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Abstract

3D object reconstruction based on deep neural networks
has been gaining attention in recent years. However, recov-
ering 3D shapes of hidden and buried objects remains to
be a challenge. Ground Penetrating Radar (GPR) is among
the most powerful and widely used instruments for detecting
and locating underground objects such as plant roots and
pipes, with affordable prices and continually evolving tech-
nology. This paper first proposes a deep convolution neural
network-based anchor-free GPR curve signal detection net-
work utilizing B-scans from a GPR sensor. The detection re-
sults can help obtain precisely fitted parabola curves. Fur-
thermore, a graph neural network-based root shape recon-
struction network is designated in order to progressively re-
cover major taproot and then fine root branches’ geometry.
Our results on the gprMax simulated root data as well as the
real-world GPR data collected from apple orchards demon-
strate the potential of using the proposed framework as a
new approach for fine-grained underground object shape
reconstruction in a non-destructive way.

1. Introduction
Ground-penetrating radar (GPR) is a continually evolving,
reliable and effective technology for near-surface sensing.
It is generally used as a non-destructive, three-dimensional
imaging method and has been widely applied to geological
exploration [40], damage inspection [3] [14] [5], concrete
scanning [9] [28], underground structure detection and lo-
calization [20] [21] [32] e.g., utility pipes, soil, and rebars.
Due to these extraordinary properties, GPR sensors have
become a powerful tool in remote sensing applications to
facilitate civil engineers and geophysicists.

Nonetheless, visual interpretation of GPR data is ex-
tremely timely and labor-consuming. Usually, the GPR data
collected within a day needs several weeks or even longer
to be successfully interpreted by an experienced engineer.
This shortcoming severely limits the efficiency of mainte-
nance and rehabilitation. Moreover, current GPR applica-
tions mainly focus on large and thick underground objects
such as pipes and rebars, making it extremely difficult to

detect and locate thin plant root structures accurately. Fur-
thermore, object reconstruction models from sampled sliced
B-scans are relatively sparse, resulting in a serious loss of
most fine branches. Hence, taking complicated plant root as
a proxy object, we aim to address these challenges by intro-
ducing our novel pipeline that automatically detects under-
ground root structures and recovers dense and detailed root
shapes, which is illustrated in Fig. 1. Unlike existing works,
our designated framework develops a deep neural network
(DNN)-based method to jointly detect underground roots
from GPR scans and reconstruct the trunk and branches of
plant roots, which has been seldom explored in the past.

In this paper, we explore reconstructing dense root struc-
tures from multiple detected 2D GPR sensing slices. To
learn the root shape precisely and accurately, we first apply
a series of preprocessing steps including the time zero cor-
rection, background noise exclusion, and amplitude gain to
compensate for the signal attenuation. Furthermore, we in-
troduce an anchor-free root detection network to locate the
root branches in each profile. Specifically, we propose Par-
Net to use a parabola curve to effectively represent the root
feature in the processed GPR scans instead of normal rect-
angular bounding boxes. The detected root signal parabola
is modeled with the center point of the parabola curve and
the coefficients of the hyperbola equations in order to fit the
root shape. In the single-forward one-stage training pass, a
stacked hourglass backbone is utilized to extract image fea-
tures from the processed GPR scan images, as well as out-
put parabola center keypoint heatmaps that are used to lo-
calize the center point of the hyperbola curve. Meanwhile,
the parabola coefficients are estimated to form the parabola
curve together with the estimated parabola center.

Based on the sparse points generated from the detected
parabolas, we further propose a graph neural network based
point cloud reconstruction network (GRecNet) to recover
the complete 3D roots. The input to GRecNet is a group
of N × 3 unordered sparse points obtained from the GPR
detection. Four graph convolutional layers are applied as
an encoder to map the input to a latent vector. The vector is
mapped to a low-dimensional feature space and is then used
to progressively generate the major root shape (e.g., taproot)
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Figure 1. Overview architecture of the proposed framework. It consists of two main modules: (a) ParNet to automatically detect root
parabola curves from the input GPR scans (Top), and (b) GRecNet to progressively reconstruct dense 3D root structures via a graph-based
encoding and interpolation (Bottom).

and fine local geometric details for thin root branches. Dif-
ferent from MLP based point generation networks such as
PointNet [30], our GCN based network can capture extra
geometry relationships among the adjacent points, which is
extremely helpful for recovering the fine-grained structures.

