
some specific distribution leading to Bayesian Neural Net-
work (BNN), and D is the training dataset. The main
focus of BNN is to achieve effective posterior inference
p(6| D), which is intractable in practice. In this way, exist-
ing techniques mainly work on approximate posterior infer-
ence. Among them, Markov Chain Monte Carlo (MCMC)
[37] methods have been proposed as an approximation so-
lution. A few of its variants, such as stochastic MCMC
[48, 34, 17, 5] are designed to improve its scalability to
larger datasets. An alternative approximation solution is
through variational inference [49, 32, 3]. Another line of
work adopts a sampling based approach [1, 22]. The drop-
out method [16] derives the confidence from the multiple
forward passes of samples. Ensemble based solutions pass
the input data through multiple replicated models [25] or
a model with a multi-head decoder [53] to obtain multiple
results in order to compute the inference mean and variance.

Camouflaged Object Detection: Camouflaged object de-
tection models [28, 13, 26, 58, 52, 42, 9, 27, 12] are de-
signed to discover the entire scope of camouflaged ob-
ject(s). Different from regular objects that usually have
different levels of contrast with their surroundings, cam-
ouflaged objects show similar appearance to the environ-
ment. [7] observes that an effective camouflage includes
two mechanisms: 1) background pattern matching, where
the colour is similar to the environment, and 2) disrup-
tive coloration, which usually involves bright colours along
edge, obscuring the boundary between camouflaged object
and the background. To detect camouflaged objects, [28]
introduces a multi-task learning network with a segmenta-
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Uncertainty-Aware Structure Loss

Figure 2. The proposed confidence-aware camouflaged object detection network (CANet) is composed of two interdependent networks.
The dynamic confidence supervision is derived from the predicted result of the COD network and the ground-truth camouflage map. The
output of the confidence estimation network is used to guide the COD network to focus on learning image parts with low confidences
through the uncertainty-guided structure loss. F;(¢ = 1,...,8) denotes the feature maps of the camouflaged object detection network.
cP(i=1,..,5) and CY (i = 1,...,5) denote the feature maps associated with the down convolution and up convolution operations of
the confidence estimation network separately. y and fo(x) denote the ground-truth and predicted camouflage maps. yc and ¢ denote the

dynamic confidence supervision and the predicted confidence maps.

tion module to produce the camouflage map and a classifi-
cation module to estimate the possibility of the input image
containing camouflaged objects. [13] contributes the largest
camouflaged object training set with an SINet for camou-
flaged object detection. [33] designs a triple task learning
framework to simultaneously detect, localize and rank the
camouflaged objects. Different from existing techniques,
we introduce confidence-aware camouflaged object detec-
tion by modelling the pixel-wise difficulty of camouflaged
object detection with extra uncertainty maps produced.
Uncertainty-Aware Learning: With the estimated uncer-
tainty map, one can use it to achieve difficulty-aware learn-
ing, which has shown to be effective in improving model
performance. [38] utilises the estimated confidence to relax
the softmax loss function to achieve better performance in
pedestrian detection. [39] uses the learnt confidence to pick
out hard pixels and directs the segmentation model to focus
on them. [46] employs the estimated confidence as an addi-
tional filter on the pixel-adaptive convolution to improve the
performance of the upsampling operation. Focal loss [30]
emphasises learning hard samples in the classification task
to deal with the imbalanced learning problem.

Uniqueness of our solution: Our OCENet differs from the
existing aleatoric uncertainty modeling methods by directly
learning from the difference between prediction and ground
truth. Conventional strategies for aleatoric uncertainty mod-
eling involve [22, 23] no supervision for the aleatoric uncer-
tainty, which is only introduced as weight and regularizer to
the task related loss function. We dynamically generate un-

certainty map to direct the CODNet to put more emphasis
on learning areas where predictions are regarded as uncer-
tain. These weights are learnt specifically for each sample
rather than assigned universally to the entire dataset.

3. Our Method
3.1. Overview

As a binary segmentation network, camouflaged object
detection models usually follow the conventional practice
of regressing the camouflage map given the input image
[28, 13]. We introduce a mutual-supervising camouflaged
object detection learning framework to directly model the
aleatoric uncertainty. Two main modules are included in
our framework, namely a Camouflaged Object Detection
Network (CODNet) to produce the camouflage map, and
an Online Confidence Estimation Network (OCENet) to ex-
plicitly estimate the aleatoric uncertainty in the current pre-
diction. We show the pipeline of our framework in Fig. 2.

