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Abstract

Efficient road traffic monitoring is playing a fundamen-
tal role in successfully resolving traffic congestion in cities.
Unmanned Aerial Vehicles (UAVs) or drones equipped with
cameras are an attractive proposition to provide flexible
and infrastructure-free traffic monitoring. However, real-
time traffic monitoring from UAV imagery poses several
challenges, due to the large image sizes and presence of
non-relevant targets. In this paper, we propose the AirCam-
RTM framework that combines road segmentation and ve-
hicle detection to focus only on relevant vehicles, which as
a result, improves the monitoring performance by ∼ 2×
and provides ∼ 18% accuracy improvement. Furthermore,
through a real experimental setup we qualitatively evalu-
ate the performance of the proposed approach, and also
demonstrate how it can be used for real-time traffic mon-
itoring using UAVs.

1. Introduction

Road traffic monitoring (RTM) is an important compo-
nent of intelligent transportation system and is critical to-
wards providing and analyzing traffic data to characterize
the performance of a roadway system. Therefore, infor-
mation gathered from traffic monitoring can determine ar-
eas with high traffic congestion that have to be addressed.
The need to revolutionize the intelligent transportation sec-
tor has led to a number of technologies being employed
from GPS [45], WiFi [49], UAVs [11], surveillance cam-
eras [44]. Perhaps, the most promising out of these tech-
nologies are camera-equipped UAVs. The affordability of
UAVs and ease of data capturing along with the advance-
ment of computer vision and deep learning techniques pro-
vides a great opportunity to integrate these technologies to-
gether for the purposes of road traffic monitoring. Such ca-
pabilities are useful for a wide scenario of emerging traffic

Figure 1. In contrast to traditional aerial road traffic monitoring
methods, AirCamRTM enhances vehicle detection through road
segmentation to improve monitoring performance and accuracy.

monitoring applications, such as persistent monitoring of an
area for traffic regulation purposes, periodical data collec-
tion for extraction of traffic statistics, and live traffic density
estimation in the surrounding area of a moving target (e.g.
for assisting emergency vehicle navigation) [30].

Through the literature most of the works focus on tack-
ling one component of the more complicated traffic mon-
itoring process with UAVs. Research on the topic has fo-
cused mainly on addressing the challenges of detecting ve-
hicles in aerial and UAV imagery such as in [2], [29],[21].
Such works generally exploit generic detectors and re-
train them for the task of vehicle detection and classifica-
tion. Usually, they do not consider other algorithms, post-
processing or pre-processing methods that could be useful
for a more efficient traffic monitoring [18]. Some chal-
lenges faced by existing approaches are 1) how to pay at-
tention only to the vehicles that matter to the traffic mon-
itoring process, especially in scenarios of complex urban
cities, and 2) how to reduce the computational complexity
when monitoring hundreds of vehicles.

In order to meet the demands for more efficient moni-
toring with UAVs and facilitate real-time performance, we
propose a composite visual processing pipeline, referred to
as AirCamRTM. The main contribution is the integration
of road segmentation with vehicle detection into a synergis-
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tic framework based on deep learning that can tremendously
enhance and improve the overall traffic monitoring by fo-
cusing only on the regions of interest (Fig. 1). First, we
explore and evaluate different architectures for both vehicle
detection and road segmentation on task-specific datasets
and select the modules that provide the best accuracy-
performance trade-off. Second, we integrate the aforemen-
tioned techniques into a visual traffic monitoring pipeline,
and demonstrate how they can operate synergistically to im-
prove the overall performance. Through evaluation on a
composite dataset, we show accuracy improvements of up
to ∼ 18% for road-vehicle detection and observe a ∼ 2×
speedup compared to a road-agnostic approach, making it
more suitable for real-time operation. Finally, through a
real experimental setup, we show how the framework can
be used to extract important traffic state information.

2. Related Work

2.1. UAV-based Vehicle Detection

Vehicle detection from UAVs has received a lot of atten-
tion in recent years mostly based on deep learning [8],[20].
Some common challenges confronted and tackled by the
computer vision research are the computational efficiency
and the detection of small size objects, since the vehicles
from aerial images appear as small objects.