Our proposed framework is able to recover underground
objects, thereby helping agriculturists and civil engineers to
assess plant roots automatically and supporting them to fur-
ther extract key traits from the roots (e.g., root branch num-
ber, root length or diameter). The most significant contribu-
tions of our designated pipeline are as follows: 1) We pro-
pose an anchor-free approach specially for fitting parabola
curves in root structure detection. To the best of our knowl-
edge, the proposed ParNet is the first anchor-free method
to represent, detect and fit parabola curves for target shapes.
2) We propose a graph neural network to recover the fine-
grained root structures by inputting the sparse detected root
points. The design of the two-stage 3D reconstruction strat-
egy progressively exploits both coarse root structure and
fine details for a complete and dense point cloud. 3) Lack-
ing of public large-scale plant root GPR data, we collect
a real GPR dataset at an apple orchard, in addition to the
generation of a large-scale simulated GPR scans from high-
quality 3D root models for effective training. 4) Exten-
sive experiments validate the effectiveness of the proposed
framework, which outperforms state-of-the-art methods on
both target detection and 3D reconstruction.

2. Related work
2.1. Conventional GPR Interpretation Methods

Conventional methods have been introduced to convert
raw GPR B-scans into images with clearly observable fo-
cused targets [33] [16] [8]. [33] could localize the buried
targets. However, it suffers from an unsatisfactory accu-
racy performance, as well as a long computation time. As

an alternative to [33], a phase shift-based method [16] was
presented in the frequency domain instead of configuration
space. The advantage of this method is that it is computa-
tionally more efficient than [33]. Conversely, [8] is different
from other mathematical-based interpolation methods as it
could tackle the concealed object detection task by imple-
menting a back-projection algorithm.

Particularly on agriculture science as experiments con-
ducted in this paper, GPR has been explored on root di-
ameter detection [7] [48] [27], biomass estimation [7] [49]
[25] [2], root morphology mapping [17] [39] and three-
dimensional reconstruction [44] [15]. Molon et al. [25]
derived root structure and coarse biomass by using isolated
surfaces from 1GHz GPR scans with the marching cubes al-
gorithm. For demonstrating GPR’s viability in mapping the
street trees’ roots path, Wu et al. [44] developed an auto-
mated root system architecture to improve the effectiveness
of 3D root system reconstruction. Experiments were con-
ducted by Conyers et al. [6] on the root location detection,
biomass estimation, and root diameter of thick roots with
GPR images. From the evaluations and conclusions of the
above-mentioned studies, GPR images can be affected by
several factors, such as root diameter, root direction, and
root location. Hence, conducting extensive research to in-
vestigate new algorithms for GPR images is imperative.

2.2. Learning-based Automatic GPR Interpretation
Recently, there has been an upsurge in the use of

learning-based methods [1] [11] [26], in addition to con-
ventional interpretation methods, due to their outstanding
performance in object detection. [1] implemented Hough
Transform on the GPR reflection edges for the detection
of buried targets and Mohamed et al. [11] were able to
classify underground utility materials by extracting discrete
features of cosine transform coefficients and feeding them
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into a support vector machine. On the other hand, [26] fur-
ther applied convolution support vector machine (CSVM)
on the GPR B-scan images for reducing the computational
cost and improving its performance based on [11].

The algorithm performance and reliability can be further
improved through more representative and enhanced fea-
tures extracted from deep neural networks. Taking Faster
R-CNN as an example, efficient features can be extracted
from input 2D GPR scans to obtain underground object de-
tection [4] [29] [45] [13] [12]. Xu et al. [45] explored Faster
R-CNN for detecting railway subgrade defect in order to en-
sure train operation safety. Feng et al. [13] extended it to
first use an improved Faster-RCNN-based network for de-
tecting buried objects, and then applied a depth estimation
network to output the detected objects’ depth values. Li et
al. [22] presented a subsurface defect detection algorithm to
generate 3D proposals and GPR-RCNN bounding boxes by
fusing 2D planar features and 3D voxel-wise features. The
generated proposals and bounding boxes are further utilized
for 3D target detection from GPR B-scans sequences.

