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Figure 1. We replace the L1 loss for super-resolution with a flow-based generalization. The flexibility of our flow-based fidelity loss
alleviates the inherent conflict with adversarial losses, leading to a more photo-realistic result and better consistency with the input.

Abstract

Super-resolution is an ill-posed problem, where a
ground-truth high-resolution image represents only one
possibility in the space of plausible solutions. Yet, the
dominant paradigm is to employ pixel-wise losses, such
as L1, which drive the prediction towards a blurry av-
erage. This leads to fundamentally conflicting objectives
when combined with adversarial losses, which degrades the
final quality. We address this issue by revisiting the L1

loss and show that it corresponds to a one-layer conditional
flow. Inspired by this relation, we explore general flows as
a fidelity-based alternative to the L1 objective. We demon-
strate that the flexibility of deeper flows leads to better vi-
sual quality and consistency when combined with adver-
sarial losses. We conduct extensive user studies for three
datasets and scale factors, where our approach is shown
to outperform state-of-the-art methods for photo-realistic
super-resolution. Code and trained models: git.io/AdFlow

1. Introduction
Photo-realistic image super-resolution (SR) is the task of

upscaling a low-resolution (LR) image by adding natural-
looking high-frequency content. Since this information is
not contained in the LR image, SR assumes that a prior can
be learned to add plausible high-frequency components. In
general, however, there are infinitely many possible high-
resolution (HR) images mapped to the same LR image.

Therefore, this task is highly ill-posed, rendering the learn-
ing of powerful deep SR models highly challenging.

To cope with the ill-posed nature of the SR problem, ex-
isting state-of-the-art methods employ an ensemble of mul-
tiple losses designed for different purposes [23, 39, 47]. In
particular, these works largely rely on the L1 loss for fi-
delity and the adversarial loss for perceptual quality. Theo-
retically, the L1 objective aims to predict the average overall
plausible HR image manifestations under a Laplace model.
That leads to blurry SR predictions, which are generally
not perceptually pleasing. In contrast, the adversarial ob-
jective prefers images with natural characteristics and high-
frequency details. These two losses are thus fundamentally
conflicting in nature [5, 6].

The conflict between the L1 and the adversarial loss has
important negative consequences as seen in Figure 1. In
order to find a decent trade-off, a precarious balancing be-
tween the two terms is needed. The found compromise
is not optimal in terms of fidelity nor perceptual quality.
Moreover, the conflict between the two losses results in a
remarkably inferior low-resolution consistency. That is, the
down-sampled version of the predicted SR image is sub-
stantially different from the original LR image. The conflict
between the losses drives the prediction towards a point out-
side the space of plausible HR images (Illustrated in Fig. 2).

We attribute those shortcomings to the L1 loss. Since SR
is a highly ill-posed problem, the L1 loss imposes a rigid
and exceptionally inaccurate model of the complicated im-
age manifold of solutions. Ideally, we want a loss that en-
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sures fidelity while not penalizing realistic image patches
preferred by the adversarial loss. In this work, we therefore
first revisit the L1 loss and view it from a probabilistic per-
spective. We observe that the L1 objective corresponds to
a one-layer conditional normalizing flow. That inspires us
to explore flow-based generalizations capable of better cap-
turing the manifold of plausible HR images to mitigate the
conflict between adversarial and fidelity-based objectives.

A few very recent works [30, 40] have investigated flows
for SR. However, these approaches use heavy-weight flow
networks as an alternative to the adversarial loss for per-
ceptual quality. In this work, we pursue a very different
view, namely the flow as a fidelity-based generalization of
the L1 objective. Our goal is not to replace the adversarial
loss but to find a fidelity-based companion that can enhance
the effectiveness of adversarial learning for SR. In contrast,
to [30], this allows us to employ much shallower and more
practical flow networks, ensuring substantially faster train-
ing and inference times. Furthermore, we demonstrate that
the adversarial loss effectively removes artifacts generated
by purely flow-based methods.
Contributions: Our main contributions of this work are
as follows: (i) We revisit the L1 loss from a probabilistic
perspective, expressing it as a one-layer conditional flow.
(ii) We generalize the L1 fidelity loss by employing a deep
flow and demonstrate that it can be more effectively com-
bined with an adversarial loss. (iii) We design a more prac-
tical, efficient, and stable flow architecture, better suited
to the combined objective, leading to 2.5× faster training
and inference compared to [30]. (iv) We perform compre-
hensive experiments analyzing the flow loss combined with
adversarial losses, giving valuable insights on the effects
of increasing the flexibility of the fidelity-based objective.
In comprehensive user studies, totaling over 50 000 votes,
our approach outperforms state-of-the-art on three different
datasets and scale factors.

