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Abstract

Feature pyramids and iterative refinement have recently
led to great progress in optical flow estimation. However,
downsampling in feature pyramids can cause blending of
foreground objects with the background, which will mislead
subsequent decisions in the iterative processing. The results
are missing details especially in the flow of thin and of small
structures. We propose a novel Residual Feature Pyramid
Module (RFPM) which retains important details in the fea-
ture map without changing the overall iterative refinement
design of the optical flow estimation. RFPM incorporates
a residual structure between multiple feature pyramids into
a downsampling module that corrects the blending of ob-
jects across boundaries. We demonstrate how to integrate
our module with two state-of-the-art iterative refinement ar-
chitectures. Results show that our RFPM visibly reduces
flow errors and improves state-of-art performance in the
clean pass of Sintel, and is one of the top-performing meth-
ods in KITTI. According to the particular modular struc-
ture of RFPM, we introduce a special fine-tuning approach
that can dramatically decrease the training time compared
to a typical full optical flow training schedule on multiple
datasets.

1. Introduction
Optical flow estimation is a key problem in computer vi-

sion and a fundamental building block of many high-level
computer vision applications [27, 35, 20]. Recent optical
flow estimation has greatly benefited from learning-based
CNN architectures. Flownet [6] is the first CNN which di-
rectly predicts the optical flow with an encoder-decoder ar-
chitecture. PWC-Net [38] and LiteFlowNet [11] proposed
an iterative refinement design. The four fundamental stages
in iterative refinement are: first feature maps at different lev-
els of resolution are extracted; second, correlation is used
to calculate a cost volume; third, intermediate optical flow
is predicted based on the cost volume and on the previ-
ous optical flow; and finally, the previous three steps are
repeated in an iterative refinement loop. This architecture

has been shown to effectively reduce error in large displace-
ment and it has been used as a design in many recent ap-
proaches [22, 43, 15, 41, 9]. However, we observe that
the iterative refinement design is not without major draw-
backs which limits optical flow estimation to improve fur-
ther. Fig. 1 shows that the low-resolution image, as well
as the low-resolution feature map, exhibit blending across
boundaries of foreground objects (the apples in Fig. 1) and
the background because of down-sampling. This can mis-
lead the flow estimation to incorrectly consider foreground
and background as one object and hence predict the optical
flow incorrectly for both, foreground and background. Be-
cause of the iterative design, the erroneous estimate will be
amplified in the following iterations.

We introduce a new pyramid module, Residual Feature
Pyramids Module (RFPM), to address the loss of detail in
feature pyramids. We demonstrate how RFPM reduces er-
ror in optical flow in Sintel and KITTI, even when inte-
grated into top-performing optical flow methods such as
RAFT [40] and IRR-PWC [14]. Our experimental results
shows that RFPM-RAFT achieves state-of-the-art perfor-
mance on MPI Sintel [4] (Clean pass), and KITTI 2015 [28]
benchmarks (two-frame).

We decide to focus on the feature pyramid because we
do not want to change the iterative refinement architecture
as it has been shown to improve optical flow results, es-
pecially for large flow, and because the pyramid module is
fully compatible with most optical flow estimation meth-
ods or high-level applications. In order to reduce the effort
in re-training a complete optical flow method, we also pro-
pose a new efficient fine-tuning strategy which directly adds
RFPM to a trained optical flow method and thereby signifi-
cantly increasing training progress.

Our main contributions are: First, we show that the tradi-
tional pyramid architecture is flawed in optical flow estima-
tion. We present a new pyramid architecture, RFPM, which
reduces the error at motion boundaries. We then propose a
new strategy of fine-tuning for RFPM. Next, we will review
related optical flow methods, strategies to avoid blur across
motion boundaries and the use of feature pyramids.
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(a) Boundary blur on a multi-scale image. In the high resolution image
(top), we can easily distinguish the outline of individual apples, while in
the low resolution image (bottom), it is difficult to recognize individual
apples due to their blurred boundaries.