2.3. Point Cloud Shape Reconstruction
Most of previous learning-based shape reconstruction

methods [19] [35] [36] represent 3D shapes with voxels,
which is inefficient in the computation time. The point
cloud is one of the most efficient representations in 3D
space, and is widely used in 3D vision and remote sensing.
However, it is commonly complicated to apply traditional
convolutions directly on the point cloud, given its inher-
ent unordering and random point clouds distribution. Thus,
PointNet [30] is proposed to use a symmetric function for
aggregation of local/global point features. In [31] [34], re-
searchers utilize a similar technique as [30] but with consid-
erable improvement in local feature learning. To achieve a
high-quality point cloud reconstruction, a folding-based de-
coder was designed by Yang et al. [46] to deform a canon-
ical 2D grid into the underlying 3D point cloud. In con-
trast, Yuan et al. [47] designed a learning-based dense point
cloud generation network using 3D point clouds input di-
rectly, while [37] used a decoder for the hierarchical gener-
ation of point clouds following the tree structure. Though
helpful in improving the performance and robustness of the
reconstructed shape, these methods mainly focus on rela-
tively large objects with uniform shape distribution, e.g.,
cars, bottles and chairs. Precise point cloud reconstruction
for subtle and complex plant roots is rarely explored before.

3. Dense Root Reconstruction
3.1. GPR Image Sensing

A GPR sensor detects underground objects by transmit-
ting a polarized pulse through the equipped antenna. The
radar energy will be reflected back to GPR when reach-
ing objects with different electromagnetic properties. The

air

ground

target

A-scan

B-scan

Scan trajectory

Z depth A-scan A-scan

Scanning direction

T
im

e

multiple B-scans

Figure 2. An illustration of the principles of GPR sensing. GPR
functions through transmitting EM pulses of radio waves down
into the ground via an antenna. When reaching an object with dif-
ferent electromagnetic properties, the pulses will be reflected back
to GPR sensor (a). Multiple B-scans along the moving direction
can represent the sparse 3D underground object shape (b).

GPR sensor records the traveling time from the emission
to the echos, and generate one dimensional data containing
the signal strength and traveling time, called A-scan. When
the GPR moves along a scanning trajectory, a series of A-
scans at different positions will be produced, building a 2D
map called B-scan. The illustration of A-scan and B-scan is
depicted on the left side of Fig. 2. If the GPR sensor is oper-
ated to move along the survey grid line (both horizontal and
vertical lines), multiple parallel B-scans will be collected to
construct a sparse 3D cube to record the 3D information,
which is shown on the right side of Fig. 2.

Figure 3. Pre-processing of the real and simulated GPR B-scans.
Top: The real GPR image before and after pre-processing; Bottom:
The simulated GPR image before and after adding noises.

Affected by the inhomogeneity of the real root structure
and the impact of noises from stones and other impurities
in the soil, the real GPR B-scan will contain noises that af-
fect the final detection performance. Therefore, we apply
a series of pre-processing steps to reduce the background
noise and enhance the parabola features. More specifically,
the raw input is first processed by a time zero correction
method to adjust the scan’s top signal to be close to the
ground surface in order to more accurately sense the ob-
ject depths. In addition, the corrected B-scan frame will
be passed through a background removal filter to suppress
the horizontal-like background noises caused by the antenna
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Figure 4. Motivation of the designated anchor-free ParNet, com-
pared with the regular detected bounding boxes. The proposed
ParNet is able to estimate and fit a more accurate and consistent
parabola curve, which is particularly helpful for accurate 3D shape
reconstruction step as GRecNet.

ringing. Lastly, a signal amplitude gain is utilized for com-
pensating the signal attenuation, which facilitates detecting
objects buried deeply underground.

Further, considering that the surrounding environment of
the real-collected GPR scans is much more complex than
the simulated data, we add the background noise recorded
from the real GPR signals without roots onto the simulated
scans. This enhances the training effect of the simulated
data. Fig. 3 shows the results before and after the process-
ing on the real data (top), and the results before and after
adding the real noise on the simulated GPR scans (bottom).