2. Related Work

Single Image Super-Resolution: is the task of estimating
a high-resolution image from a low-resolution counterpart.
It is fundamentally an ill-posed inverse problem. While
originally addressed by employing interpolation techniques,
learned methods are better suited for this complex task.
Early learned approaches used sparse-coding [7, 36, 44, 45]
and local linear regression [37, 38, 43]. In recent years,
deep learning based methods have largely replaced previ-
ous techniques for Super-Resolution owing to their highly
impressive performance.

Initial deep learning approaches [10, 11, 19, 22, 25] for
SR aimed at minimize the L2 or L1 distance between the SR
and Ground-Truth image. With this objective, the model
is effectively trained to predict a mean of plausible super-
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Figure 2. While L1 loss drags the SR prediction towards a blurry
mean, both Flow and GAN loss push the prediction towards the
real image manifold. Replacing L1 with flow as fidelity term
therefore reduces conflict with the GAN loss.

resolutions corresponding to the given input LR image. To
alleviate this problem [23] introduced an adversarial and
perceptual loss. Since then, this strategy has remained the
predominant approach to super-resolution [2, 12, 14, 17, 18,
26, 35, 39]. Only very few works have investigated other
learning formulations. Notably, Zhang et al. [47] introduces
a selection mechanism based on perceptual quality metrics.
In order to achieve an explorable SR formulation, Bahat et
al. [4] recently trained a stochastic SR network based on
mainly adversarial objectives. The output acts as a prior for
a low-resolution consistency enforcing module, optimizing
the image in a post-processing step.

In recent works, invertible networks have gained popu-
larity for image-to-image translation [8, 9, 24, 30, 34, 40,
41, 42]. Xiao et al. [42] uses invertible networks to learn
down and upscaling of images. This is similar to com-
pression, but where the compressed representation is con-
strained to be an LR image. For super-resolution, [30]
recently introduced a new strategy based on Normalizing
Flows. It aims at replacing adversarial losses with normal-
izing flows [8, 9, 34]. In contrast, we investigate condi-
tional flows as a replacement for the L1 loss. In fact, we
demonstrate that it forms a direct generalization of the L1

objective. The aim of this work is to investigate flows as an
alternative fidelity-based companion to the adversarial loss.

3. Method
3.1. Revisiting the L1 Loss

The standard paradigm for learning a SR network g is
to directly penalize the reconstruction error between a pre-
dicted image g(x) and the ground truth HR image y ∈
RH×W×C corresponding to the LR x. The reconstruction
error is usually measured by applying simple norms in a
color space (e.g., RGB or YCbCr). While initial methods
[11, 19, 22] employed the L2 norm, i.e. the mean squared
error, later works [25, 49] studied the benefit of the L1 error,

L1(y, g(x)) = ∥y − g(x)∥1. (1)

To understand the implications of this objective function,
we use its probabilistic interpretation. Namely, that the L1
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loss (1) corresponds to the Negative Log-Likelihood (NLL)
of the Laplace distribution. This derivation will be particu-
larly illustrative for the generalizations considered later.

We first consider a latent variable z ∈ RH×W×C with
the standard Laplace distribution z ∼ L(0, 1). Let f be a be
a function that encodes the LR-HR pair into the latent space
as z = f(y;x) = y − g(x). Through the inverse relation
y = f−1(z;x) = z + g(x) it is easy to see that y follows a
Laplace distribution with mean g(x),

p(y|x; θ) = L(y; g(x), 1) = 1

2D
e−∥y−g(x)∥1 . (2)

Here, D = HWC is the total dimensionality of y. From a
probabilistic perspective, we are thus predicting the condi-
tional distribution p(y|x; θ) of the HR output image y given
the LR x. In particular, our SR network g estimates the
mean of this distribution under a Laplacian model. In order
to learn the parameters θ of the network, we simply mini-
mize the NLL − log p(y|x; θ) of (2), which is equal to the
L1 loss (1) up to an additive constant.