(b) Boundary blur on multi-scale feature map. The top image is the feature
map at Level 2 of the pyramid where we can see the approximate bound-
aries of each apple. The bottom image is the feature map at Level 5 where
the features in the highlighted area are not discernible.

Figure 1. Failure cases in current pyramid architectures. (a) Low
resolution images blur object boundaries. (b) The feature map ex-
hibits the same problem due to the down-sampling in the convolu-
tion layer.

2. Related work
Optical Flow Estimation. In optical flow the use of
multi-resolution representations goes back to Lucas and
Kanade [25] who used bandpass-filtering to register features
across scales. Bouguet [3] reported a popular implementa-
tion using image pyramids. We refer the reader to the work
of Sun et al. [36] and their analysis of classic optical flow
methods derived from Horn and Schunck [8]. FlowNet [6]
is the first end-to-end trainable CNN network based on a
U-Net [33] architecture. The model was trained on a syn-
thetic dataset. They propose two basic architectures but the
correlation layer of FlowNetC has become a key component
in modern architectures. Next, Ilg et al. [16] stack several
models of FlowNet into a large system. With a regular train-
ing schedule, FlowNet2 achieves significant improvements
in the Sintel and KITTI benchmarks. SpyNet [30] intro-
duces a light-weight network by using the feature pyramid

and warping within the image pyramid. Sun et al. [38] cre-
ate PWC-Net that uses an architecture that utilizes a feature
pyramid, warping, and a cost volume, which forms the cor-
nerstone of many follow-up works [22, 14, 31]. Recently,
IRR [14] and RAFT [40] apply an iterative architecture,
which use a fixed CNN component as an unit in the iter-
ation. This architecture achieves remarkable performance
with fewer parameters compared to most conventional CNN
architectures.
Boundary Blur. Blur across optical flow boundaries is
known to be a difficult problem. Many methods use seg-
mentation to prevent blur. Earlier works [46, 2] segment
the image into regions using shape or color, then estimat-
ing motion by matching the regions. In recent CNN based
methods, Sevilla et al. [34] and Hur et al. [13] add a pre-
trained semantic segmentation neural network as an addi-
tional component to improve optical flow but these meth-
ods are not end-to-end trainable. SegFlow [5] uses an opti-
cal flow and an image segmentation model jointly, and con-
struct communications between the two branches of the net-
work. Different from previous work, our method does not
use an extra semantic network instead we prevent boundary
blur with the proposed pyramid architecture.
Feature Pyramids. Image pyramids as a multi-resolution
representation are widely used in image processing, com-
puter vision and computer graphics [24, 1]. Pyramids of im-
age features are often calculated based on multi-resolution
images. This method is slow however, as hand-engineered
features on each scale of the images need to be computed.
Liu et al. [23] use the convolution layer to predict multi-
scale feature maps in their SSD to handle variedly sized
objects. However, as noted by Fu et al. [7], SSD fails
to detect small instances. Subsequently, Feature Pyramid
Networks [21] are a top-down architecture with skip con-
nections in the feature pyramid combining semantically-
strong features at low resolution with semantically-weak
features at high resolution. This architecture makes the net-
work more robust for different scales of objects. Kong et
al. [19] add global attention and local reconfiguration into a
SSD-like design. In their work, they compare SSD and its
variants showing that global attention enhances multi-scale
representations with semantically strong information. The
above methods address object detection, semantic segmen-
tation etc. but do not consider optical flow.

Recent optical flow estimation methods [14, 38, 45] use
a shared weight pyramid to extract features. The main dif-
ference of pyramids in optical flow methods from image de-
tection is that optical flow methods use iterative refinement
while in object detection the result is directly predicted. Re-
cently, [32] propose a residual skip connections of feature
pyramid which improved accuracy in some classic optical
flow methods [38, 11].