3.2. Anchor-free parabola signal detection

Existing detection methods usually regress rectangular
bounding boxes, as well as output dimensions of each box,
which could causes relatively large errors and uncertainties
in locating object depths (as illustrated in Fig. 4). There-
fore, we propose an anchor-free detection network, Par-
Net, for parabola feature detection in GPR B-scans. Par-
Net detects object GPR signals through two sub-networks:
a parabola center localization network and a parabola fit-
ting module. Parabola center localization is developed to
localize the GPR signal center. Different from the definition
of the center point in CenterNet [10], for the input image
I ∈ RW×H×3 with height H and weight W , the estimated
keypoint pk ∈ R2 represents the center of each parabola.
pk in the parabola center localization network is defined as:

pk = (xcenter,
yktop + ykbot

2
) (1)

where xcenter is the abscissa of the parabola vertex, instead
of the abscissa of the center point in each bounding box, and
k is the number of the parabola in an image with c category.
Hence, a keypoint heatmap H ∈ w′ × h′ × c is modeled
by a 2D Gaussian kernel, enabling a symmetric expression
and a higher response near the parabola center, which is

formulated as:

Hcenter = exp(− (x− p̂x)
2 + (y − p̂y)

2

2σ2
p

) (2)

where w′ = W
S , h′ = H

S , and p̂ =
⌊
p
S

⌋
. S and σ2

p are
the downsampling factor and parabola size adaptive kernel
standard deviation.The predicted keypoint heatmap is then
optimized by the center keypoint regression loss Lcenter,
which is a variant of focal loss in [23] as:

Lcenter = − 1

N

∑
center


(1− Ĥcenter)

αlog(Ĥcenter),
ifHcenter = 1

(1−Hcenter)
β(Ĥcenter)

α

log(1− Ĥcenter), else
(3)

where Hcenter is the ground truth modeling of the parabola
center, and Ĥcenter is the estimated output from the
parabola center localization network. α and β are two
hyper-parameters in Lcenter.

To recover the discretization error caused by the differ-
ent downsampling factors S, the local parabola center offset
loss Loff is further introduced to slightly refine the inferred
estimated parabola center position by considering the local
offset value with an L1 loss as:

Loff =
1

N

∑
p

|ÔSp − (
p

S
− p̂)| (4)

where ÔSp is the estimated local offset for each parabola
center point. In order to fit the detected parabola, we pro-
pose a parabola parameter estimation branch to output the
coefficients of the parabola equations. Each target root
curve is formed as an parabola with the estimated center
point p̂ with offsets δ, and the parabola coefficients a and b:

Par(x) = a(x− ĉ)2 + b

ĉ = (p̂x + δp̂x, p̂y + δp̂y)
(5)

Therefore, the parabola fitting loss is optimized by L1 norm
at each detected parabola center as:

Lfitting =
1

N

N∑
k=1

|â− a|+ |b̂− b| (6)

Hence, the overall training objective for ParNet be-
comes:

LParNet = Lcenter + λ1Loff + λ2Lfitting (7)

where λ1 and λ2 are parameters to balance different losses
and set to be 1.0 and 0.2.
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3.3. Graph-based 3D reconstruction

To comprehensively learn the fine-grained root structure,
we design a novel graph neural network to capture rich ge-
ometry relationships among adjacent points. To build the
graph, we encode each point as a vertex in a graph and
the connection between adjacent points as edges, enabling
the extracted features to flow between neighbors. Hence,
a point cloud can be defined as a set V = v1, ...vi, ..., vN .
Each vi is composed of (pi, si) where pi ∈ R3 denotes the
point in 3D space and si ∈ Rc denotes the point proper-
ties with c dimension. Therefore, given each V , we are able
to construct a graph structure G = (V,E), by connecting
vertex V to its k neighboring points through edges E.
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Figure 5. Point feature encoding network structure for latent vector
generation.

With the graph built from the N × 3 unordered sparse
points, we apply a graph convolutional neural network to
learn the graph features. Compared with PointNet [30]
based approaches, Graph Convolutional Network (GCN)
can efficiently capture geometric relationships among the
points, which greatly aids the thin and fine-grained root
branches. As illustrated in Fig. 5, the input graph is ap-
plied via multiple edge convolution (EdgeConv) layers [42]
with 64, 64, 128 and 256 channels progressively, which is
convolution-like operations on the edges connecting each
neighbor pair of points. The calculated edge features after
different EdgeConv layers are then aggregated together to
form a global, low-dimensional and compact latent feature
vector in the size of 768, after a multi-layer perceptron and
a max-pooling operation.
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Figure 6. The architecture illustration of the point decoding mod-
ule for feature expansion. With this module, the input points can
be effectively interpolated progressively and smoothly.

