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Abstract

Non-rigid point set registration is challenging when
point sets have large deformations and different numbers of
points. Examples of such point sets include human point
sets representing complex human poses captured by dif-
ferent types of depth cameras. In this work, we present
a probabilistic, non-rigid registration method to deal with
these issues. Two regularization terms are used: key
point correspondences and local neighborhood preserva-
tion. Our method detects key points in the point sets based
on geodesic distance. Correspondences are established us-
ing a new cluster-based, region-aware feature descriptor.
This feature descriptor encodes the association of a clus-
ter to the left-right (symmetry) or upper-lower regions of
the point sets. We use the Stochastic Neighbor Embedding
(SNE) constraint to preserve the local neighborhood of the
point set. Experimental results on challenging 3D human
poses demonstrate that our method outperforms the state-
of-the-art methods. Our method achieved highly competi-
tive performance with a slight increase of error by 3.9% in
comparison with the method using manually specified key
point correspondences.

1. Introduction

Non-rigid point set registration plays an important role
in many computer vision applications such as human move-
ment tracking [26] and surface matching [11]. However,
registration of point sets becomes challenging when there
are significant deformations and a different number of
points between the points sets [17].

Many existing methods leverage key point (landmark)
correspondence to deal with large deformations [11, 18].
Key points, usually sparse, are the points that represent im-
portant regions in the point sets such as points at the head,
hands, and feet in a 3D human point set. In these meth-
ods, the key point correspondences between the point sets
are obtained either manually [18] or by matching feature

Figure 1. Key points correspondences from our cluster-based
region-aware feature descriptor. Both point sets are noisy and the
number of points in the left set is twice the number of points in the
right set.

descriptors [23, 24] of the identified key points in feature
space. However, manually preparing key point correspon-
dences is often difficult; on the other hand, finding key point
correspondences via feature descriptors matching usually
results in a large number of incorrect correspondences [20]
due to noise, incomplete data, or an inconsistent number of
points (different spatial resolutions) in the point sets.

In this paper, we present a non-rigid registration method
to deal with large, articulated deformations of point sets
with different numbers of points such as human point sets
acquired with different types of devices. We leverage two
important constraints: key point correspondences and lo-
cal neighborhood preservation. Our method detects the
key points in the point sets based on the geodesic dis-
tance [21, 1, 12]. We then extract feature descriptors based
on cluster statistics of the detected key points to compute
key point correspondences. We use cluster regions statis-
tics in our feature descriptor as they are robust in noisy
and incomplete data, and cope well even when the num-
ber of points between point sets varies significantly. Our
feature descriptor encodes left-right and upper-lower cluster
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regions information that are critical in point set with sym-
metry such as 3D human point sets. We remove outliers
and retain good key point correspondences (inliers), which
are used as a constraint in our optimization for the registra-
tion. Additionally, we aim to preserve local neighborhood
structure during registration using Stochastic Neighbor Em-
bedding (SNE) [9]. Fig. 1 shows an example of key point
correspondences, which are identified using our feature de-
scriptor.

The rest of this paper is organized as follows: Section 2
discusses the related work. In Section 3, we present our
proposed method. Section 4 discusses our experimental re-
sults and compares the proposed method with state-of-the-
art methods. Section 5 concludes this paper with a sum-
mary.

2. Related Work
Non-rigid point set registration methods based on den-

sity estimation are known for their robustness to noise and
outliers. In such methods, points from one point set, tem-
plate, are treated as centroids of Gaussian Mixture Models
(GMMs) and transformed so that they align with points of
other point set as close as possible. Typically, solutions to
these methods are obtained using EM or EM-like algorithm.
One of the earliest methods based on density estimation is
proposed by Chui et al. [5], which used an EM algorithm to-
gether with a deterministic annealing scheme for non-rigid
registration. Myronenko and Song [19] presented a popular
method, Coherent Point Drift (CPD), where the Gaussian
centroids are constrained to move coherently to preserve the
topological structure. Many methods extended the CPD to
deal with large deformation [8, 6, 16]. Ge et al. [8, 7] ex-
tended the CPD called Global Local Topological Preserva-
tion (GLTP) to deal with highly articulated non-rigid defor-
mation by adding Local Linear Embedding [22] constraint,
which preserves local neighborhood structure. Later, they
extended the GLTP to handle complex non-rigid and artic-
ulated deformations by incorporating additional constraints
to preserve the local neighborhood scale using the Lapla-
cian coordinate (LC). Recently, Hirose [10] presented an
algorithm, Bayesian CPD (BCPD), which formulates the
CPD in a Bayesian setting and used the prior distribution
of displacement vectors for motion coherence instead of us-
ing the motion coherence theory. However, these methods
may need specific template pose such as T-pose in human
point set and are susceptible to local minima in case of large
deformation.