A hybrid approach using deep learning for feature ex-
traction and Support Vector Machines for classification is
presented in [2]. This method comes has higher compu-
tational intensity due to its brute force search method. An-
other hybrid method concentrates on utilising a 2-stage deep
learning framework that performs tiled processing of aerial
images via multi-label segmentation and then extracts the
regions that correspond to vehicles to classify them into
subcategories [3].

Other research addressed the critical problem of small
object detection in aerial images. An approach in the liter-
ature was to implement a two-stage Faster R-CNN frame-
work with Inception V2 as a backbone. However, this ap-
proach showed a decline in the trade-off between accuracy
and computational intensity and so it cannot be utilised in
video processing applications [31]. To reduce the process-
ing time different approaches proposed searching for sub re-
gions in the image [19],[24] [37]. More recent works have
utilized single-shot convolutional neural networks for faster
inference. For example, the work in [29] used the YOLOv3
network [41] for top-view vehicle detection. Beyond re-
purposing existing networks there has also been some work
on realizing smaller networks targeting lightweight embed-
ded processing platforms [21],[48], however, not all are de-
veloped for aerial imaging. Overall, Faster R-CNN and
YOLO family of algorithms are amongst the most used for
the purpose of vehicle detection [20]. In the on-demand

traffic monitoring case we are interested in getting results
as close to real-time as possible. Hence, since region-based
methods incur higher computational complexity we focus
herein on the YOLO family of networks [39], [41], [6] for
developing a vehicle detector.

2.2. Road Extraction and Segmentation

Segmentation of aerial imagery and road extraction in
particular, has been an active research area [32]. The ma-
jority of these techniques consider off-line scenarios and
also utilize GIS data which necessitates an already mapped
area. On the other hand, processing of aerial imagery for ex-
traction of road segments in real-time applications is more
challenging. Road extraction can be viewed as a binary
labelling problem and has been tackled with different ap-
proaches over the years.

Some of the traditional approaches are using methods
such as Gaussian Mixture Models on the color distribution
[51], exploration of various feature spaces [14] [22] and
more recently with the utilization of GPS [45] and WiFi
data [49]. The aforementioned techniques lead to results
that are applied to limited case scenarios, while dynamic
road extraction is more complex due to either illumina-
tion, data limitation or complex road network[32]. Modern
deep learning based approaches utilize the U-Net architec-
ture [42] as basic structure with residual learning [12] [50].
However, they target satellite images which have a consid-
erable different viewpoint from road traffic captured from
UAV.

2.3. UAV Road Traffic Monitoring

Another line of works considers how the UAVs them-
selves are used in the traffic monitoring process. In [1]
a study is presented on the different aspects of the use of
UAVs for traffic monitoring from the flight planning, to the
data acquisition component. In [11] the authors study the
impact of mobile UAV trajectories on the event detection
rate and the number of controlled vehicles. In [22] an op-
timization framework is proposed to find the best position
and altitude for a UAV to have the best view of the road
network segment given the heights of nearby buildings.

More inline with our work are those that use the out-
puts of perception modules to extract higher level informa-
tion such as velocities and trajectories [36]. For example,
the work in [17] develops an analysis framework by imple-
menting an ensemble a classifier of Haar cascade and CNN
to detect vehicles along with a KTL-based motion estima-
tion to compute the motion, speed and density of the traffic.
[4] proposes a semi-automatic way of extracting trajecto-
ries from aerial data. However, the majority of these works
focus on simpler settings such as highways [18].
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Figure 2. Proposed Synergistic AirCamRTM Framework: A) The
road segmentation map is predicted. B) The vehicles in the seg-
mented region are detected. C) The mask is corrected using the
detected bounding boxes, while the algorithm is tracking and mon-
itoring of the vehicles.

3. Proposed AirCamRTM Framework

To overcome limitations of standard methods we de-
signed a pipeline of three distinct stages, that incorporates
both a single shot detection as well as a road extraction net-
work to isolate only relevant vehicles and estimate their traf-
fic parameters. The overall computer vision pipeline as well
as the interactions between stages are shown in Fig. 2.

3.1. Road Segmentation

The road extraction methodology involves using deep se-
mantic segmentation networks to predict a road mask that
would enhance the traffic monitoring task. In contrast to
other works that use a single network architecture, our work
first investigates a combination of encoders and decoders to
identify the most suitable architecture for this task.