Our training dataset is D = {x,,,y, }_;, where z,, and
Yy, are the image and its corresponding ground-truth cam-
ouflage map, n indexes the training images, and NV is size
of the training dataset. We define the CODNet as fy which
generates our predicted camouflage map. Then OCENet,
gg. takes the concatenation of the predicted camouflage
map and image as input to estimate the pixel-wise uncer-
tainty map indicating the awareness of the model towards
the prediction of CODNet.
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3.2. Camouflaged Object Detection Network

The proposed CODNet employs a ResNet-50 [19] en-
coder to produce the feature maps F;(i = 1,...,5). A
Fusion Module (FM) is proposed to combine the feature
maps of different levels. As illustrated in Fig. 3, the FM
progressively fuses high-level features with the lower-level
features. In each fusion operation, the highest-level feature
is included to provide semantic guidance. Similar to [50],
the initial prediction §** = f;"*(z) utilising feature maps
F5_5 also serves as an attention mechanism on feature map
F3, leading to the computation of feature map Fg. Fr g are
obtained by passing Fg through residual blocks. The final
prediction "¢ = f; “f(z) is computed by fusing the fea-
ture maps F5 ¢_g. The relatively low-level feature map F5
provides more spatial information which is important for
segmentation tasks to recover a more crisp structure.
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Figure 3. The structure of the fusion module used to produce the
final predicted camouflage map. RCAB is the residual channel
attention block from [55]. UP denotes the upsampling through
bilinear interpolation and its suffix indicates the scale factor.

Given an input image z, our camouflaged object detec-
tion network produces two different predictions: 7"’ and
§"¢f in the range of (0, 1), where supervision is provided
for both predictions. This setting allows the initial predic-
tion to recover a more complete camouflaged object, which
subsequently serves as a better attention map to filter the
feature map F3. The final prediction "¢/ is adopted as the
camouflaged object detection result for evaluation.

3.3. Online Confidence Estimation Network

OCENet employs a U-Net [43] structure to obtain pixel-
accurate uncertainty prediction. It consists of 5 down-
convolution features denoted as CP(i = 1,..,5) and
5 up-convolution features denoted as CY (i = 1,...,5)
with pairwise corresponding resolutions. The proposed
down-convolution block has two 3 x 3 convolutional layers
(“Conv3”), each followed by a batch normalisation [21] and
a Leaky ReL.U [18] activation function with negative slope
set to 0.2 and ends with a dropout layer (”D(-)”) of rate 0.5.
The down-convolution operation can be summarised as in

Eq. I:
CP = D(Conv3(Conv3(CP )))) (1)

The up-convolution block consists of a 2 x 2 transposed
convolutional layer (“TConv2”) and two 3 X 3 convolu-
tional layers, each followed by a batch normalisation and
a Leaky ReLU activation function with 0.2 negative slope.
Down-convolution and up-convolution features are concate-
nated before the two convolutional layers. Dropout layers
of rate 0.5 are used after the transposed convolutional layer
and at the end of the up-convolution operation. The up-
convolution operation can be summarised as in Eq. 2:

CY = D(Conv3(Conv3(LL(CY, D(TConv2(CY,1))))))
2
where I1(-) denotes a concatenation operation.

CODNet takes the concatenation of model prediction
(%™ and ¢"*/) and image z as input to produce an
one-channel confidence map, which is defined as ¢™ =
gs(I(z,9™%)) for the initial prediction, and c¢"*f =
gs(I1(x,§"¢f)) for the final prediction. The estimated con-
fidence maps are supervised with dynamic uncertainty su-
pervision derived from the predictions of the camouflaged
object detection network fy(x) and the ground-truth cam-
ouflage map y.

3.4. Dynamic Uncertainty Supervision

Existing methods [22, 40] model aleatoric uncertainty as
variance o(x)? as shown in Eq. 3'.