In the aforementioned Laplacian model (2), derived from
the L1 loss (1), only the mean g(x) is estimated from the LR
image. Thus, the model assumes that the variance, which
reflects the possible variability of each pixel, remains con-
stant. This assumption is however, not accurate. Indeed,
super-resolving a constant blue sky is substantially easier
than estimating the pixel values of a highly textured region,
such as the foliage of a tree. In the former case, the pre-
dicted pixels should have low variance, while the latter has
high variability, corresponding to different possible textures
of foliage. For a Laplace distribution, we can encode the
variability in the scale parameter b, which is proportional
to the standard deviation. By predicting the scale parame-
ter b(x) ∈ RH×W×C for each pixel, we can learn a more
accurate distribution that also quantifies some aspect of the
ill-posed nature of the SR problem.

We easily extend our model with the scale parameter pre-
diction by modifying our function f as,

z = f(y;x) =
y − g(x)

b(x)
. (3)

Since this yields a Laplace distribution p(y|x; θ) =
L(y; g(x), b(x)), we achieve the NLL,

− log p(y|x; θ) ∝
∥∥∥∥y − g(x)

b(x)

∥∥∥∥
1

+
∑
ijc

log b(x)ijc . (4)

In practice, we can easily modify an SR network to jointly
estimating the mean g(x) and scale b(x) by doubling the
number of output dimensions. The loss (4) stimulates the
network to predict larger scale values b(x) for ‘uncertain’
pixels, that are likely to have large error ∥y − g(x)∥. In
principle, (4) thus extends the L1 objective to better cope

with the ill-posed nature of the SR problem by predicting
a more flexible distribution of the HR image. In the next
section, we will further generalize the objectives (1), (4)
through normalizing flows, to achieve an even more flexible
fidelity loss.

3.2. Generalizing the L1 Loss With Flows

To capture the probability distribution of the error be-
tween the prediction g(x) and ground-truth y, we also need
to consider spatial dependencies. Neighboring pixels are
generally highly correlated in natural images. Indeed, to
create coherent textures, even long-range correlations need
to be considered. However, the L1 loss (1) and its exten-
sion (4) assume each pixel in y to be conditionally indepen-
dent given x. In fact, sampling from the predicted condi-
tional distribution p(y|x; θ) is equivalent to simply adding
Laplacian white noise to the predicted mean g(x). In super-
resolution, we strive to create fine textures and details. To
achieve this, the predictive distribution p(y|x; θ) must cap-
ture complex correlations in the image space.

In this paper, we generalize the L1 loss (4) with the aim
of achieving a more flexible objective, better capturing the
ill-posed setting. That is done through the probabilistic in-
terpretation discussed in Sec. 3.1. We observe that the func-
tion f introduced in Sec. 3.1 corresponds to a one-layer con-
ditional normalizing flow with a Laplacian latent space. We
can thus generalize this setting by constructing deeper flow
networks f . While prior works [3, 30, 33, 40] investigate
conditional flows for SR as a replacement for adversarial
losses, we see it as a generalization of the fidelity-based L1

loss. With this view, we aim to find a fidelity-based objec-
tive better suited for ill-posed problems and, therefore, more
effectively combined with adversarial losses.

The purpose of the function f is to map the HR-LR pair
(y, x) to a latent space z ∼ pz , which follows a simple
distribution. By increasing the depth and complexity of the
flow f , more flexible conditional densities, and therefore
also NLL-based losses, are achieved. In the general case,
we let flow f to be conditioned on the embedding E(x)
of the LR image x as f(y;x) = f(y;E(x)). In fact, the
network E can be seen as predicting the parameters of the
conditional distribution p(y|x; θ) = p(y|E(x); θ). In this
view, the embedding E(x) generalizes the purpose of the
SR network g(x), which predicts the mean of the Laplace
distribution in the L1 case (1). In the general Laplace case
(3), the LR embedding network needs to generate both the
mean and the scale E(x) = (g(x), b(x)). Thanks to the
flexibility of conditional flow layers, we can however, still
use the underlying image representation of any standard SR
architecture as E. For example, we generate the embedding
E by concatenating a series of intermediate feature maps
from, e.g., the RRDB [39], or the RCAN [48] architecture.
For simplicity, we often drop the explicit dependence on E
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Figure 3. Overview of our super-resolution approach. Our flow-based NLL loss replaces the often used L1 loss. We accomplish this by
encoding the LR image with the network E(x). This conditions the flow f , which encodes the GT image y. From that, we obtain the NLL
loss that drives the SR fidelity. We combine this with a standard adversarial loss, calculated using a discriminator d.