Previous methods have been proposed to identify corre-
spondences between surfaces with symmetries [13, 28, 27].
Liu et al. [13] proposed a method to find surface correspon-
dences using symmetry axis curves. In the method, the first
symmetry axis curves are aligned that are identified on sur-
faces. Then, correspondences are obtained by extrapolating

correspondences which are found on the axis curves on the
surfaces. Yoshiyasu et el. [28] proposed a nonrigid shape
matching method for finding correspondences on 3D sur-
faces that exhibit intrinsic reflectional symmetry. An ori-
ented local depth map was used that is sensitive to local
reflectional symmetry. Yoshiyasu et al. [27] presented a
method to establish correspondences between shapes that
have symmetric (left-right) and rotational (front-back) flips.
The proposed symmetry-aware embedding embeds surfaces
into lower-dimensional (3D) unlike previous embedding
methods that embed in higher dimensional spaces. How-
ever, these methods are unclear on point clouds with noises
and different resolutions (number of points) between the
points clouds which are typical in widely available depth
cameras.

Several other methods have proposed to use initial pu-
tative correspondences and then refine the correspondences
by removing incorrect correspondences as the points trans-
formed during optimization or iterative process. The re-
fined or true correspondences are used to get dense corre-
spondences. Ma et al. [15] proposed a method which cre-
ates a set of putative correspondences using feature descrip-
tors, such as shape context [2] for 2D and MeshHOG [30]
for 3D, and then identifies correct correspondences by in-
terpolating a smooth vector field between the point sets.
Later, the method is extended by adding manifold regu-
larization [25, 14] to preserve the intrinsic structure of the
point set. However, the feature descriptors used to com-
pute initial correspondences depend on similar neighbor-
hood structures, suffer from the symmetric flip problem,
and are not robust when the resolutions of the point sets
are significantly different.

3. Proposed Method
Given two point sets X = {x1,x2, . . . ,xN} and Y =

{y1,y2, . . . ,yM} in a D dimensional space, where M and
N denote the number of points in X and Y, respectively.
We detect the key points on both point sets and compute
the correspondences using our novel cluster-based region-
aware feature descriptor. Finally, we use the key point cor-
respondences for global structure and local neighborhood
preservation constraints in our non-rigid point set registra-
tion to deal with large deformations and different number of
points between the points sets.

3.1. Key Point Detection and Feature Descriptor

Given a point set X = {x1, . . . ,xN} containing N num-
ber of points, our task is to detect n number of points in
X which have largest geodesic distance from the mean of
X. We treat each point, xi ∈ X, as a node in an undi-
rected weighted graph, G, and its neighbors are identified
as all the points of X which are within δk distance from
xi. We add an edge between two neighbors xi and xj and
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the weight of the edge is computed as: wij = ∥xi − xj∥2.
Note that it is important to make sure that the graph G is
one single connected graph. So, we detect a graph that has
the highest number of nodes as the main graph, GM , and
connect with the other smaller graphs. Two graphs are con-
nected by identifying a node from each graph and the con-
nection of which gives the shortest distance. An edge is
hence formed to connect these two nodes and the weight
to the edge follows the aforementioned Euclidean distance.
We treat smaller graphs as outliers, which have less than δo
number of nodes and do not connect with the main graph
GM . We set δo = 50 in our experiments. We detect n
key points, Ek = {e1, . . . , en}, of the point set X using
geodesic extrema (see more on [21, 1]). Fig. 2 shows first
seven geodesic extrema for different challenging poses.