1L 1 1 )
L£(0) = N;(WHpi—yz‘||2+§log(0(fﬁn) ), 3)

where N is size of the training dataset, x,, is the input image
with n indexes the images, 6 is model parameter set, and p;
and y; are i*" prediction and groundtruth respectively. The
unbounded variance is employed to balance the loss. It is
maximised to reduce the loss incurred by the L2 loss on
the wrong predictions, and regularised to prevent it from
becoming infinitely large. Instead, we use the difference
between the prediction and groundtruth as explicit super-
vision to model the aleatoric uncertainty. In our work, it
represents uncertainty in the prediction conditioned on the
input image.

We derive the dynamic uncertainty supervision y. for the
OCENet defined as in Eq. 4:

Ye=yx(1—-9)+(1—-y)x7. “4)

The dynamic uncertainty supervision y. is defined as a
pixel-wise L1 distance between the prediction fp(x) and
its corresponding ground-truth label y. It has high un-
certainty assigned to pixels where the camouflaged object

IThis aleatoric uncertainty-aware loss function is based on Gaussian
likelihood.
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detection network makes confident but false predictions.
For example, if the camouflage prediction for pixel u, v is
y*? = 0.01, indicating a background pixel, whereas its
ground-truth label is y*¥ = 1, suggesting it is a foreground
pixel, our dynamic supervision is y2* = 0.99 representing
an uncertain or difficult pixel.

OCENet is trained with a binary cross-entropy loss

which is defined as in Eq. 5:
Lo =0.5% (Lee(@™,ym) + Lee(c y2eT)),  (5)

where L. is the binary cross-entropy loss, y’"* and y¢f
are dynamic supervisions for the initial prediction and our

final prediction respectively.

Algorithm 1 Confidence-aware Camouflaged Object De-
tection
Input:
(1) Training dataset D = {xn, yn }h—;, where N is size of the
training dataset;
(2) maximal number of learning epochs E.
Output: Parameters 6 for the camouflaged object detection mod-
ule (CODM) and parameters /3 for the confidence estimation mod-
ule (CEM).
1: Initialise 6 and 8
2: fort <— 1to E do
3: Generate camouflage predictions §** = fi™(x) and
g7 = f7°7 (z) from the CODM.
4: Produce dynamic supervisions 42" and y7¢/ for the CEM
with Eq. 4.
5: Obtain the confidence maps ¢'™ = gg(I1(§"™, x)) and
cef = gg(11(57%, x)) from the CEM.
6: Update CEM with loss function in Eq. 5.
7: Generate confidence-aware weight w'™* = 1 4+ A¢'™ for
§*™ and confidence-aware weight w™® = 1+ \c"f for 77,
8: Update CODM with loss function in Eq. 6.

3.5. Uncertainty-Aware Learning

Camouflaged object detection has different learning dif-
ficulties across the image. The pixels along the object
boundary are harder to differentiate than the background
pixels that are further away from the camouflaged objects.
Further, the camouflage foreground contains parts with dif-
ferent level of camouflage, where some parts are easy to
recognise, e.g. eyes, mouths and efc. and some others are
hard to distinguish, e.g. the body region has similar appear-
ance to the background. We intend to model such varying
learning difficulty across the image by modeling the uncer-
tainty awareness in our CODNet. Specifically, inspired by
[47], we propose to train the camouflaged object detection
network with an uncertainty-aware structure loss, which is
defined in Eq. 6:

»Cs = Z wu)v»cce + Z wuw»cdice» (6)

where the weight term is defined as: w'™ = 1 4 Ac¢™ for
the initial prediction f¢"(z) and w™® = 1 + Ac"¢/ for our
final prediction f, ef (x), and A is a parameter controlling
the scale of attention given to uncertain pixels. We emperi-
cally set A = 10 to achieve the best performance. The first
term is a weighted binary cross-entropy loss and the second
term is a weighted Dice Loss. The weight term w provides
sample specific pixel-wise weights, letting the CODNet fo-
cus on learning uncertain pixels, especially where confident
false predictions are made. Our whole algorithm is shown
in Algorithm 1. The comparisons between predictions with
and without confidence as guidance in Fig. 1 show the ef-
fectiveness of our confidence-aware learning.