To our knowledge, most optical flow methods still use an
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Downsampling

Figure 2. Illustration of flow error. The top shows two pixels of
a high resolution image, red indicates the flow of the object is to
the left, and blue indicates the flow of the object is to the right.
The top high resolution image predicts the flow of the two objects
correctly (circle towards left, triangle towards right). The low res-
olution image at the bottom demonstrates that fusing the two pixel
produces an average flow prediction which is different from either
correct flow value.

SSD-like architecture. However, the limitations of SSD for
small objects are well known and the problem is exagger-
ated by the iterative refinement processing in optical flow.

3. Feature Map Analysis
Recent iterative refinement optical flow methods calcu-

late feature pyramids and then use these multi-resolution
maps in a correlation step to find a cost volume. We will
consider first the currently used approach which we refer to
as Weighted Feature Downsampling (WFD) before deriving
our alternative approach.

Given a pair of RGB images, It, It+1, a feature pyramid
generates L-level bottom-up pathways, the bottom level is
the original input image, i.e., F0

t = It. Each feature map
F l

t is generated typically by a 3 × 3 convolutional filter
with a stride of two pixels with respect to F l−1

t . The archi-
tecture contains 6 levels of convolutional blocks in recent
works [38, 14] while using the last four feature map pairs
{(F3

t ,F3
t+1), (F4

t ,F4
t+1), (F5

t ,F5
t+1), (F6

t ,F6
t+1)} to com-

pute the cost volume. Therefore, at the l-th level, the cost
volume can be formulated as

V = c(F l
t , w(F l

t+1)), (1)

where w represents the warping operation that uses bi-linear
interpolation to warp It+1 with the optical flow to It. The
correlation operation c computes the similarity between two
feature maps by an element-wise dot product.

At each level l of the feature pyramid, the output pixel
value xl

i,j is a weighted sum of pixel value of the previous

(a) Weighted Feature Downsampling (WFD)

(b) Residual Feature Downsampling (RFD)

Figure 3. Downsampling modules. WFD is the original module
used in CNN optical flow estimation [38, 10, 14]. RFD combines
WFD and Max Pooling (MP) with a residual-like design.

level
zli,j =

∑
x,y

zl−1
i+x,j+yk3(x, y), (2)

where i,j are the indices of the pixel, k3 is the 3*3 convolu-
tion kernel, −1 ≤ x, y ≤ 1 (3*3 kernel). We refer to this as
Weighted Feature Downsampling (WFD) in Fig. 3(a).

We observe a major consequence of this architecture is
blurring of motion boundaries. Fig. 2 illustrates an exam-
ple: Two tiny objects move in different directions in the
original images It and It+1 after WFD through several con-
volution layers. The coarse resolution treats the two objects
as a whole, and predicts the same or similar direction for
both objects which is incorrect for both and contradicts a
possibly correct predictions at the higher resolution. As a
result the overall prediction will be in error.
Residual Feature Downsampling (RFD). We propose to
apply a joint feature extraction by WFD and Max Pooling
(MP) in a residual design [42]. RFD learns to enhance edge
areas because MP is expected to keep higher weight pixels
for the next level. Although MP itself might not keep all
significant information, it can guide WFD towards the extra
information through the residual structure. To this end, we
introduce a Residual Feature Downsampling (RFD) pyra-
mid based on the integration of WFD and MP. The RFD ex-
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Figure 4. Architecture of RFPM. Feature maps are extracted with
three different pyramids.

Figure 5. The network extracts a pair of feature maps by a share
weight RFPM and feeds them into a correlation layer.

tracts features with an addition operation from both WFD
and MP (see Fig. 3(b)). The pixel value at level l is then

zli,j =
∑
x,y

M(z)l−1
i+x,j+yk1(x, y) + zl−1

i+x,j+yk3(x, y) (3)

Our RFPM includes RFD but it also incorporates multiple
different feature pyramids, including pyramids calculated
with standard WFD. We also provide additionally pathways
for the feature in form of repair masks that act at a chosen
level of different pyramids.