Figure 2. Detected (first seven) key points are shown as yellow
dots.

Our key observations on computing key point correspon-
dences based on existing feature descriptors [23, 24] are
that the quality of these feature descriptors degrades on 1)
point sets with noises, 2) point sets with different resolu-
tions (number of points). The existing feature descriptors
are unreliable in computing key point correspondences as
they assume the same or similar local neighborhood struc-
ture around the key point. Therefore, our new feature de-
scriptor is based on a cluster or region around the key points.
We extract points (cluster) around each key point with ra-
dius rc and compute the eigenvalues and three principal
component axes/lengths of the clusters.

3.2. Left-right (Symmetry) Cluster Regions

To distinguish between symmetric clusters (regions)
such as the left hand (foot) and right hand (foot), we pro-
pose to use distance (geodesic) differences between dis-
tances from cluster mean to two points: points that are left
and right side of the mean of a point set (in the horizontal
direction), pm. To choose these points, we take points that
are −δ and δ away from pm for left and right points, de-
noted by pml and pmr , respectively. The key idea is that the
geodesic distance difference from left cluster mean plc, i.e.,
mean of a cluster which is left side of pm, to pml should be
less than geodesic distance from plc to pmr . Similarly, for
a right cluster mean prc (mean of a cluster which is right
side of pm), geodesic distance from prc to pml should be

greater than geodesic distance from prc to pmr . So, we ex-
ploit this geodesic distance difference to encode the left and
right context of the clusters of the point sets. Fig. 3 shows
geodesic path from cluster mean to the left (pml ) and right
(pmr ) side points of the mean of the point set, pm. We com-
pute the left-right (symmetry) distance difference metric, s,
as follows:

s = exp (dg(p
m
c , pml )− dg(p

m
c , pmr )) (1)

where dg(pi, ij) is a function that returns geodesic distance
between two points pi and pj .

In practice, the computation of s is sensitive to noise
and voids on the point sets. To circumvent this, we take
neighboring points above and below pm for neighboring
means and compute s using Eq.(1) for all the neighboring
means. We compute the average of all the symmetry fea-
ture information computed on the neighboring means to get
the final symmetry feature information, sf = 1

Ns

∑Ns

k sk,
where sk = exp (dg(p

m
c , pkl )− dg(p

m
c , pkr )) is a left-right

(symmetry) metric using cluster mean pmc and a neighbor-
ing mean pk. We set Ns equals to 15.

Figure 3. Identifying left and right cluster regions. The geodesic
paths from cluster mean (pmc ) to left (pml ) and right (pmr ) points
are shown in cyan and magenta, respectively.

3.3. Upper-lower Cluster Regions

Similar to left-right symmetry, we also compute the fea-
ture of a cluster that encodes information whether the clus-
ter belongs to the upper half or lower half of a point set.
We propose to use (geodesic) differences between distances
from the cluster mean, pmc , to two neighboring points to
distinguish between upper and lower cluster regions. The
two points that are upper (above) and lower (below) side
of the mean of the point set (in the vertical direction, y-
axis), pm. To choose these points, we take points that are
−δ and δ away from pm for upper (pma ) and lower (pmb )
points (in y-axis), respectively. The key insight is that the
geodesic distance difference from upper cluster mean pmc
(cluster above pm) to pma should be less than pmc to pmb .
Similarly, for a lower cluster region pmc (cluster below the
mean of point set), geodesic distance from pmc to pma should
be greater than pmc to pmb . Fig. 4 shows geodesic paths from
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cluster means to the upper and lower points. We add follow-
ing upper-lower distance metric in our feature descriptor:
u = λ if dg(pmc , pa) < dg(p

m
c , pb) otherwise −λ, where

dg(pi, pj) is a function that returns geodesic distance be-
tween two points pi and pj , pmc is a cluster mean, pma is an
upper point, pmb is a lower point, and λ is some constant
value. We set λ to 1.0.