4. Experimental Results
4.1. Setting:

Dataset: We train our model using the COD10K training
set [13], and test on four camouflaged object detection test-
ing sets, including the CAMO [28], CHAMELEON [45],
COD10K testing dataset [13] and NC4K dataset [33].
Evaluation Metrics: We use four evaluation metrics to
evaluate the performance of the camouflaged object detec-
tion models, including Mean Absolute Error (M), Mean
F-measure (Fg), Mean E-measure [11] (£¢) and S-measure
[10] (S,). A detailed introduction to those metrics appears
in the supplementary materials.

Training details: We train our model in Pytorch with
ResNet-50 [19] as backbone, where the encoder part is ini-
tialized with weights trained on ImageNet, and other newly
added layers are randomly initialized. We resize all the im-
ages and ground truth to 480 x 480. The maximum epoch is
50. The initial learning rates are 2.5 X 1075 and 1.5 x 10~°
for the camouflaged object detection network and confi-
dence estimation network respectively. The whole training
takes 8.5 hours with batch size 10 on two NVIDIA GTX
2080Ti GPUs.

4.2, Performance comparison

As there are few COD models, we retrain state-of-the-
art salient object detection (SOD) methods [50, 51, 31, 47,
57, 41, 56, 14, 4] on the COD10K training dataset [13] to
achieve part of the COD benchmark models in Table 1.
Quantitative comparison: We show performance of the
compared methods Tab. 1. It can be seen that our pro-
posed confidence-aware camouflaged object detection net-
work compares favourably against the previous state-of-
the-art methods on all four datasets. The improvements
over SINet [13] are most significant on Mean Absolute Er-
ror evaluation, which ranges between 14.7 — 18.5% on the
four datasets. Among the salient object detection methods,
RASNet [4] obtains comparable performance with SINet
[13] although it is not designed specifically for the cam-
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Table 1. Performance comparison with state-of-the-art methods,

CAMO [28] CHAMELEON [45] CODIOK [13] NC4K [33]
Method Year | BKkB | So 1 Fg1 Eet MU|Sat Fgt Eet MUL|Sa® Fgt Ect MUL|Sat Fgt Eet MU
CPD [50] 2019 | VGG-16 | 0.716 0.618 0.723 0.113 ] 0.857 0.771 0.874 0.048 | 0.750 0.595 0.776 0.053 | 0.790 0.708 0.810 0.071
SCRN[51] | 2019 | ResNet-50 | 0.779 0.705 0.796 0.090 | 0.876 0.787 0.889 0.042 | 0.789 0.651 0.817 0.047 | 0.832 0.759 0.855 0.059
PoolNet [31] | 2019 | ResNet-50 | 0.730 0.643 0.746 0.105 | 0.845 0.749 0.864 0.054 | 0.740 0.576 0.776 0.056 | 0.785 0.699 0.814 0.073
BASNet [41] | 2019 | ResNet-34 | 0.615 0.503 0.671 0.124 | 0.847 0.795 0.883 0.044 | 0.661 0486 0.729 0.071 | 0.698 0.613 0.761 0.094
EGNet [56] | 2019 | ResNet-50 | 0.737 0.655 0.758 0.102 | 0.856 0.766 0.883 0.049 | 0.751 0.595 0.793 0.053 | 0.796 0.718 0.830 0.067
F3Net [47] | 2020 | ResNet-50 | 0.711 0.616 0.741 0.109 | 0.848 0.770 0.894 0.047 | 0.739 0.593 0.795 0.051 | 0.782 0.706 0.825 0.069
ITSD[57] 2020 | ResNet-50 | 0.750 0.663 0.779 0.102 | 0.814 0.705 0.844 0.057 | 0.767 0.615 0.808 0.051 | 0.811 0.729 0.845 0.064
SINet[13] | 2020 | ResNet-50 | 0.745 0.702 0.804 0.092 | 0.872 0.827 0936 0.034 | 0.776 0.679 0.864 0.043 | 0.810 0.772 0.873 0.057
RONet [14] | 2020 | VGG-16 | 0.772 0.685 0.777 0.098 | 0.861 0.766 0.869 0.047 | 0.787 0.636 0.801 0.048 [ 0.823 0.739 0.835 0.064
RASNet [4] | 2020 | VGG-16 | 0.763 0.716 0.824 0.090 | 0.857 0.804 0.923 0.040 | 0.778 0.673 0.865 0.044 | 0.817 0.772 0.880 0.057
MGL [52] | 2021 | ResNet-50 | 0.775 0.673 0.847 0.088 | 0.893 0.813 0.923 0.030 | 0.814 0.666 0.865 0.035 - - -
TINet [58] | 2021 | ResNet-50 | 0.781 0.678 0.847 0.087 | 0.874 0.783 0.916 0.038 | 0.793 0.635 0.848 0.043 - - -
PFNet [35] | 2021 | ResNet-50 | 0.782 0.695 0.852 0.085 | 0.882 0.810 0.942 0.033 | 0.800 0.660 0.868 0.040 - - -
LSR [33] 2021 | ResNet-50 | 0.793 0.725 0.826 0.085 | 0.893 0.839 0.938 0.033 | 0.793 0.685 0.868 0.041 | 0.839 0.779 0.883 0.053
JSCOD [29] | 2021 | ResNet-50 | 0.803 0.759 0.853 0.076 | 0.894 0.848 0.943 0.030 | 0.817 0.726 0.892 0.035 - - -
Ours 2021 | ResNet50 | 0.807 0.767 0.866 0.075] 0.901 0.843 0.940 0.028 | 0.832 0.745 0.890 0.032 ] 0.857 0.817 0.899 0.044
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Figure 4. Predictions of our method and those compared methods.
Table 2. Performance comparison of ablation study models.
CAMO [28] CHAMELEON [45] CODI10K [13] NC4K [33]
Method | So © Fg 1 Egt M| Sat Fgt Egt MI|Sat Fgt Ect ML |Sat Fgt Ect M|
M1 0.780 0.751 0.858 0.080 | 0.862 0.794 0918 0.031 | 0.791 0.667 0.864 0.037 | 0.828 0.778 0.893 0.048
M2 0.794 0.767 0.859 0.076 | 0.881 0.819 0.926 0.031 | 0.808 0.700 0.881 0.036 | 0.839 0.802 0.900 0.047
M3 0.798 0.767 0.866 0.080 | 0.880 0.821 0.933 0.031 | 0.807 0.694 0.875 0.037 | 0.840 0.799 0.900 0.048
Ours 0.807 0.767 0.866 0.075 | 0.901 0.843 0.940 0.028 | 0.832 0.745 0.890 0.032 | 0.857 0.817 0.899 0.044