in the flow f and simply write f(y;x).
In order for f(y;x) to be a valid conditional flow net-

work, we need to preserve invertibility in the first coordi-
nate. Under this condition, the conditional density is de-
rived using the change of variable formula [9, 21, 30] as,

py|x(y|x, θ) = pz
(
fθ(y;x)

) ∣∣∣∣det ∂fθ∂y
(y;x)

∣∣∣∣ . (5)

The latent space prior z ∼ pz is set to a simple distribution,
e.g. standard Gaussian or Laplacian. The second factor in
(5) is the resulting volume scaling, given by the determinant
of the Jacobian ∂fθ

∂y . We can easily draw samples from the
model by inverting the flow as y = f−1(z;x), z ∼ pz .
The network f−1 thus transforms a simple distribution pz to
capture the complex correlations in the output image space.

The NLL training objective is obtained by applying the
negative logarithm to (5),

−log py|x(y|x, θ)=− log pz(z)−log

∣∣∣∣det ∂fθ∂y
(y;x)

∣∣∣∣ (6a)

= − log pz(z)−
N−1∑
n=0

log

∣∣∣∣det ∂fn
θ

∂hn
(hn;E(x))

∣∣∣∣ , (6b)

where z = fθ(y;x). In the second equality, we have de-
composed fθ into the sequence of N flow layers hn+1 =
fn
θ (h

n;E(x)), with h0 = y and hN = z. This allows for
efficient computation of the log-determinant term.

We can now derive that the flow objective (6) general-
izes the scaled L1 loss (4) and thereby also the standard
L1 loss (1). By using the function f defined in (3) and the
standard Laplacian latent variable pz(z) = L(z; 0, 1), we
derive the first term in (4) is by inserting (3) into the first
term − log pz(z) in (6a). For the second term, we first im-
mediately obtain the Jacobian of (3) as a diagonal matrix
∂f
∂y = diag( 1

b(x) ) with elements 1
b(x)ijk

. Inserting this result
into the log-determinant term in (6a) yields the second term
in (4). A more detailed derivation is provided in the supple-
mentary material. Next, we employ the flow-based fidelity
objective in a full super-resolution framework by combining
it with adversarial losses.

3.3. Flow-Fidelity with Adversarial Losses

The introduction of adversarial losses [23] pioneered a
new direction in super-resolution, aiming to generate per-
ceptually pleasing HR outputs from the natural image mani-
fold. In order to achieve this, the adversarial loss needs to be
combined with fidelity-based objectives, ensuring that the
generated SR image is close to the HR ground-truth. There-
fore, SRGAN [23] and later works [2, 12, 14, 17, 26, 35]
most typically combine the adversarial loss with the L1

objective. However, these two objectives are fundamen-
tally conflicting. Unlike the L1 loss that pulls the super-
resolution towards the mean of all plausible manifestations,
the adversarial loss forces the generator to choose exactly
one image of the natural image manifold. Hence, the ad-
versarial objective ideally assigns a low loss on all natural
image patches. In contrast, such predictions generate a high
L1 loss since it prefers the blurry average of plausible pre-
dictions. We aim to resolve this issue by replacing the L1

loss with the aforementioned flow-based generalizations.
The flow can learn a more flexible conditional distribu-

tion p(y|x; θ) of the HR y. It therefore better spans the
natural image manifold while simultaneously encouraging
consistency with the input LR image x. The NLL loss (6)
of the flow distribution does therefore not penalize patches
from the natural image manifold to the same extent. That
allows the adversarial objective to drive the generated SR
images towards perceptually pleasing results without being
penalized by the fidelity-based loss. Conversely, the flow-
based fidelity loss allows the network to learn from the sin-
gle provided ground-truth HR image y, without reducing
perceptual quality or incurring a higher adversarial loss.

Interestingly, the flow network y = f−1
θ (z;x), z ∼ pz

can also be seen as stochastic generator for the adversar-
ial learning. While stochastic generators are fundamental
to unconditional Generative Adversarial Networks (GANs)
[13], deterministic networks are most common in the con-
ditional setting, including super-resolution. In fact, GANs
are well known to be highly susceptible to mode collapse in
the conditional setting [16, 32]. In contrast, flows are highly
resistant to mode collapse due to the bijective constraint on
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fθ. This is highly important for ill-posed problems such as
SR, where we ideally want to span the space of possible
predictions. However, it is important to note that the flow is
not merely a generator, as in the standard GAN setting. The
flow itself also serves as a flexible loss function (6).