Figure 4. Identifying upper and lower cluster regions. The
geodesic paths from cluster mean (pmc ) to upper (pma ) and lower
(pmb ) points are shown in cyan and magenta colors, respectively.

3.4. Key Point Correspondence

To get the key point correspondences, we first compute
the cost matrix: C(i, j) = cij = ∥Fi − Fj∥2, where Fk is
our cluster-based feature descriptor for key point pk. Then
we use Hungarian method to get the initial correspondences
between the key points which minimizes the following cost
function: H(π) =

∑K
i=1 C(i, π(i)), where π is the bijec-

tion function π : X → Y. Since our initial key point corre-
spondence list may contain incorrect correspondences, we
prune incorrect correspondences and keep only those cor-
respondences which have higher normalized weight values,
wij , between the correspondences of two key points pi ∈ X

and pj ∈ Y as follows: wij =
∥Fi−Fj∥2∑

(i,n)∈κi
∥Fi−Fn∥2

, where

Fi and Fj are features of pi and pj respectively, and κi is a
set that contains key point correspondence tuples from key
point pi ∈ X to every key points pn ∈ Y. We include
correspondences from our initial list whose normalized cor-
respondence weight is less than a threshold ω. In our exper-
iments, ω equals 0.01.

3.5. Non-rigid Point Set Registration

We treat our non-rigid point set registration as a density
estimation problem based on the Gaussian mixture model
(GMM) [18]. In our method, moving points from one
point set (template) are GMM centroids and align with
another point set (input). In addition, we add two reg-
ularization terms for local neighborhood preservation and
global structure constraints using Stochastic Neighbor Em-
bedding (SNE) [9] and key points correspondences [17], re-
spectively. Expectation-Maximization (EM) optimization is
used to find out the best parameter settings to align both
point sets as close as possible. We assume noise follows the

uniform distribution, i.e., pu = 1
N , and have the probability

density function of point xn given Y as follows:

p(xn) = (1− γ)

M∑
m=1

p(xn|ym)p(ym) + γpu (2)

where p(ym) = 1
M , γ ∈ [0, 1] denotes the rate of noise and

outliers in the observed dataset X. To maintain the global
structure of the point set, our optimal transformation func-
tion minimizes the distances between the corresponding key
points of the point sets (see Section 3.4). So, our global
structure constraint is defined as follows:

EG =

M,N∑
m,n

Am,n∥xn − τ(ym)∥2 (3)

where AM×N is key point coefficient matrix, Am,n = 1 if
(xn,ym) ∈ L; otherwise, 0, L is a set containing all pairs of
key point correspondences, and τ(.) is transformation func-
tion.

We employ Stochastic Neighbor Embedding (SNE) [9]
constraint to keep points within a neighborhood relatively
close and points far apart remain distant after transforma-
tion. Let rij be the probability that two points yi and yj are
neighbors before transformation and sij be the probability
that these two points become neighbors after transforma-
tion τ . A constraint on the local structure is represented
as the minimization of a cost function which is the sum of
Kullback-Leibler (KL) divergences between rij and sij dis-
tributions over neighbors of each point [9]:

EL =
∑
ij

rij log
rij
sij

=
∑
i

KL (Ri∥Si) , (4)

where

rij =
exp(−β2∥yi − yj∥2)∑
k ̸=i exp(−β2∥yi − yk∥2)

,

sij =
exp(−∥τ(yi)− τ(yj)∥2)∑
k ̸=i exp(−∥τ(yi)− τ(yk)∥2)

,

β2 is precision parameter, and Ri = [ri1, ..., riM ] and Si =
[si1, ..., siM ] are probability distributions.