ouflaged object detection task. However, it is still outper-
formed by our proposed method on all evaluation metrics.
We notice the relatively similar S-measure and mean F-
measure of our solution compared with LSR [33] on the
CHAMELEON [45] dataset. This mainly due to the small
size of the CHAMELEON [45] dataset, with 76 samples in
total. The performance gap on MAE further indicates effec-
tiveness of our solution.

Qualitative comparison: We show predictions of our
method and compared methods in Fig. 4. In the first and
second rows, [41, 50, 47, 13] fail to recover the main struc-
ture of the Batfish and Ghost Pipefish. [51] can only dis-
cover the main body while predictions around the object
boundary are ambiguous and incorrect. On the contrary, our

method is able to segment more complete camouflaged ob-
jects whose boundaries are closer to those of ground truths.
On the third row, [41, 50, 47, 13, 51] recover the main body
of the Lizard, but they fail to find the limbs. In compari-
son, our method successfully segments both the main body
and the four feet, both of which are close to the ground
truth. Complementing to our camouflaged object detec-
tion, our estimated confidence map picks up inaccurate pre-
dictions associated with both over-segmentation and under-
segmentation issues at the object boundary.

Inference time comparison: Different from the compared
methods, which produce a single camouflage map in the
end, we introduce a confidence estimation module to eval-
uate pixel-wise awareness of model of the predictions. Al-
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Figure 5. Comparison of confidence maps produced with dynamic
supervision and adversarial learning setting. From left to right
are image, ground truth map, model prediction, confidence with
adversarial learning and confidence with our dynamic supervision.

though the extra module is included in our framework, our
inference time is 0.0211s per image for the camouflaged ob-
ject detection network and 0.0094s per image for the confi-
dence estimation network, which is comparable with exist-
ing techniques, such as 0.0296s of SINet [13].