Primarily, the encoders developed for embedded devices
were investigated that have the potential for an UAV on-
board deployment. EfficientNet encapsulates a family of
models, that provide the user a way to choose the de-
sired trade-off between efficiency and accuracy [46]. Mo-
bileNetV2 has gained large popularity in mobile applica-
tions as it leverages separable convolutions and inverted
residuals [43]. Finally, ResNet18, is a small network that
utilizes residual connections [15]. The above encoders vary
in terms of depth, width and operations.

Moreover, we explore different decoder architectures
that focus on the more widely used approaches that have
demonstrated promising results for a variety of applications.
Therefore, the architectures of UNet [42], FPN [27], PAN
[25] and DeepLabV3 [7] are investigated. The networks
above differ in terms of how they decode high-order infor-
mation. Thus, the impact of skip connections [42], pyra-
midal structure [27], attention mechanisms [25] and atrous

Figure 3. Semantic segmentation models meta architectures

Figure 4. Single-Shot Vehicle Detection Overview

convolutions [7] is observed.

3.2. Vehicle Detection and Classification

In this paper, we specifically investigate the models
based on the YOLO family which are compared in terms of
accuracy and performance, instead of the region proposal
method used in two-stage detectors. the YOLO family of
networks starting with YOLOv2 [39] detects objects by di-
viding an image into grid units. Therefore, the detection
speed is much faster than that of conventional methods. The
feature map of the YOLO output layer is designed to out-
put bounding box coordinates, the objectness score, and the
class scores as shown in Fig. 4. Thus YOLO enables the
detection of multiple objects with a single inference. The
detection accuracy is low for small or dense objects when
utilizing YOLOv2 [39]. Therefore, this paper investigates
YOLOv3 [41] and YOLOv4 [6] capabilities to observe their
potential in vehicle detection from an aerial point of view.

YOLOv3 consists of convolutional layers, as shown in
Fig. 4, and applies a residual skip connection to solve the
vanishing gradient problem of deep networks and uses an
up-sampling and concatenation method that preserves fine-
grained features for small object detection. The most promi-
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nent feature is the detection at three different scales. This
allows YOLOv3 to detect objects with various sizes. The
predicted results of the three detection layers are combined
and processed using non-maximum suppression. Recently,
YOLOv4 [6] introduced a number of improvements both in
the architecture of the convolutional network and its train-
ing methodology. Therefore, in terms of the trade-off be-
tween accuracy and speed, the YOLO family of methods is
considered suitable for the task of real-time vehicle detec-
tion in aerial images. We compared both networks as well
as their tiny versions to train top-view vehicle detectors and
evaluate their performance and trade-offs.

3.3. Vehicle Detections Post Processing

The result of the vehicle detection process after being
filtered with the segmentation masks, are a set of bound-
ing boxes enclosing the detected vehicles. These bounding
boxes are independent between frames, without any associ-
ation, meaning that vehicles detected in one frame are not
matched with vehicles detected in another frame. To es-
timate trajectories and velocities, however, it is necessary
to track the same vehicles over time. In order to address
this, first a matching approach is used to associate bounding
boxes of the same vehicle, along with a tracking algorithm
to maintain an estimate of the vehicle position for when-
ever a bounding box is missing either by occlusion or is not
detected by the model.

3.3.1 Vehicles Temporal Association and Consistency

The algorithms that were adopted for vehicles’ tracking are
Hungarian algorithm [16] and Kalman Filter [47]. This
tracking algorithm utilizes the Intersection over Union
(IoU) score as a similarity metric for the bounding boxes
and the Hungarian algorithm to associate these boxes over
time. The IoU for achieving similarity between the boxes
A, B is given in Eq. 1 and each is defined by [tx, ty, th, tw].
A bounding box in the current frame is associated to the box
in the previous frame that has the highest IoU score.

IoU =
|A ∩B|
|A ∪B|

(1)

The tracking approach operates on a sequence of frames
for which a set of bounding boxes is extracted in every
frame. These bounding boxes of the previous frame are as-
sociated over with the ones in the current frame to form a
tracking trajectory for each vehicle. Previous frame bound-
ing boxes are either in an active or an inactive state de-
pending on whether a current detection is associated with
it. Each bounding box acquired in the first frame is given a
unique ID and it is set as active and the Kalman filter is ini-
tialized and associated with it. For each succeeding frame

the previous active boxes are being compared with the cur-
rent boxes for matching. For inactive boxes we instead use
the predicted location from the respective Kalman filters.
Once a match has been found the corresponding Kalman
filter is updated with that information.