Following the GMM framework in [19], the objective
function of our method integrates local and global con-
straints as follows:

Q(θ, σ2) =
1

2σ2

N,M∑
n,m=1

pi−1(ym|xn)∥xn − τ(ym)∥2 (5)

+
NPD

2
lnσ2 +

λ1

2
EMC +

λ2

2
EL +

λ3

2
EG

where

p(i−1)(ym|xn) =
exp

(− 1
2∥

xn−τ(ym)
σ(i−1)

∥
2
)∑M

k=1 exp(−
1
2∥

xn−τ(yk)
σ(i−1)

∥
2
) + C

,

(6)

744



C = γ(2πσ2
(i−1))

D/2M/((1− γ)N),

and EMC = tr(WTGW) is motion coherence constraint
to maintain topological structure of the point set [29, 19].
Function tr(·) computes the trace of a matrix, and NP =∑N,M

n,m=1 p
(i−1)(ym|xn) ≤ N . GM×M is a kernel ma-

trix with elements gij = G(yi,yj) = exp(− 1
2∥

yi−yj

β )∥
2
.

WM×D = (w1, . . . ,wM )T is a coefficients matrix, λ1, λ2,
and λ3 are regularization weights for motion coherence, lo-
cal structure, and key point correspondence constraints, re-
spectively.

To obtain the coefficient matrix W, we take derivative of
Eq. (5) with respect to W and set it equal to zero:

(diag(P1)G + σ2λ1I + σ2λ2JG + σ2λ3diag(A1)G)W = (7)

PX − diag(P1)Y − σ2λ2JY − σ2λ3diag(A1)Y + σ2λ3AX

where J = (diag(R1) − 2R + diag(1T R)), 1 refers to
column vector of all ones, I refers to identity matrix, and
diag(v) refers to the diagonal matrix created from the vec-
tor v.

We define the transformation function, τ , as the ini-
tial position, ym, plus a displacement function f(ym),
τ(ym) = ym+ f(ym). We adopt the following transforma-
tion function which moves neighborhood points coherently
and helps in maintaining topological structure of the point
set [19]: T = τ(Y,W) = Y +GW.

Similarly, to obtain σ2, we take derivative of Eq. (5) with
respect to σ2 and set to zero

σ2 =
1

NPD
(tr(XT diag(PT 1))− 2tr(PXT T) (8)

+tr(TT diag(P1)T))

where NP = 1TP1.

4. Experimental Results
In our experiments, we use a human dataset that con-

tains different complex human poses captured by Microsoft
Kinect II. The dataset has human subjects with differ-
ent body shapes and sizes having poses such as stretch-
ing, squatting, standing. Each human point set consists
of around 12K points. In all our experiments, the pa-
rameter values we used are as follows: λ1 = 2.0, λ2 =
1.0, λ3 = 150.0, β1 = 1.0, β2 = 15.0, initial σ2 =

ξ
NMD

∑N
n=1

∑M
m=1 ∥xn − ym∥2, ξ = 0.1, and maximum

number of iterations of EM is 50. We normalized the point
sets with zero mean and unit variance before registration.
We downsampled uniformly at random for each point set to
2500 in our experiments and the experiments are repeated
three times. We detect seven key points on each point sets

used in our experiments. For quantitative evaluation, we use
normalized Euclidean distance between the corresponding
points as follows: ε = 1

N

∑
i ∥xi − yj∥2, where xi ∈ X

and yj ∈ Y is the estimated corresponding point of xi after
registration.

To choose the cluster radius, rc, we select squat and
stretch poses and evaluate our method using different radii.
For the squat pose, we register both hands upward pose with
half squat pose. For the stretch pose, we register t-pose with
left (right) stretch poses. Table 1 shows the avg. registration
error w.r.t. different radii. We set 0.09 for rc.

Table 1. Registration error w.r.t. different cluster radii.
Radius

Poses 0.03 0.06 0.09 0.12 0.15
Squat 16.96 16.50 16.38 16.40 16.75

(1.54) (1.47) (1.35) (1.37) (1.56)
Stretch 21.96 20.87 20.26 20.16 20.13

(3.56) (2.99) (2.91) (2.81) (3.23)

All our experiments are conducted on Intel Core i7-
7700 CPU @ 3.60GHz 64-bit Windows 10 machine with
16GB of memory. We evaluate our method in the follow-
ing aspects: 1) different degrees of deformation, 2) abla-
tion study on the influence of global and local constraints in
our method, 3) a different number of points between the
point sets, and 4) generalization to point sets other than
human. We compare our results with the following state-
of-the-art methods: CPD [19], PR-GLS [16], BCPD [10],
Landmarks based Global Local Preservation (LGLP) [18],
and GLTP [8, 7]. We used the publicly available source
code which are distributed by the authors of these methods
except LGLP, which is our previous work. For LGLP, we
use seven key point correspondences, which are established
manually.