Formally, we add the adversarial loss on samples gen-
erated by the flow network f . Let dϕ be the discriminator
with parameters ϕ. For one LR-HR pair (x, y) and random
latent sample z ∼ pz , we consider the adversarial loss

Ladv = log
(
1− dϕ

(
f−1
θ (z;x)

))
+ log

(
dϕ(y)

)
. (7)

The loss (7) is minimized w.r.t. the flow and LR encoder
parameters θ and maximized w.r.t. the discriminator param-
eters ϕ. In general, any other variant of adversarial loss (7)
can be employed. During training, we employ a linear com-
bination of the NLL loss (6) and (7). Our training procedure
is detailed in Sec. 3.5.

3.4. Conditional Flow Architecture

Our full approach, depicted in Fig. 3, consists of the
super-resolution network E, the flow network f and the
discriminator d. We construct our conditional flow net-
work f based on [30] and use the same settings, where not
mentioned otherwise. It is based on Glow [21] and Real-
NVP [9]. It employs a pyramid structure with L scales, each
halving the previous layer’s spatial size using a squeeze
layer and, depending on the number of channels, also by-
passing half of the activations directly to the NLL calcula-
tion. We use 3, 4, and 4 scale levels for 4×, 6× and 8×
respectively, each consisting of a series of K flow steps.

Each Flow-Step consists of a sequence of four layers.
In encoding direction, we first employ the ActNorm [21]
to normalize the activations using a learned channel-wise
scale and bias. To establish information transfer across the
channel dimension, we then use an invertible 1 × 1 con-
volution [21]. The following layers condition the flow on
the LR image similar to [30]. First, the Conditional Affine
Coupling [9, 30], partitions the channels into two halves.
The first half is used as input, together with the LR encod-
ing E(x), to a 3-layer convolutional network module, which
predicts the element-wise scale and bias for the second half.
This module adds non-linearities and spatial dependencies
to the flow network while ensuring easy invertibility and
tractable log-determinants. Secondly, the Affine Image In-
jector is applied, which transforms all channels conditioned
on the low-resolution encoding E(x).

Instead of the learnable 1 × 1 convolutions used in
[21, 30], we use constant orthonormal matrices that are ran-
domly sampled at start of the training. We found this to
significantly improve training speed while ensuring better
stability due to these layers’ perfect conditioning. When
combined with an adversarial loss, the flow network oper-
ates in both the encode fθ and decode f−1

θ direction during

training. To ensure stability during training in both direc-
tions, we reparametrize the prediction of the multiplicative
unit in the conditional affine coupling layer. In particular,
we predict the multiplicative factor as s = Sigmoid(s̃)−1,
where s̃ is the unconstrained prediction stemming from the
convolutional module in the coupling.

Super-Resolution embedding network E(x): Our flow-
based objective is designed as a replacement of L1 loss.
Our formulation is therefore agnostic to the architecture un-
derlying SR embedding network E. We use the popular
RRDB [39] SR network as our encoder E. Instead of out-
putting the final RGB SR image, these networks predict a
rich embedding of the LR image. We obtain this in practice
by simply concatenating the underlying feature activations
at the intermediate RRDB blocks 1, 4, 6 and 8.

Discriminator: We use the VGG-based network from [39]
as a discriminator. Since we generate stochastic SR samples
during training, we found it beneficial to reduce the discrim-
inator’s capacity to ensure a balanced adversarial objective.
We, therefore, reduce the internal channel dimension of the
discriminator from 64 to 16.