3.1. Repair Mask

We introduce a learnable Repair Mask (RM) to repair
feature maps after downsampling. The RM contains two
parts: a multiplicative attention function A which output a
attention mask of shape (B, 1, H, W), and an additive bias
function M which output a bias mask of shape (B, C, H,
W). Assuming two pyramids (and using broadcasting of A),
then the feature map of the right pyramid at level l+1 takes

the map of the left pyramid into account as in

F l+1
right = Conv(F l

right ∗ A(F l+1
left) +M(F l+1

left)) (4)

3.2. Module Structure

The complete Residual Feature Pyramid Module with
Repair Masks (RFPM) is constructed as follows (see Fig. 4):

(a) Multi-kernel top-down pathway: Given a pair of im-
ages, features are extracted from the top to bottom via three
pathways, the left and right pyramid are constructed with
WFD. We call the left pyramid the base pyramid. The mid-
dle pyramid uses RFD. When integrating RFPM into differ-
ent optical flow estimators, the actual pyramid architecture
needs to be slightly different. We always keep the original
architecture as base pyramid. This design of RFPM is also
beneficial for efficient fine-tuning which we will describe in
Section 4.4.

(b) Repair left-right pathway: The feature map of the
base pyramid extracts a repair mask, the mask passes to the
middle pyramid to repair missing information due to max-
imum pooling. The middle pyramid in turn extracts a re-
pair mask to restore the right pyramid as well. Note, we do
not add a repair mask at each level. In practice, we found
adding repair masks only on some levels at the bottom of
the pyramid is sufficient to improve performance.

Therefore, at level l, the cost volume is defined as in
Eqn. 1 with the feature maps:

F l
t = [F l

left,t,F l
mid,t,F l

right,t] (5)

F l
t+1 = [F l

left,t+1,F l
mid,t+1,F l

right,t+1] (6)

Next, we will discuss how to integrate RFPM with two
state-of-the-art optical flow methods: IRR-PWC [14] and
RAFT [40].

3.3. RFPM with IRR-PWC

RFPM-IRR-PWC consists of a 6-level shared-weight
base pyramid with 16, 32, 64, 96, 128 and 196 feature chan-
nels, respectively. Each level from 6 down to 2 makes pre-
dictions in a coarse-to-fine manner. The first predictions at
level 6 are at 1

64 and the final predictions at level 2 are at 1
4

of the resolution of the original image in width and height.
The feature channels of the pyramids are 16, 32, 64, 88, 112
and 136, respectively. Fig. 4 illustrates the pyramids with
repair masks generated at level 1 to 3. The base pyramid
provides mask A(F l

left) and M(F l
left), which feed into

the same level of the middle pyramid. This avoids unneces-
sary down- and upsampling. The middle pyramid generates
masks A(F l

mid) and M(F l
mid), which feed into the same

level of the right pyramid. Due to the bilateral refinement
of flow and occlusion structures, feature maps of all three
pyramids feed into the correlation layer. In contrast, only
the feature map of the base pyramid is used to predict oc-
clusions and the context flow.
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Figure 6. Visualizing the relation between feature map and predicted flow. Failure areas in RAFT are indicated with white squares. These
areas have blurred edges in the feature pyramid. In our RFPM, the flow result correctly predicts the motion boundary because of the
improved edges in the feature pyramid. RFPM significantly reduces the EPE errors.

Figure 7. Visualization of feature pyramids. Comparison of the learned features from left pyramid using WFD, middle pyramid using RFD
with repair mask (RM), and right pyramid using WFD with repair mask (RM).

3.4. RFPM with RAFT

RAFT contains a three-level feature pyramid, each level
consists of two residual blocks, at 1

2 , 1
4 , and 1

8 resolutions
of the original image in width and height, respectively. In-

stead of a coarse-to-fine manner, RAFT builds a multi-scale
4D correlation volume by all pairs of pixels in the feature
map of the last level. RFPM-RAFT uses a similar modifi-
cation than in RFPM-IRR-PWC, except RFPM-RAFT uses
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the three-level pyramid architecture of RAFT and the repair
masks are generated at level 1 and level 2. The total number
of parameters in RFPM-RAFT is 7.5M.