4.3. Ablation study

We have two main modules in our confidence-aware
camouflaged object detection network, namely a camou-
flaged object detection network and a confidence estimation
network. We perform the following ablation study to exam-
ine the contribution of the main components of our frame-
work. We show performance of these models in Tab. 2.
The structure of the camouflaged object detection net-
work: We adopt the holistic attention module in [50] to
refine the module prediction with the initial prediction as
attention. To test how our model performs without the holis-
tic attention module, we train the camouflaged object detec-
tion network with only the initial prediction as output and
denote it as “M1”. Further, we add the holistic attention
module to “M1” and obtain “M2”. Tab. 2 shows that “M2”
consistently improves over “M1” on all evaluation metrics,
demonstrating that the holistic attention is able to help the
model extract more discriminative features.

Joint training of “M2” and the confidence estimation
network: We add the confidence estimation network gz
to “M2” without difficulty-aware learning. As there exists
no interaction between the confidence estimation network
and the camouflaged object detection network, the resulting
model achieve same performance as “M2”.

The supervision of the confidence estimation network:
Similar to [20, 39], another option to generate supervision
for the confidence estimation module is to assign 0 for the
prediction and 1 for the ground truth map following the ad-
versarial learning pipeline. We perform this experiment”
and show its results as “M3” in Table 2. In this setting,

2Please refer to the supplementary material for the network overview
and implementation details.

Image/GT = t=20

Figure 6. Using the estimated confidence map as an indicator of
the prediction quality. The first column displays the ground truth
and image. Predictions and corresponding uncertainty maps from
different training stages are displayed from the second to the fifth
column. Red indicates low confidence and blue indicates high con-
fidence. ¢ indicates the training epoch.

we regard our confidence estimation network as a discrim-
inator and our camouflaged object detection network as a
generator. A well-trained discriminator should converge to
0.5 indicating it cannot distinguish the prediction from the
ground truth. Therefore, we define the estimated confidence
in this adversarial learning setting as:

g = o0 o)) =05 )

A trivial solution exists with above discriminator super-
vision, that is the model will simply project hard samples
(y € {0,1} to 1) to 1 and soft samples (fg(x) € (0,1)) to
0. To prevent this, we introduce a label perturbation tech-
nique which relaxes the ground-truth labels from {0, 1} to
{v]0<wv<0.010r099 < v < 1} corresponding to
the background label and the foreground label respectively.
Confident correct predictions on pixels of the camouflaged
object detection network are associated with values between
these ranges, resulting in estimating high confidences in
these pixels, while pixels with moderate scores, e.g. 0.4 for
weak background prediction or 0.6 for foreground predic-
tion, are assigned high uncertainties.

Experimental results in Tab. 2 show that “Ours” in gen-
eral outperforms “M3”, indicating that the confidence esti-
mation network trained with dynamic supervision produces
more reliable confidence maps, leading to better perfor-
mance with the difficulty-aware learning in Eq.6.

4.4. Discussion

Comparison with adversarial learning: Fig. 5 illustrates
the difference between the confidence maps produced with
the adversarial learning setting and dynamic supervision
method. In general, the confidence map produced with
the adversarial learning setting is biased to have higher un-
certainty values associated with the foreground predictions.
These biased uncertainties are consistent across the fore-
ground predictions although they are mostly correct. For
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Table 3. Performance comparison of choosing different A values.

CAMO [28] CHAMELEON [45] CODI0K [13] NC4K [33]
Method Sat Fs1 Eet MU|Sat Fgt Ect MU|Sa? Fst Eet MU |Sat Fs1 Ect ML
A=3 0.802 0.755 0.841 0.080 | 0.890 0.828 0.929 0.032 | 0.823 0.728 0.883 0.036 | 0.850 0.804 0.892 0.049
A=5 0.805 0.768 0.851 0.077 | 0.901 0.840 0.933 0.029 | 0.834 0.743 0.887 0.033 | 0.857 0.813 0.896 0.046
AD 0.804 0.764 0.862 0.074 | 0.875 0.810 0.923 0.034 | 0.807 0.697 0.877 0.037 | 0.843 0.798 0.900 0.047
Ours (A = 10) | 0.807 0.767 0.875 0.075 | 0.901 0.843 0.940 0.028 | 0.832 0.745 0.890 0.032 | 0.857 0.817 0.899 0.044