3.5. Training Details

Our approach is trained by a weighted combination of
the NLL loss (6) for fidelity and the adversarial loss (7) to
increase perceptual quality. We consider the standard bicu-
bic setting in our experiments, where the LR is generated
with the MATLAB bicubic downsampling kernel. In par-
ticular, we train for both 4× and the challenging 8× SR
scenario. We first train the networks E and f using only
the flow NLL loss for 200k iterations using initial learn-
ing rates of 10−5 for 4× and 10−6 for 8×, which are then
decreased step-wise. We fine-tune the network with the ad-
versarial loss for 200k iterations and select the checkpoint
with lowest LPIPS [46] as measured the training set. We
employ the Adam [20] optimizer. As in [30] we add uni-
formly distributed noise with a strength of 1

32 of the sig-
nal range to the ground-truth HR. Our network is trained
on HR patches of 160 × 160 pixels for 4× and 8× and
144 × 144 pixels for 6×. In principle, our framework can
employ any adversarial loss formulation. To allow for a di-
rect comparison with the popular state-of-the-art network
ESRGAN [39], we employ the same relativistic adversarial
formulation. For 4× and 6× SR, we weight the adversarial
loss with a factor of 10−2 and use a discriminator learning
rate of 10−3. For 8×, we use 0.1 and 10−4 respectively
We use the same training data employed by ESRGAN [39],
consisting of the DF2K dataset. It comprises 2650 training
images from Flickr2K [25] and 800 training images from
the DIV2K [1] dataset.
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AdFlow 4× 6× 8×
compared to DIV2K BSD Urban DIV2K BSD Urban DIV2K BSD Urban

BaseFlow 62.1% ± 2.2 68.3% ± 2.4 74.2% ± 2.1 73.4% ± 2.0 80.7% ± 1.8 82.9% ± 1.7 69.2% ± 2.1 73.1% ± 2.0 78.2% ± 1.9
SRFlow 60.1% ± 2.2 67.2% ± 2.4 66.3% ± 2.2 - - - 66.2% ± 2.1 67.2% ± 2.1 71.8% ± 2.0
RankSRGAN 56.9% ± 2.2 54.8% ± 2.6 67.5% ± 2.2 - - - - - -
ESRGAN 56.1% ± 2.2 51.2% ± 2.6 64.5% ± 2.3 57.5% ± 2.3 62.8% ± 2.2 63.8% ± 2.2 49.9% ± 2.3 54.5% ± 2.2 57.1% ± 2.2
Ground Truth 49.0% ± 2.2 25.4% ± 2.2 29.1% ± 2.2 27.4% ± 2.1 8.9% ± 1.3 11.6% ± 1.5 18.3% ± 1.7 4.2% ± 0.9 7.7% ± 1.2

Table 1. Quantitative results of the user study. Each entry is aggregated from 1 500 votes. For each dataset and scale factor, we directly
compare AdFlow with each competing method in a pairwise fashion, as detailed in Sec. 4.1. For each compared method (left), we report
the proportion of votes in favor of AdFlow along with the 95% confidence interval. We indicate if AdFlow is significantly better or worse.
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Figure 4. Qualitative comparison with state-of-the-art approaches on the DIV2K (val), BSD100 and Urban100 set for 4× SR.

4. Experiments

We validate our proposed formulation by performing
comprehensive experiments on the three standard datasets,
namely DIV2K [1], BSD100 [31] and Urban100 [15]. We
train our approach for three different scale factors 4×, 6×,
and 8×. We term our flow-only baseline as BaseFlow and
our final method, which also employs adversarial learning,
as AdFlow. The prediction and evaluation is performed on
the full image resolution. For the purely flow-based base-
line, we found it best to use a sampling temperature [21, 30]
of 0.9. For our final approach with adversarial loss, we
found the standard sampling temperature of 1.0 to yield best
results. Detailed results and more visual examples are found
in the supplementary material.

4.1. State-of-the-Art Comparison

We first compare our approach with state-of-the-art. This
work aims to achieve SR predictions that are (i) photo-
realistic and (ii) consistent with the input LR image. Since
it has become well known [12, 17, 23, 26, 27, 28, 29, 30, 35,
39] that computed metrics, such as PSNR and SSIM, fail to
rank methods according to photo-realism (i), we therefore
perform extensive user studies as further described below.
To assess the consistency of the prediction with the LR in-
put (ii), we first downscale the predicted SR image with the
given bicubic kernel and compare the result with the LR
input. Their similarity is measured using PSNR, and we