4. Experimental Evaluation
We first detail the training for our implementation of

RFPM-IRR-PWC and RFPM-RAFT before presenting re-
sults on MPI Sintel [4] and KITTI-2015 [28]. We present
ablation studies for the configurations of the downsampling
approaches as well as the number and level of repair masks
in RFPM. We then discuss our reduced effort training ap-
proach for our module based on efficient fine-tuning and
data augmentation.

4.1. Training and Implementation

We follow the training configurations of IRR-PWC [14]
and RAFT [40] for a fair comparison. We first train RFPM-
IRR-PWC on the FlyingChairs OCC [6] dataset (learning
rate schedule schedule Sshort) and then fine tune on Fly-
ingThings3D [26] (half schedule learning rate of Sshort).
When fine-tuning on Sintel and KITTI, we use a mini-batch
size of 4 with the cyclic learning rate proposed by PWC-
Net+ [39]. IRR-PWC uses fine-tuning on KITTI based on
the checkpoints of FlyingThings3D. We train RFPM-RAFT
on FlyingChairs for 200k iterations with a batch size of 6,
and on FlyingThing3D for 200k iterations with a batch size
of 3. We fine-tune on Sintel by combining data from Sin-
tel [4], KITTI-2015 [28] and HD1K [18] for 200k itera-
tions with a batch size of 3 (the same setting as described in
PWC-Net+ [39]). Then, based on the checkpoints of Sintel,
we train for 100k iterations with a batch size of 3 (we use
half of the batch size and double the iterations in compari-
son with RAFT because of memory limitations). RFPM is
implemented in PyTorch [29] and our experiments use ei-
ther a single Nvidia 2080Ti GPU with 11 GB of memory,
or a Nvidia RTX2070 GPU with 8GB of memory. Some of
the ablation study were done with Google Colab.

4.2. Results

According to Table 1, RFPM-RAFT outperforms all
published optical flow methods on the MPI Sintel [4] clean
pass and KITTI-2015 [28]. Our methods achieve a 12%
higher accuracy on Sintel, and 6% higher accuracy on
KITTI compared with RAFT. Fig. 6 shows a visualization
of test results from the Sintel website. To show the ben-
efit of our methods, we compare RAFT with our RFPM-
RAFT in both feature map (second column) and output flow
(third column). The dashed rectangle corresponds to the
same zoomed-in areas as in the feature map and flow re-
sults. Comparing features in RAFT and in our proposed
RFPM-RAFT, we clearly see that features in RAFT ignore
important edges in the zoom-in, and the output flow thus
failed to predict motion boundary in the corresponding area

(dashed rectangle). In contrast, our RFPM-RAFT signifi-
cantly reduces the error and better separates different mov-
ing objects and environments in these areas. Furthermore,
Fig. 7 visualizes all three feature maps in the same level of
RFPM-RAFT, we can see that by adding the repair mask in
the RFD (middle) and WFD (right), the edges in the feature
map are clearer than in the original WFD (left). Therefore,
we think the missing detection of edges in the feature maps
is the main reason for a poor prediction of optical flow close
to motion boundaries in RAFT. As can be seen, our method
enhances the edges in the rectangle and succeeds to estimate
the optical flow close to these motion boundaries.

4.3. Ablation Study

Our ablation study focuses on RFPM-RAFT, because
RAFT has fewer parameters but still obtains lower aver-
age end-point error (AEPE) on Sintel and KITTI-15 than
RFPM-IRR-PWC. All ablation models are trained on Fly-
ingChairs training and tested on FlyingChairs validation,
and the Sintel clean and final training data. The repair mask
study uses extra fine-tuning on FlyingThings3D.