example, in the samples presented in Fig. 5, the strong fore-
ground predictions inside the object are correct, thus should
be regarded as confident. The desired uncertainty values are
manifested in the confidence map produced with dynamic
supervision. Correct foreground predictions are assigned
with high confidence. The errors only occur at the bound-
ary pixels, which correspond to high uncertainty values.
Confidence maps produced with the adversarial learning
setting generate artifacts, a blob of uncertain area centred
at weak foreground predictions. Although these artifacts
locate the uncertain foreground predictions, they fail to pro-
vide spatially-accurate uncertainties. On the contrary, the
confidence map with dynamic supervision is able to delin-
eate a more precise uncertainty structure. On the second
row of Fig. 5, it produces a thickened uncertainty predic-
tion along the predicted object boundaries where most er-
rors occur. Just inside these boundaries, it faintly traces the
thin body parts of the caterpillar at the top-right corner and
the left side. The structure-preserving property of the con-
fidence map with dynamic supervision is best demonstrated
on the third sample of Fig. 5. Although the camouflaged
object detection network fails to predict the webbed frog
foot, its structure is picked up by the confidence map pro-
duced with dynamic supervision where the boundary of the
webbed foot is delineated, forcing the camouflaged object
detection network to focus on learning the missing parts.
When the uncertainty map is used as guidance to the
structure loss, the adversarial learning version is able to
direct attention to weak prediction areas where errors are
prone to occur. However, despite its localisation capability,
it is not pixel-wise accurate. On the contrary, the dynamic
supervision version can discover object structure that the
camouflaged object detection network fails to find. It com-
plements the camouflaged object detection network, refin-
ing object structure and recovering initially lost object parts.
Confidence module as a trained evaluation tool without
relying on ground truth maps: Our confidence map can
serve as a rough evaluation tool of the prediction quality of
the camouflaged object detection network without relying
on the ground-truth segmentation map. Fig. 6 illustrates the
predicted camouflage map and its corresponding confidence
map of a sample at different stages of training. The sample
is regarded as hard and its initial prediction discovers only
a small part of foreground object at the second epoch. This
leads to large areas of high uncertainty values in its corre-
sponding confidence map. As the prediction becomes more

refined as the training progresses, the high-uncertainty ar-
eas in the confidence maps shrink as a result, eventually
highlighting only the structures of the camouflaged objects
where errors are prone to occur. In addition, Fig. 6 also val-
idates that our estimated confidence map guides the cam-
ouflaged object detection network to gradually recover the
initially lost object parts of the hard samples.
Hyper-parameter analysis: The impact of selecting differ-
ent values of A for w™" in Eq. 6, which is a factor control-
ling the uncertainty guidance in the structure loss, is demon-
strated in Tab. 3. We ablate A = 3,5, Ap where Ap is a dy-
namic factor defined as A\p = min{2 x ReLU(t — 5), 20},
where ¢ is the current training epoch. The results show
that our results of defining A = 10 achieve better perfor-
mance. The inferior performance of the dynamic factor Ap
can be attributed to that it provides insufficient guidance in
the early stage of training. As it is difficult to tune it to
achieve adaptive uncertainty weighting, in this paper, we
define fixed A for the entire training stage, which is proven
to work better in general.

5. Conclusion

We introduce an on-line aleatoric uncertainty estimation
technique for camouflaged object detection. The conven-
tional approach to aleatoric uncertainty modeling involves
only supervision for the task related loss function as shown
in Eq. 3. In this paper, we deal with on-line aleatoric
uncertainty estimation and introduce dynamic supervision
for the aleatoric uncertainty estimation module to highlight
the wrongly predicted areas. Specifically, our framework
is composed of an interdependent camouflaged object de-
tection network (CODNet) and an on-line confidence es-
timation network (OCENet). The dynamic confidence la-
bel is generated to train the OCENet, which is derived
from the prediction of the CODNet and the ground truth
map. The estimated confidence map from the OCENet di-
rects the CODNet to place more emphasis on learning areas
with uncertain predictions. Our proposed network performs
favourably against existing camouflaged object detection
methods on four benchmark camouflaged object detection
testing datasets. Further, the generated confidence map pro-
vides an effective solution to explain the model prediction
without relying on the ground truth map.
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