4.1. Degree of Deformation

We evaluate our proposed method with different degrees
of deformations: small, medium, and large. We select three
types of human poses to evaluate the deformation degrees:
squat, stretching, and both hands moving upward. For the
squat, we select both hands upward pose (template) vs three
other squat poses: squat starting pose, half squat pose, and
full squat pose. For stretching, we select t-pose (template)
is registered with three levels of stretching (left and right)
poses from small to large deformations, respectively. Fi-
nally, for both hands moving upward pose, we select the
pose with both hands down as a template vs three other
poses where both human hands are moving upward.

Table 2 shows the average registration errors (stds.) of
our and other state-of-the-art methods for all three defor-
mation levels. Our method has the lowest average registra-
tion errors and standard deviations for all three deformation
levels among CPD, PR-GLS, and BCPD. Our method has
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Figure 5. Exemplar registration results on squat (top row) and stretch (bottom row) poses. First two columns show input and template point
sets, respectively. Third to seventh columns show results from our method, CPD, PR-GLS, BCPD, LGLP, and GLTP, respectively.

Table 2. Registration error w.r.t. deformations.
Deformation

Method small medium large
Our 16.02 (2.84) 18.06 (2.70) 20.09 (3.05)
CPD 19.14 (4.88) 29.33 (8.20) 30.55 (6.61)

PR-GLS 21.85 (15.54) 40.26 (24.81) 40.43 (22.70)
BCPD 23.28 (10.43) 34.80 (22.82) 36.48 (22.18)
GLTP 25.03 (11.86) 40.97 (14.11) 53.53 (14.67)
LGLP 15.78 (2.43) 17.66 (2.49) 19.57 (2.56)

only slightly higher registration errors (stds.) than LGLP,
which establishes the key point correspondences manually.
In general, registration errors increase when the degree of
deformation increases for all the methods, as can be seen
in the table. But, error differences between our method and
the third best method (CPD) are much higher in large defor-
mation than in small deformation. When combined with
all three deformations, the average registration errors for
our method, CPD, PR-GLS, BCPD, LGLP, and GLTP are
18.06, 26.34, 34.18, 31.52, 17.67, and 39.84, respectively.
In comparison with the method using manually specified
key point correspondence [18], our method achieved highly
competitive performance with a slight increase of error by
2%. The results suggest that our method successfully iden-
tifies important key point correspondences to accommodate
large degrees of deformation.

Fig. 5 shows exemplar registration results on squat (top
row) and stretch (bottom row) poses. Inputs and templates
are shown in the first two columns, respectively. The third to
seventh columns show results from our method, CPD, PR-
GLS, BCPD, LGLP, and GLTP, respectively. In squat re-
sults, both our method and LGLP show better results. CPD
and PR-GLS also show good results but have issues in leg
regions. BCPD and GLTP show better results in the upper
part of the body such as the torso and hands but fail to reg-
ister accurately in lower body regions such as both legs. In

stretching results, our method and LGLP show a better re-
sult than CPD, PR-GLS, BCPD, and GLTP. CPD does not
even maintain the human shape. PR-GLS and BCPD show a
better result than CPD but fail to preserve local regions such
as the head, left arm. GLTP is able to maintain the overall
shape of the human subject but fails to register correctly in
the articulated region of the left hand.

4.2. Ablation Study

This section discusses our study on the influence of
global and local constraints on the performance of our
method. Human point sets with three degrees of deforma-
tions are used in our evaluation. In our analysis of the im-
pact of local constraint, λ3 was set to zero so that the global
constraint is suppressed in the objective function. Similarly,
to understand the impact of global constraint, we suppress
the influence of local neighborhood constraint in our objec-
tive function by setting λ2 equals to zero.