We will first look at the number of pyramids. Table 2
presents the results of two or three pyramids where L, M
and R express Left, Middle and Right pyramid, respectively.
We find that the models benefit from the L/M/R architecture
with the refinement mask, and the main reduction of the
AEPE is from the refinement mask.

In Table 3, we look at the level in the pyramids where to
use a repair mask. The results indicate that the model with
repair masks at both, Level 1 and Level 2 leads to the best
performance in terms of AEPE. Using the repair mask at all
three levels likely causes overfitting on the Chairs dataset as
can be seen from low AEPE error on Chairs testing but the
relatively higher AEPE on the other two datasets.

Finally, we compare the different downsampling layers
discussed in Section 3. Table 4 shows the benefits of our
module. (Note: W, M and R presents WFD, MP and RFD
respectively). W/R/W shows the best performances. We
suspect that RFD mainly contributes to the Sintel final pass
based on the comparison between W/M/M and W/M/R.
W/R/R results in the smallest testing error on Chairs, but
it might be overfitting as can be seen from the higher AEPE
on the Sintel final pass.

4.4. Efficient Fine-tuning Approach

We present an efficient Fine-tuning for our module:
Given a pre-trained neural network, our goal is to improve
the neural network by incorporating RFPM with only a
small training schedule. We add the RFPM into pre-trained
RAFT and fine-tune the overall model on KITTI-2015. We
can also further improve learning by our novel Asymmetric
Data Augmentation (ADA) due to the special structure of
our module. ADA keeps the same geometric augmentations

2105



Method Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)
Clean Final F1-epe F1-all Clean Final F1-all(%)

SPyNet[30] (3.17) (4.32) - - 6.64 8.36 35.07
FlowNet2[16] (1.45) (2.19) (2.36) (8.88) 4.16 5.74 10.41
FlowNet3[17] (1.47) (2.12) (1.79) - 4.35 5.67 8.60
SelFlow[22] (1.68) (1.77) (1.18) - 3.75 4.26 8.42
PWC-Net[38] (2.02) (2.08) (2.16) (9.80) 4.39 5.04 9.60
PWC-Net+[39] (1.71) (2.34) (1.47) (7.59) 3.45 4.60 7.72
IRR-PWC[14] (1.92) (2.51) (1.63) (5.32) 3.84 4.58 7.65
LiteFlowNet2[12] (1.30) (1.62) (1.33) (4.32) 3.48 4.69 7.62
LiteFlowNet3[10] (1.32) (1.76) (1.26) (3.82) 2.99 4.45 7.34
HD3[44] (1.70) (1.17) (1.31) (4.10) 4.79 4.67 6.55
VCN[43] (1.66) (2.24) (1.16) (4.10) 2.81 4.40 6.30
MaskFlowNet[45] - - - - 2.52 4.17 6.10
RAFT[40] (0.76) (1.22) (0.63) (1.50) 1.94 3.18 5.10
RAFT(warm-start)[40] (0.77) (1.27) - - 1.61 2.86 -
RAFT-A*[37] - - - - 2.01 3.14 4.78
RFPM-IRR-PWC (1.66) (2.43) 1.48 5.17 3.63 4.52 7.49
RFPM-RAFT (0.61) (1.05) (0.60) (1.41) - - 4.79
RFPM-RAFT(warm-start) (0.68) (1.12) - - 1.41 2.90 -

Table 1. Results Comparison on Sintel and KITTI-15. The value in parentheses are the errors on the training dataset, the best training
result is underlined, and the best testing result is shown in bold. Sintel performance is evaluated by average end-point error (AEPE) over
all valid pixels. F1-all is the percentage of optical flow outliers over all valid pixels. * Please note that AutoFlow by Sun et al.[37] uses a
different training dataset but does not change the basic RAFT architecture.