In the generator, the latent vector is first resized to a fea-
ture space with a size of 256 × 3. After reshaping, the
convolution network for point feature expansion progres-
sively enlarges the point features to a high dimension, in
order to recover the final dense and complete root struc-
tures. The inner structure of the point feature expansion

block is detailed in Fig. 6. The input features are repre-
sented by the kNN edge feature fk

edge for the k th nearest
neighbor and the center point feature fp for the center point
p. Assuming

⊕
stands for the feature concatenation, Smlp

is the shared multi-layer perceptions, and g(·) represents the
graph max pooling function. R stands for the reshaping op-
eration. Given a N × C feature input, the expanded output
O with a size of rN × C ′ can be expressed by:

O = g (R (Smlp (fp
⊕

f1
edge), ..., Smlp(fp

⊕
fk
edge)))

(8)
After the point feature expansion, the point number can

be upsampled by r times. Therefore, we generate an initial
reconstruction with a size of 1024 × 3. Though the coarse
root can recover the rough skeleton of the taproot, it is not
sufficient to exploit detailed geometric features. We further
apply the second point expansion block to generate a dense
reconstruction with a dimension of 4096 × 3, for better re-
fining the fine-grained details. Benefiting from the graph
convolutions and point feature expansion, the reconstruc-
tion shows good performance in expanding and interpolat-
ing the current root structure with accurate and balanced
point distribution, preventing simple point duplication and
overlapping as exhibited in PointNet-based methods.

Two types of loss constraints are applied in GRecNet,
from coarse to fine scales between the produced point cloud
and the sampled ground truth point cloud. The symmetric
Chamfer Distance (CD) is applied for calculating the dis-
tance between the coarse output and the ground truth point
cloud, and the Earth Mover’s Distance (EMD) is used to
minimize the distance between the final fine output and the
ground truth point cloud. Specifically, CD calculates the av-
erage closet point distance between two point sets. Apply-
ing CD in a symmetric way to constrain the coarse output
Ycrs towards the ground truth Ygt, Lcrs is expressed as:

Lcrs = CD(Ycrs, Ygt) =
1

|Ycrs|
∑

x∈Ycrs

miny∈Ygt
∥x− y∥2 +

1

|Ygt|
∑
y∈Ygt

minx∈Ycrs ∥y − x∥2

(9)
The EMD loss is further introduced in the final fine-

grained output to generate a complete point cloud:

Lfine = EMD(Yfine, Ygt)

= min
ϕ:Yfine→Ygt

∑
x∈Yfine

∥x− ϕ(x)∥2 (10)

where ϕ : Yfine → Ygt is a bijection between Yfine and
Ygt. For each subset of point set pairs, the optimal bijection
is unique and invariant under the movement of the points,
enabling the EMD distance to be differentiable for each
point pair. Lfine ensures the sum of distances between the
corresponding 3D points for each group is minimal.
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To further exclude the potential outliers and discontinu-
ities in the reconstruction, a point cluster loss is introduced
to penalize the point-to-neighbor distance among the adja-
cent 3D points:

Lcluster =
∑
p

wp ·Dpt−to−Neighb (11)

Dpt−to−Neighb(p) =
1

k
(

∑
p′∈kNN(p)

||p− p′||2) (12)

where Dpt−to−Neighb is the average Euclidean distance be-
tween each point and its k-NN neighbors. If Dpt−to−Neighb

is larger than a threshold, then wp will be to be 1, otherwise
0. The threshold is set to be the multiple of the standard
deviation of all computed distances. Based on the intro-
duced loss functions, the compound objective function for
GRecNet is defined as:

LGRecNet = Lcrs + λ3Lfine + λ4Lcluster (13)

where λ3 and λ4 are parameters to balance the shape recon-
struction net, and are set as 1.0 and 0.2, respectively.

4. Experiments
In this section, we subsequently describe the simu-

lated and collected real-world GPR dataset for training the
network, experimental evaluation metrics, implementation
configuration, and the qualitative and quantitative results
and comparisons, for both our ParNet and GRecNet. The
analyses of time speed, cost and ablation studies are also
provided at the end.