Table 3 lists the average registration error with respect to
the three degrees of deformations. The second row shows
the registration errors without using key point correspon-
dences constraint while the second row shows the regis-
tration error without using local neighborhood constraint.
When only key point correspondences (global constraint)
are used, our method performs better than using only local
neighborhood constraints in all the three degrees of defor-
mation. Also, using only key point correspondences (but
not local neighborhood constraints) generates similar regis-
tration errors when we use both global and local constraints
in our method. When we take the average of all the registra-
tion errors of the three degrees of deformation, our method’s
error without using key point correspondences and without
using local neighborhood constraints are 19.92 and 18.30,
respectively. This means that we get 10.3% more error if
we do not use the key point correspondences (but use lo-
cal neighborhood constraint). Similarly, we get 1.3% more

746



Figure 6. Exemplar registration results on using different number of points between the point sets. First two columns show input and
template point sets, respectively. The input point set contains 2500 points while template contains only 1000 points in it. Third to seventh
columns show results from our method, CPD, PR-GLS, BCPD, LGLP, and GLTP, respectively.

error if we do not use local neighborhood constraints (but
use key point correspondences). Hence, using both global
and local constraints is necessary for dealing with large de-
formation. The influence of the global constraint (key point
correspondences) is greater than that of the local constraint.

Table 3. Ablation study: Registration error w.r.t. deformations.
Deformation

Method small medium large
our method 16.02 (2.84) 18.06 (2.70) 20.09 (3.05)
w/o global 16.51 (3.34) 20.98 (5.51) 22.28 (3.19)
w/o local 16.11 (3.00) 18.17 (2.81) 20.62 (3.04)

Figure 7 shows registration results of right stretch pose
from first three columns and squat pose from fourth to sixth
columns without using global constraint. In each pose type,
point sets are shown in the following order: input, template,
and registration result. In both cases, correct human shapes
are not achieved due to the lack of global constraint.

Input Template Result Input Template Result
Figure 7. Illustration of inaccurate registration results without us-
ing global constraint (key point correspondences).

4.3. Robustness to Different Number of Points

We also evaluate the robustness of our method w.r.t. the
different number of points between the points sets. We pre-
pared two types of poses for the experiments (squat and

stretching). The template point sets are always fixed with
2,500 points but each input point set is downsampled into
five different levels: 2,200, 1,900, 1,600, 1,300, and 1,000
(see Table 4). First, we fix the hands-up pose as a template
and register it with three squat poses as inputs, similar to the
one used in the degree of deformation levels. Second, we fix
the t-pose as the template and register with three different
left (right) stretching poses as input point sets.

Table 4. Registration error by changing the number of points in one
point set. The other point set has 2,500 points in all experiments.

Number of points in one point set
Method 2200 1900 1600 1300 1000

Our 17.34 15.06 13.18 11.36 9.27
(3.53) (2.79) (2.61) (2.24) (1.82)

CPD 23.13 20.17 17.33 14.35 11.51
(7.50) (6.07) (5.04) (4.22) (3.24)

PR-GLS 24.43 21.04 17.97 14.76 11.18
(6.39) (5.73) (4.85) (5.97) (2.67)

BCPD 34.14 35.57 51.92 50.79 37.69
(18.98) (21.90) (116.30) (105.17) (15.58)

GLTP 36.34 33.18 27.22 21.98 17.67
(16.55) (14.95) (12.28) (9.65) (8.08)

LGLP 16.78 14.49 12.64 10.50 8.56
(3.15) (2.37) (2.08) (1.59) (1.36)

Table 4 shows the average registration error against five
levels of a different number of points. In all the cases, our
registration method has the lowest average registration er-
rors and smaller standard deviations among CPD, PR-GLS,
BCPD, and GLTP. Our method’s registration results are
very close to LGLP, which fixed the key point correspon-
dences manually. When combined with all five levels, the
average registration errors for our method, CPD, PR-GLS,
BCPD, LGLP, and GLTP are 13.24, 17.30, 17.88, 42.02,
12.43, and 27.28, respectively. This demonstrates that our
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method is robust to handle different numbers of points be-
tween the point sets. However, our method exhibits a higher
average error in comparison to LGLP by 6.5%, which used
manually established key point correspondences.