The nearest detections are found by implementing K-
Dimensional Tree (KDtree) [5], which is a space parti-
tioning tree data structure for organizing points in the k-
dimensional space. The tree also supports all-neighbors
queries so it has the ability to search using the x, y coor-
dinates. Once all new detections are put inside a KDtree,
finding the nearest detections of each active vehicle is done
by calling a query to the tree. Hence, the final tracking al-
gorithm compares the IoU of each one of the nearest detec-
tions with the Kalman filter coordinates of the active vehicle
being checked. After computing the IoU scores, if one or
more of the compared detections scores have a higher value
than a given threshold, then the detection with the high-
est IoU score gets associated with the vehicle that is being
checked. Eventually, after all boxes in the current frame are
checked for any match with the previous frame, those that
haven’t been matched might represent newly entered vehi-
cles in the image. Furthermore, there might be some false
detection cases which can be partly addressed by focusing
only in the main road region. Hence, to further handle these
cases, some consistency rules were introduced.

• Kalman prediction isn’t performed in case the bound-
ing box is detected less than k times, where k repre-
sents a threshold of frames below the framerate f . This
prevents false positive detections to be missmatched
with other active vehicles due to Kalman predictions.

• If a vehicle isn’t detected for 3 consecutive seconds,
depending on the framerate of the video stream, it will
be set to inactive state and won’t be checked again for
matching with the future detections.

• When a bounding box prediction from the Kalman fil-
ter exceeds the image boundaries, it is set to inactive
state, since it has left the camera’s field of view.

3.3.2 Velocity and Direction Calculation

Following the association of bounding box over time for
each vehicle, it is then possible to estimate their direction
and velocity in order to provide traffic analytics. Direction
estimation is done by simply subtracting the current x,y co-
ordinates with the previous detection. We assign the vehicle
to one of 8 possible directions top, bottom, left, right and
their 4 intermediates.

To calculate the velocity of each vehicle, we estimate
the distance travelled over time, by first converting pixels
to actual distance. This can be computed using the ground
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sample distance [23]. The ground sample distance algo-
rithm uses the camera parameters, camera sensor dimen-
sions (Ch × Cw), focal length f and the image dimensions
in pixels (W × H) as well as the UAV altitude h, in order
to find the representation of pixel to meters of the frame.
The total GSD is calculated as shown in Eq. 2 and is mea-
sured in km/pixels. Then, the Euclidean distance covered
d is converted from pixels in meters. Hence, calculating a
more robust result using the average of the last M distances
covered by a vehicle and multiplying it with the duration
difference between frames tf results to the current average
velocity Vi of each vehicle i which is measured in Km/h.

GSD = max(
h× Cw

f ×W
,
h× Ch

f ×H
)/1000 (2)

Vi =

1000

M
×
∑M

j=1 dj

tf ∗ 3600
(3)

3.4. Mask Correction Using Detections

To improve the robustness of the segmentation output,
detection information is utilized to update and fill missing
regions that weren’t predicted accurately by the segmenta-
tion model. As depicted in Fig. 2 a rectangle is created
around each vehicle, having 1.5× scale of its bounding box,
and as vehicles move and reach missing segmentation re-
gions, the segmentation output is expanded by adding the
non-overlapping rectangular region. The updated mask is
then used in subsequent frames to filter vehicle detections
while it continues to be updated based on the updated de-
tected vehicles. It is important to note that the update is
only based on active vehicle detections which are more re-
liable and does not include transient detections.

3.5. Traffic Analytics

All of the data calculated during the aforementioned
tracking processes such as the velocity, direction, trajecto-
ries and bounding boxes for each vehicle in each frame can
be further processed to analyze statistics about each road
segment. Such statistics are traffic density, fundamental di-
agram of traffic flow, spotting when and from where traf-
fic is causing issues, average velocities, distances between
vehicles and much more [30]. These statistics can then as-
sist stakeholders and operators to apply the right traffic light
policies and traffic managements schemes.