4.1. Dataset and Implementation Details
Dataset: In this paper, we evaluate our full pipeline on

both simulated GPR scans from synthetic 3D root models,
and the real collected GPR images at an apple orchard, in
order to verify the proposed method’s effectiveness. 200
synthetic 3D models were created using the Unity game en-
gine’s Game Object class [18]. Each one is sampled along
the preset paths at a fixed frequency interval and stimulates
as the GPR sensor moving. Hence, 15 cross-sections for
each moving direction and 6 directions together lead to 90
cross-sections for each root. The scattered 3D points from
cross-sections are further converted into 18000 2D GPR B-
scans via gprMax [43]. The 2D GPR scans are labeled to
serve as the ground truth detection for our ParNet and the
compared detection approaches. The 3D Unity models are
sampled in point cloud format to act as the ground truth for
GRecNet and the compared reconstruction methods. Apart
from the simulated data, a SIR-400 GPR sensor with an
antenna type 800D is deployed at the apple orchard, fur-
ther verifying the effectiveness of our trained ParNet and
GRecNet, in a non-invasive way.

Configuration: We train our entire framework in a two-
step training strategy to obtain an efficient convergence.
The root parabola detection network ParNet is first trained
for 30 epochs, and then is fine-tuned together with the
graph-based root shape reconstruction network GRecNet
for another 50 epochs with a batch size of 4. The entire
pipeline is implemented on a Tesla P40 GPU with Adam
optimizer as well as an initial learning rate of 1e-4 (gradu-
ally decayed to half for the last 20 epochs).

4.2. Results from ParNet Compared with Other De-
tection Methods

As shown in Fig. 7 and Fig. 8, we evaluate the detec-
tion performance on the simulated and real GPR scans re-
spectively. To fairly compare different methods, all models
are trained without any post-processing steps. It can be no-
ticed that the proposed network provides accurate detection
and fits precisely on parabola shapes. From Fig. 7, [13]
appeared with fewer bounding boxes and missed some root
targets. [24] and [27] improved with regard to the root target
missing issue, but with loose boundaries and false and over-
lapping bounding box estimations. In contrast, our method
is able to recover tight and accurate parabola curve, instead
of the rough rectangular bounding boxes only. From Fig. 8,
we can observe that though [24] and [13] achieve relatively
correct regressions on the rectangular boxes, ours can locate
the exact vertex point by fitting the parabola equations.

Method Backbone AP AP-50 AP-75
CenterNet-52 [10] Hourglass-52 0.840 0.874 0.853

Liu et al. [24] VGG-16 0.784 0.870 0.802
Feng et al. [13] ResNet-50 0.831 0.870 0.841
Feng et al. [13] ResNet-101 0.834 0.872 0.839
Park et al. [27] Darknet-53 0.771 0.863 0.797

Ours Hourglass-52 0.867 0.902 0.869

Table 1. Quantitative comparisons of our root target detection with
[10], [24], [13] and [27] on the simulated 2D GPR scans.

We further report the quantitative performance in Table
1, including average precision at different IoU ranging from
50% to 95% at 5% step-size (AP ), average precision with
IoU threshold at 0.5 (AP50) and at 0.75 (AP75). The pro-
posed method outperforms all the comparisons with a large
margin, especially in AP and AP75, with an improvement
of 12% and 9% over [27]. The later analysis in time perfor-
mance and computational cost also shows that our method
can achieve high precision without additional cost.

4.3. Results from GRecNet Compared with Other
Reconstruction Methods

Firstly, we evaluate GRecNet on the test set of the cre-
ated 2D GPR dataset. The visual comparisons are demon-
strated in Fig. 9. To fairly compare the reconstruction
performance between different methods, we use the sparse
points all detected from our ParNet as input. From Fig. 9,
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Figure 7. The qualitative results of the root parabola detection compared with other recent root detection methods on the simulated scans.
Left to right: Raw created B-scans; Detection from our ParNet, [24], [27], and [13].

Figure 8. The qualitative results of the root parabola detection on the real-collected data. Left to right: Raw real B-scans; Detections from
our ParNet, [24], [27], and [13].