Settings
Trained on Chairs

Chairs Sintel(clean) Sintel(final)
Testing Training Training

L/M 0.79 2.29 4.41
L/M + mask 0.73 2.17 4.30
L/M/R 0.74 2.21 4.33
L/M/R + mask 0.72 2.11 4.28

Table 2. Number of Pyramids and Use of Repair Masks.

Settings
Chairs Chairs+Things
Chairs Sintel(clean) Sintel(final)
Testing Training Training

Level 1 0.73 1.32 2.79
Level 2 0.73 1.33 2.82
Level 3 0.75 1.33 2.84
Level 1+2 0.72 1.24 2.74
Level 1+2+3 0.70 1.31 2.83

Table 3. Repair mask levels and numbers.

for Left/Middle/Right pyramids, but implements different
chromatic augmentations for each batch of data. This leads
us to the training schedule (St) where our module in RAFT
is first trained on FlyingThings3D for 50k iteration with a
batch size of 3 using Asymmetric Data Augmentation. Then
we fine-tune for 100k iterations on KITTI with a batch size
of 3. We call the resulting model RFPMt-RAFT to distin-

Settings
Trained on Chairs

Chairs Sintel(clean) Sintel(final)
Testing Training Training

W/M/M + mask 0.81 2.32 4.39
W/M/R + mask 0.76 2.27 4.24
W/R/R + mask 0.68 2.11 4.30
W/R/W + mask 0.70 2.09 4.21

Table 4. Downsampling layer trade-off.

Methods Schedule KITTI-15 (test)
Fl-fg(%) F1-all(%)

RAFT C+T+S+K+H 6.87 5.10
RFPM-RAFT C+T+S+K+H 6.20 4.79
RFPMt-RAFT St 6.69 5.08

Table 5. Efficient Fine-tuning Comparison for RAFT [40] variants
on KITTI-2015. C+T+S+K+H is the training schedule used in
RAFT and is also the full schedule for our RFPM-RAFT. St is
our small Fine-tuning schedule, which leads to our method trained
as RFPMt-RAFT. The result shows that RFPMt-RAFT surpasses
RAFT with a small training schedule.

guish it from RFPM-RAFT that is trained with the same full
C+T+S+K+H schedule as RAFT (see Section 4.4). Table 5
shows that our RFPMt-RAFT surpasses RAFT despite only
using a small training schedule with 22.2% iterations used
by RAFT.

We also conducted an ablation study of ADA with results
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shown in Table 6. MFPMt-RAFT directly trains on KITTI
for 20K iteration with a batch size of three. We compare the
effect of different ratios of original and augmented data pre-
sented to the RFPMt-RAFT. A probability of 0.2 (20 %) for
a sample generated with ADA appears to be most effective.
Note that the numbers in Table 6 are the average of 3-fold
cross validation.

Asymmetric Data KITTI-15(train)
Augmentation F1-epe+ F1-all+(%)

0 1.21 3.63
0.2 1.19 3.60
0.5 1.20 3.64
0.8 1.22 3.64

Table 6. Asymmetric Data Augmentation (ADA) during efficient
fine-tuning. + is the average value evaluated by 3-fold cross vali-
dation.

5. Conclusions
Our analysis has revealed that the traditional feature

pyramid is a major reason for errors in optical flow esti-
mation of small and finely detailed objects. The flow of
these objects is lost at low resolution levels of the tradi-
tional pyramid. We propose a residual feature downsam-
pling that includes max pooling to preserve detail features.
We use multiple pyramids in our module incorporating re-
pair masks at some levels of the pyramids. Our RFPM can
be easily incorporated into modern iterative refinement opti-
cal flow methods as it only modifies the downsampling fea-
ture pyramid common to these approaches. We demonstrate
that by integrating RFPM in two state-of-the-art methods,
their overall error in Sintel (clean) and KITTI-15 improves
but more importantly there is clear visual improvement for
small and finely detailed objects. We have further proposed
an efficient fine-tuning strategy for RFPM with novel data
augmentation that still achieves state-of-the-art accuracy on
KITTI-2015 but with a much smaller training schedule.
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