4. Datasets and Training Process
4.1. Datasets

Different datasets (Table 1) are used for training and
evaluating both the vehicle detection and road segmentation

Dataset Segmentation Detection Traffic Monitoring
Train Test Train Test

OSM [34] (Images) X X
UAVDT [10] (Images) X X
Aerial KITTI [33] (Images) X X X X
Custom UAV Videos X

Table 1. Datasets utilized to train & evaluation.

models to find the most suitable architecture. In addition, a
joint dataset was used for compositely training and testing
of both models and evaluate that only relevant vehicles on
the road are detected.

Detection: For the vehicle detection process, around
11k images were used in total, 9k for training and 2k for
validation. From these images, 5k of them are taken from
the UAVDT Dataset [10]. The UAVDT images were re-
annotated to 4 classes (’Cars’, ’Busses’, ’Trucks’ and ’Mo-
torbikes’), instead of one that it was initially annotated. The
rest of the images are taken from video footage collected
through real UAV flights in varying altitudes, The footage
captured took part in hourly sessions, on multiple busy lo-
cations in Cyprus, during morning hours where traffic is
at its peak. Furthermore, since weather conditions should
be optimal for a drone flight, the plethora of the data was
taken during sunny days or in the worst-case scenario with
light clouds. The onboard camera’s pose was vertical to
the ground, and the data were annotated from scratch to
the same 4 classes as aforementioned. In total, 335, 637
vehicles were annotated in which includes 318, 860 light
vehicles (e.g., cars), 165, 41 heavy vehicles (e.g., busses,
trucks). As a note, the resolution of multiple images in the
dataset differs as well as the altitude of the drone that took
the images. The altitude varies between 150 to 250 meters
high and the resolution from 720p to 4k

Segmentation: The open-source dataset of Open-
StreetMap (OSM) [34] with the satellite images from vari-
ous urban cities was utilized to train the road segmentation
models. Because of the various image sizes in the dataset,
a pre-processing stage was to resize images to 1024× 1024
and randomly crop size of 512×512 for the training and the
model was test on the center crops. A total number of 5, 013
training and 1, 671 testing labelled images were prepared.

Composite: For a more qualitative and joint evaluation,
the Aerial KITTI dataset was introduced for training and
testing the model [13] [33]. A smaller crop size of 512×512
was chosen for the Aerial KITTI images because of its lim-
ited amount of data. A total number of 1, 272 training and
318 testing labelled images were prepared. Note that, only
road annotations were used throughout this paper and the
cropped images without road annotations were excluded in
both of the datasets. Moreover, we manually annotated the
vehicles in the Aerial KITTI dataset for the object detection
training and evaluation.

Custom UAV Videos: To evaluate the traffic monitoring
capabilities, custom UAV videos of various traffic condi-
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tions and locations were used for the estimation of the traffic
monitoring parameters such as density and speed.

4.2. Training details

The neural networks for vehicle detection and road seg-
mentation were all trained on an NVidia RTX 2080Ti and
V100 GPUs, accordingly. For vehicle detection the Dark-
Net framework is used [38], while for road segmentation we
use PyTorch library [35].

For the training of all the segmentation models, the same
parameters of resolution, epochs, batch size, augmentation,
learning rate and loss function were used. The models were
trained with a batch size of 32 of with 512 × 512 size, for
100 epochs. The models were initialised with the ImageNet
weights [9]. Furthermore, targeted augmentations were ap-
plied with a 0.3 probability. The learning rate was kept con-
stant at 0.0001. Lastly, a combination of focal loss [28] and
soft-jaccard loss was implemented for updating the weights
during back-propagation.

All detection networks have been trained using their de-
fault configurations with some minor changes. Input resize
of images of all configurations were set to 608 × 608. All
chosen networks are using 9 anchors except tiny YOLOv3
which has 6 and were calculated using k-means clustering
method [26]. For the tiny versions we modify the origi-
nal tiny YOLOv4 [40] with 2 detection layers to have 3
instead since this improved the detection results with sig-
nificant processing increase. This also resulted in a more
stable detection. For augmentation, random resizing is used
which resizes the network input size every 10 batches (it-
erations) from ×0.7 to ×1.4 while keeping initial aspect
ratio of network size. In addition, for YOLOv4 models mo-
saic data augmentation is used, which combines 4 training
images into one in certain ratios. Every network has been
trained using a batch size of 64 for 200 epochs.