Figure 6 shows exemplar registration results on using a
different number of points between the point sets. The first
two columns show the input and template point sets. Input
point sets contain 2,500 points and template point sets con-
tain only 1,000 points. Third to eighth columns show reg-
istration results from our method, CPD, PR-GLS, BCPD,
LGLP, and GLTP, respectively. In the top row for squat
poses, our method, CPD, and LGLP show good results. PR-
GLS result shows points around leg regions are not regis-
tered correctly. BCPD result shows a better human shape
but the squat pose is not maintained. In the bottom row for
stretching poses, only our method and LGLP show good re-
sults. CPD, PR-GLS, BCPD, and GLTP maintain the mid or
lower body part such as the torso or legs but fail to preserve
stretching arms, head regions.

4.4. Generalization to Other Point Sets

We evaluate our method to deal with non-human point
sets that do not necessarily contain left-right (symmetry)
and upper-lower regions. To conduct the experiments, we
select two categories of point sets. First, we select the point
sets representing knives from the Tools 2D database [4].
The knife point sets do not have left-right (symmetry) re-
gions such as left and right hands (feet) in the human point
sets. Second, we select cat point sets from the Nonrigid
world 3D database [4, 3]. The cat point sets have left-right
(symmetry) regions but lack upper-lower regions such as
hands and feet on the human point sets. We use seven key
points for the experiments.

Figure 8 shows the registration results on non-human
point sets. In both rows, the first column shows the in-
put point sets while the second column shows the template
point sets. The third column shows the registration re-
sults (transformed template point sets). In tools point sets,
our method identified four key point correspondences. Out
of four correspondences, two correspondences are accurate
(left and right tips of the knives shown in magenta and green
connected lines). Despite establishing a small number of
correct key point correspondences, our method is able to
achieve good registration results for the tool point sets. In
cat point sets, our method is not able to establish any key
point correspondences. Due to this lack of key point cor-
respondences, the transformed template point set failed to
maintain different regions such as the tail, right foot and do
not maintain the overall shape of the cat. These results sug-
gest that our method can deal with non-human point sets
such as tools point sets but need further improvements to
establish key point correspondences on point sets such as
animals.

Figure 8. Illustration of registration results on non-human point
sets. Identified key point correspondences (top row) are repre-
sented by the connected lines. No correspondences are identified
between the cat point sets (bottom row).

5. Conclusion

This paper presents a probabilistic non-rigid point set
registration method to deal with large deformation and a dif-
ferent number of points between point sets such as data ac-
quired with different types of devices. Two important con-
straints, key point correspondences, and local neighborhood
preservation are used as regularization terms in the regis-
tration method. Key points are identified on the point sets
using geodesic extrema. The correspondence between key
points is computed using our novel cluster-based, region-
aware feature descriptor.

Our proposed method is evaluated and compared with
state-of-the-art methods on challenging 3D human point
sets with a large degree of deformation in poses such as
squat and stretching as well as different sizes of the point
sets. The experimental results demonstrate that the key
point correspondences established between the point sets by
our method are highly reliable. Because of highly reliable
key point correspondences identified by our method, its av-
erage registration error is only about 3.9% higher than the
method that uses manual key point correspondences when
combined with all the experimental results. Our method
outperforms other state-of-the-art methods such as CPD,
PR-GLS, BCPD, and GLTP. In particular, when combined
with all the quantitative experimental results, our method’s
average registration error is 28.28%, 39.88%, 57.44%, and
53.37% lower than CPD, PR-GLS, BCPD, and GLTP, re-
spectively.

Further, our ablation study on global and local con-
straints suggests that both constraints are necessary for deal-
ing with large deformation. The influence of the global con-
straint (key point correspondences) is greater than that of
the local constraint in our method. Finally, in our future
work, we plan to deal with non-human point sets such as
animal point sets to correctly establish key point correspon-
dences between the point sets.
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