therefore refer to this metric as LR-PSNR. The LR consis-
tency penalizes hallucinations and artifacts that cannot be
explained from the input image.
User studies: We compare the photo-realism of our Ad-
Flow with other methods in user studies. The user is shown
the full low-resolution image where a randomly selected
region is marked with a bounding box. Next to this im-
age, two different super-resolutions, or “zooms”, of the
marked region, are displayed. The user is asked to select
“Which image zoom looks more realistic?”. In this man-
ner, the user evaluates the photo-realism of our AdFlow ver-
sus each compared method. To obtain an unbiased opinion,
the methods were anonymized to the user and shown in a
different random order for each crop. In each study, we
evaluate 3 random crops for each of the 100 images in a
dataset (DIV2k, BSD100, or Urban100). We use 5 different
users for every study, resulting in 1500 votes per method-
to-method comparison in each dataset and scale factor. The
full user study is shown in Tab. 1, thus collects over 50 000
votes. Further details are provided in the supplement.
Methods: We compare our approach with state-of-the-
art approaches for photo-realistic super-resolution: ESR-
GAN [39], RankSRGAN [47], and SRFlow [30]. For the
two latter approaches, we use the publicly available code
and trained models (4× for RankSRGAN, 4× and 8× for
SRFlow). In addition to the publicly ESRGAN model for
4× SR, we train models for 6× and 8× SR using the code
provided by the authors. All compared methods are trained
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Figure 5. Qualitative comparison with state-of-the-art approaches on the DIV2K (val), BSD100 and Urban100 set for 6× SR.
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Figure 6. Qualitative comparison with state-of-the-art approaches on the DIV2K (val), BSD100 and Urban100 set for 8× SR.

on the same training set, namely DF2k [25].

Results: The results of our user study are given in Table. 1.
The first number represents the ratio of votes in favour of
AdFlow and the second the 95% confidence interval. Ad-
Flow outperforms all other methods with significance level
95% in all datasets except for one case. Interestingly, it al-
most matches the realism of the ground-truth on the DIV2k
dataset. The visual results in Fig. 4 show that our AdFlow
generates sharp and realistic textures and structures. In con-
trast, ESRGAN frequently generates visible artifacts while
SRFlow and BaseFlow achieve less sharp results. While
RankSRGAN experiences fewer artifacts compared to ES-
RGAN, its predictions are less sharp compared to AdFlow.

The results for higher scale factors 6× and 8× show a

similar trend as seen in Fig. 5 and 6. Our approach consis-
tently outperforms the purely flow-based approaches Base-
Flow and SRFlow for all scale factors and datasets by over
20% of the votes. As seen in the visual examples, particu-

4× 6× 8×
Method DIV2K BSD Urban DIV2K BSD Urban DIV2K BSD Urban

pu
re

Fl
ow BaseFlow 49.9 49.9 49.5 48.3 48.6 47.9 49.8 50.2 48.7

SRFlow 50.0 49.9 49.5 - - - 49.0 51.0 48.1

A
dv

.
co

m
bo RankSRGAN 42.3 41.7 39.9 - - - - - -

ESRGAN 39.0 37.7 36.8 33.2 32.8 30.9 31.3 31.7 28.9
AdFlow 45.2 45.6 43.4 37.5 38.5 36.0 46.0 46.8 42.1

Table 2. Consistency to the input in terms of LR-PSNR (dB)
on the DIV2K (val), BSD100 and Urban100 datasets. We com-
pare for methods that employ adversarial loss (bottom). While
purely Flow based methods (top) achieve high LR-PSNR, they
have worse perceptual quality (Tab. 1). AdFlow outperforms other
methods using adversarial loss for LR consistency significantly.
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larly for 6× and 8×, the flow-based approaches often gener-
ate strong high-frequency artifacts. In contrast, our AdFlow
generates structured and crips textures attributed to the ad-
versarial loss. Compared to ESRGAN, which combines L1

with adversarial loss, AdFlow produces generally sharper
results and has no visible color shift, as seen in Fig. 6. In-
terestingly, AdFlow demonstrates substantially better gen-
eralization to the BSD100 and Urban100 datasets than ES-
RGAN, as shown in the user study in Table 1. This indi-
cates that ESRGAN tends to overfit to the DIV2k distribu-
tion. Qualitative examples for 4×, 6×, and 8× are shown
in Fig. 4, 5, and 6, respectively.

We report the LR-PSNR for all datasets and scale fac-
tors in Tab. 2. ESRGAN and RankSRGAN obtain poor LR
consistency across all datasets, as shown in Tab. 2. AdFlow
gains 4.3dB - 15.1dB in LR-PSNR over ESRGAN, indi-
cating less hallucination artifacts and color shift. By em-
ploying flow-based fidelity instead of L1, AdFlow achieves
superior photo-realism while ensuring high LR consistency.