For the composite dataset (Aerial KITTI), the FPN de-
coder with ResNet18 as an encoder backbone and the Tiny
YOLOv4@3layers were selected for the reasons that are
further discussed in Section 5. The configuration was ex-
actly the same as mentioned above except for the input size,
for the detector model, which was set to 416 × 416 due to
the size of the prepared KITTI images. The same train and
test images were used to compositely evaluate both models.

5. Experimental Evaluation and Results
To verify the proposed framework, use both static im-

age data as well as video frames collected from a real UAV
flight. The UAV used in the experiments is a DJI MAVIC
2 Enterprise, equipped with a high-definition camera with
Field-of-View of 82.6o as shown in Fig. 7. The data cap-
tured by the aerial camera is streamed to a laptop equipped
with an Nvidia RTX 2060 GPU, where it is processed in
real-time through the pipeline outlined in Section 3. First,

Model mAP@0.5 IoU@0.5 FPS-GPU FPS-CPU
Tiny YOLOV3 0.69 0.64 33 11
YOLOv3 0.79 0.74 11 0.9
Tiny YOLOv4@3layers 0.82 0.76 25 5
YOLOv4 0.85 0.77 10 1

Table 2. Performance of the different vehicle detection models on
the laptop ground station.

Figure 5. Performance of semantic segmentation encoder-decoder
model combinations.

we investigate the sub modules for vehicle detection and
road segmentation and then evaluate the complete frame-
work by extracting traffic information.

5.1. Vehicle Detection Results

To compare with the different models (YOLOv3/4 as
well as Tiny YOLOv3/4), we test their accuracy and per-
formance on the detection datasets with the UAVDT and
custom UAV traffic dataset and the comparison results as
displayed in Table 2. A first observation is that the tiny
YOLO networks can provide competitive processing speed
even on CPU platforms. However, larger YOLO networks
do require a GPU platform to provide competitive results.
In terms of accuracy the V4 models perform slightly better
than V3. Due to having really close accuracy to YOLOV4,
which has the highest mAP and IoU, and being second best
in terms of FPS the tiny-YOLOv4 is selected to be used in
the combined experiments. The resulting performance of
25 FPS on the laptop ground station is enough for real-time
applications while maintaining competitive accuracy.

5.2. Road Segmentation Evaluation

The segmentation-related experiments involved evaluat-
ing various encoder-decoder combinations in an attempt to
evaluate their accuracy and performance. To evaluate this,
the segmentation models were trained on an open-source
dataset from OpenStreetMap (OSM) [34], for road detec-
tion as a binary class problem. The models where evaluated
on the prepared crops of size 512 × 512, extracted from
the full resolution images from the dataset. The results of
the different models are shown in Fig. 5. Distinctively, the
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Results Without Segmentation Segmentation

Accuracy 0.41 0.59
F1-score 0.58 0.74
mAP@0.5 0.44 0.45
mAP@0.3 0.50 0.56

Table 3. Composite evaluation results for the vehicle detection of
Aerial KITTI test images. We consider as ground truth detections
only the vehicles on the road, parked vehicles were excluded for
fair comparison.

ResNet-18 with FPN network provides both the best frame-
rate as well as accuracy. Hence, we utilize this model as
the basis of the integrated framework. Beyond that, we ob-
serve that models with ResNet and MobileNetV2 encoders
and PAN and FPN meta-architectures provide the best re-
sults overall. UNet-based models seem to suffer more as the
incorporation of low-level encoder features does not seem
to work that well for the task of road segmentation.

5.3. Composite Evaluation

Furthermore, the composite dataset was utilized in order
to evaluate the full potential of the combined framework.
The amended Aerial KITTI dataset is used for this purpose.
First, the ground truth labels were modified in order to con-
tain only the on-road vehicles (1650 in total). Using this
method, we can calculate the correct accuracy of the com-
bined method of using the detector and the segmentation of
the road in order to identify only the needed vehicles for
traffic monitoring, which are the ones on the road. The seg-
mentation network was further trained on the Aerial KITTI
dataset for up to 200 epochs using early stopping strategy.
The segmentation architecture achieved 77.7% mIOU and
96.3% mean accuracy.