CD / EMD
Object Id PCN [47] Wang et al. [41] TopNet [38] Ours

001 2.98 / 7.54 2.47 / 6.27 2.37 / 6.02 1.91 / 4.85
002 3.70 / 8.01 3.48 / 8.18 3.20 / 7.99 2.07 / 5.37
003 3.91 / 8.17 3.39 / 7.96 3.42 / 7.25 1.76 / 5.11
004 3.07 / 6.98 2.92 / 6.67 2.74 / 6.23 2.30 / 4.96
005 2.79 / 7.16 2.76 / 6.53 2.58 / 6.16 1.93 / 4.89

Mean 3.29 / 7.57 3.00 / 7.12 2.86 / 6.73 1.99 / 4.94

Table 2. Quantitative root shape reconstruction results. CD and
EMD are both scaled by 100. The result is reported on five inde-
pendent roots from the test set. For EMD and CD, lower is better.

we can observe the proposed method can interpolate the in-
put sparse point uniformly and densely, and recover the thin
and complicated branches without stretching and distortion.
In contrast, the reconstructed structure from [47] contains
extensive ambiguities and overlapping. The reconstruction
from [41] suppresses the appearance of the ambiguities and
noisy points. However, the root structure is still not easy to
be discerned clearly, with some overlapping and stretching
in the middle. [38] can recover the rough trunks, but loses
a significant amount of thin branches. The reconstruction
from GRecNet on the real data is provided in Fig. 10.

We then report the quantitative comparisons in Table 2.
Both Chamfer Distance (CD) and Earth Mover’s Distance

Method PCN [47] Wang et al. [41] TopNet [38] Ours
# Params 22.15 M 28.26 M 23.48 M 18.78 M

Speed (sec/sample) 1.24 3.82 1.72 0.79

Table 3. Comparisons regarding the number of model trainable
parameters and the inference speed in second / sample.

(EMD) are calculated on the reconstructed point clouds and
the sampled ground truth roots with 4096 3D points.

4.4. Computational Cost and Ablation Studies
We compare the cost of the proposed framework with

other methods in terms of the number of trainable parame-
ters and the inference speed, as Table 3. As [47], [41] and
[38] only focus on reconstruction without detection, we ap-
ply our detection network as the input to those networks.
Though achieving low-error detection and reconstruction,
our method does not add extra computational cost.

We analyze the effects of different losses and compo-
nents on the reconstruction accuracy in Table 4. The results
show that the designs of root parabola fitting, reconstruc-
tion refinement stage and the point cluster loss are useful to
the final generation of the complete and dense 3D shapes.
With the contributions from all of the three optimizations,
the CD and EMD have a 39.8% and 32.3% decrease com-
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Figure 9. Qualitative comparisons of our reconstructed root structures on the simulated GPR data with PCN [47], Wang et al. [41] and
TopNet [38]. Each root is demonstrated in two different views for all the methods.

Figure 10. Qualitative reconstructions on the real GPR scans. For
each root sample (row), left side are our reconstruction results at
two perspectives while the right side are the ground truth root im-
ages at the same perspectives.

pared with the baseline without them. Finally, we test the
different number of nearest neighbor (k) when building the
graph and different output point numbers on reconstruction,
as Table 5 and Table 6. We find that a large k (32) will de-
grade the reconstruction, and k=16 (our choice) performs
the least errors. Though denser points can contribute to
smaller errors, it will also result in an increase in compu-
tation cost. Hence, we choose to reconstruct 4096 points as
the final output as a trade-off between accuracy and cost.

Parabola fitting Refinement Cluster CD EMD
- - - 3.22 7.49
✓ - - 2.92 6.89
✓ ✓ - 2.20 5.65
✓ ✓ ✓ 1.94 5.07

Table 4. The effect of the parabola fitting, point reconstruction re-
finement, and the point cloud cluster loss.

# NN (k) CD EMD
4 2.23 5.71
8 2.19 5.62

16 1.94 5.07
32 2.02 5.18

Table 5. Results of various
nearest neighbor numbers.

# Dense points CD EMD
2048 2.82 6.79
3072 2.36 6.11
4096 1.94 5.07
8192 1.61 4.43

Table 6. Results of different output
point numbers.

5. Conclusion
In this work, we propose a novel GPR-based root

parabola detection and shape reconstruction framework in
a non-destructive manner. The designated root parabola
detection net ParNet can achieve accurate parabola shape
detection and curve fitting from GPR scans without an-
chors. And the root shape reconstruction network GRecNet
exploits the usage of graph convolutional network to pro-
gressively recover the detailed and complex root struc-
tures. Extensive experiments demonstrate that the proposed
method performs superior GPR signal detection and un-
derground object reconstruction on both simulated and real
data, and outperforms state-of-the-art methods. With the re-
constructed fine-grained 3D roots, further applications can
be explored, such as root trait extraction, root diameter and
plant growth estimation, etc.
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