4.2. Analysis of Flow-based Fidelity Objective

Here, we analyze the impact of generalizing the L1 loss
towards a gradually more flexible flow-based NLL objec-
tive. This is done by increasing the number of flow steps K
per level inside the flow architecture. We train and evaluate
our AdFlow with different depths K for 8× SR. Due to the
difficulty and cost of running a large number of user studies,
we here use the learned LPIPS [46] distance as a surrogate
to assess photo-realism. In Fig. 7 we plot the LPIPS and
LR-PSNR on the DIV2K validation set w.r.t. the number of
flow-steps K. We also include the results obtained by the
L1 loss, which is an even simpler one-layer flow loss, as
discussed in Sec. 3.1 and 3.2. Note that these results corre-
spond to the standard RRDB and ESRGAN, respectively.

As we increase the depth K of the flow network f ,
the LPIPS decreases while the LR-PSNR increases. This
indicates an improvement in perceptual quality and low-
resolution consistency. This trend also holds when starting
from the L1 NLL objective. Note that the brief increase in
LPIPS is explained by the added stochasticity when tran-
sitioning from the L1 to the K = 1 flow. Indeed, a too
shallow flow network does not capture rich enough spa-

Adv. Loss Affine Coup. Rand. Rot. Coupl. Mult. Percept. Loss LPIPS ↓ LR-PSNR ↑
0.349 39.76

✓ 0.337 34.85
✓ 0.253 50.16

✓ ✓ - -
✓ ✓ 0.254 50.19

✓ ✓ ✓ - -
✓ ✓ ✓ 0.253 49.78

✓ ✓ ✓ ✓ 0.253 47.54
✓ ✓ ✓ ✓ ✓ 0.270 47.35

Table 3. Ablation of architecture choice for adversarial loss (Adv.),
the use of Affine Couplings (Aff. Coup.), Random Depth-Wise
Rotation (Rand. Rot.), Decode Multiplication for the Affine Cou-
plings (Decode Mult.) and perceptual loss (Percept.) [23].

L1 K=1 K=2 K=3 K=4
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Figure 7. Analysis of the input consistency LR-PSNR and percep-
tual quality LPIPS for different numbers of Flow Steps K.

tial correlations in order to generate more natural samples.
However, already at K = 2, the flow-based generalization
outperforms the L1 in LPIPS. Increasing the flexibility of
the NLL-based fidelity loss, starting from L1, thus benefits
perceptual quality and consistency. This strongly indicates
that a flow-based fidelity objective alleviates the conflicts
between the adversarial loss and L1 loss.

4.3. Ablation of Flow Architecture

In Tab. 3 we show results of our ablative experiments for
8× SR on DIV2k. First, we ablate the use of Conditional
Affine Couplings. Removing this layer (top row) results in
a conditionally linear flow, thereby radically limiting its ex-
pressiveness. This leads to a substantially worse LPIPS and
LR-PSNR, demonstrating the importance of a flexible flow
network. Second, we replace the learnable 1 × 1 convo-
lutions with fixed random rotation matrices (Rand. Rot.).
While widely preserving the quality in all metrics, it re-
duces the training time by 37.1%. Next, we consider the
reparametrization of the coupling layers (Coupl. Mult.). We
found this to be critical for training stability when combined
with the adversarial loss. Lastly, we investigate the use of
the VGG-based perceptual loss [23] that is commonly used
in SR methods. It is generally employed as a more percep-
tually inclined fidelity loss to complement the L1 objective.
However, we found the perceptual loss not to be beneficial.
This indicates that the more flexible flow-based fidelity loss
can also effectively replace the VGG loss.

5. Conclusion
We explore conditional flows as a generalization of the

L1 loss in the context of photo-realistic super-resolution.
In particular, we tackle the conflicting objectives between
L1 and adversarial losses. Our flow-based alternatives of-
fer both improved fidelity to the input low-resolution and a
higher degree of flexibility. Extensive user studies clearly
demonstrate the advantages of our approach over state-of-
the-art on three datasets and scale factors. Lastly, our ex-
perimental analysis brings new insights into the learning of
super-resolution methods, paving for further explorations in
the pursuit of more powerful learning formulations.
Acknowledgements: This work was supported by the ETH
Zürich Fund (OK), a Huawei Technologies Oy (Finland)
project and an Nvidia GPU grant and AWS.
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