Following this, two separate evaluations were conducted
utilizing the segmentation and detection networks. For the
first one, the input to the detector were the full images of the
Aerial KITTI test dataset and for the second one, the seg-
mentation mask was first applied to the image before pass-
ing it through the detector. Table 3 depicts the results of this
evaluation on the vehicle detection task. The accuracy, F1
and Mean Average Precision (MAP) scores are higher with
the mask which indicates that the mask is indeed working
properly and the detector is able to identify the road vehicles
and reduce the detection of unwanted vehicles. In addition,
the number of total detections when using the full images
is significantly larger (2× increase on average) which can
negatively impact performance.

5.4. Traffic Monitoring Framework Evaluation

Finally, the integrated framework is evaluated on the
video frame sequences from the experimental UAV setup
capturing traffic in urban areas. First, we observe how the

Figure 6. Impact of number of vehicles on performance of the
whole framework. As the number grows tracking becomes the
bottleneck hence, the need to only look at relevant vehicles.

Figure 7. 1) DJI Mavic is used to capture traffic video data. 2) The
video is streamed through a local network. 3) A NGIX service is
running on laptop to receive video and process it in real time

amount of detected vehicles can affect the performance of
the whole pipeline as described in Section 3.3. As shown
in Fig. 6, the number of vehicles drastically influences the
time required to perform the associations and Kalman fil-
ter updates, and thus reduces the overall frame-rate. This
exemplifies the need for efficient processing methodologies
that only focus on relevant main road vehicles. By incorpo-
rating the road mask as shown in Fig. 8 the resulting number
of detected vehicles can be dramatically reduced. On aver-
age we observe that the application of the road mask can
reduce the number of vehicles from 155 to 70 on the test
video frames in an urban environment, due to having nu-
merous parked vehicles that aren’t required for traffic mon-
itoring, which can then improve the tracking performance
dramatically. By utilizing the road segmentation mask the
average FPS was around 20 and without the mask drops to
approximately 8 FPS. In addition, we also test the proposed
approach on a highway sequence where vehicles are only
present on the road. This further examines if the segmenta-
tion mask hides some important vehicles of the main road,
and hence negatively affects the performance of the detec-
tor. For both cases the accuracy is at 98% which means
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Figure 8. (From left to right) 1) Vehicle Detection Only. 2) Road Extraction and Detection. 3) Initial road segmentation. 4) Corrected
segmentation using detection output.

Figure 9. (Top) Average number of vehicles in road. (Bottom)
Average vehicle speed.

that the segmentation mask does not hinder the vehicle de-
tection. Additionally, when the mask is applied either by
averaging it after a few frames or by applying it only in the
first frame, it does not significantly affect the performance.

Finally, we experimentally verify the proposed frame-
work through a real system shown in Figure 7. The UAV
streams the video feed to a laptop that is connected on the
same local network, which is able to process it in real time.
We can gather the results and extract useful analytics such
as velocity and density as shown in Figure 9. It is worth not-
ing that extracting such data using only the detection part
would significantly skew the results. This is because cars
not affecting the road network would be considered. This is
especially challenging for urban environments such as the
one shown in Fig. 8, where a detector-only approach would
also detect cars in non-road areas.

Following this, the limitations observed from the exper-
imentation is that the road prediction is directly affected by
the altitude and position of the drone along with the shad-
ows and the complexity of the road network. This can be
mitigated by the iterative feedback of the correction mask
that operated surprisingly well and managed to shape the
main road network entirely (Fig. 8). One potential draw-
back is that this method completely relies on the detector.
Therefore, the assumption of having vehicles in the cap-
tured image is essential for the pipeline to function prop-
erly. Secondly, the detector functionality is sometimes hin-
dered by long-period occlusions caused by bridges and tall
buildings, which can be overcome by bringing in more con-
sistency rules in the algorithm and adjusting the positioning
of the drone as in [22].

6. Conclusion
In this work, AirCamRTM is introduced as a deep

learning pipeline for road traffic monitoring from aerial
video. The framework demonstrates how the simultane-
ous extraction of roads and vehicle detection can be in-
tegrated to gather traffic information efficiently. Through
real experimental evaluation, it has been demonstrated that
performance can be improved by 2×, while the road-
segmentation-aware enhancements do not negatively im-
pact the vehicle detection performance. We intent to further
integrate the detection and segmentation networks to avoid
redundant processing and improve the generalization capa-
bilities. Currently, we are also working on expanding the
dataset with data from different times and conditions, for
both segmentation and detection.
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