
TypeNet:
Towards Camera Enabled Touch Typing on Flat Surfaces through

Self-Refinement

Ben Maman
Tel Aviv University

Amit Bermano
Tel Aviv University

Abstract

Text entry for mobile devices nowadays is an equally cru-
cial and time-consuming task, with no practical solution
available for natural typing speeds without extra hardware.
In this paper, we introduce a real-time method that is a sig-
nificant step towards enabling touch typing on arbitrary flat
surfaces (e.g., tables). The method employs only a simple
video camera, placed in front of the user on the flat sur-
face — at an angle practical for mobile usage. To achieve
this, we adopt a classification framework, based on the ob-
servation that, in touch typing, similar hand configurations
imply the same typed character across users. Importantly,
this approach allows the convenience of un-calibrated typ-
ing, where the hand positions, with respect to the camera
and each other, are not dictated.
To improve accuracy, we propose a Language Processing
scheme, which corrects the typed text and is specifically de-
signed for real-time performance and integration with the
vision-based signal. To enable feasible data collection and
training, we propose a self-refinement approach that al-
lows training on unlabeled flat-surface-typing footage; A
network trained on (labeled) keyboard footage labels flat-
surface videos using dynamic time warping, and is trained
on them, in an Expectation Maximization (EM) manner.
Using these techniques, we introduce the TypingHands26
Dataset, comprising videos of 26 different users typing on
a keyboard, and 10 users typing on a flat surface, labeled
at the frame level. We validate our approach and present
a single camera-based system with character-level accu-
racy of 93.5% on average for known users, and 85.7% for
unknown ones, outperforming pose-estimation-based meth-
ods by a large margin, despite performing at natural typing
speeds of up to 80 Words Per Minute. Our method is the
first to rely on a simple camera alone, and runs in interac-
tive speeds, while still maintaining accuracy comparable to
systems employing non-commodity equipment.
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Figure 1. Our camera-based touch typing system. The user types
on a flat surface w/o a keyboard in front of a camera (bottom right),
according to the touch typing standards. For each character, these
standards dictate using a specific finger, inducing a distinct hand
pose and motion (bottom left). Our system accordingly classifies
said hand configurations and motion to predict the typed text.

1. Introduction

Text entry is one of the most commonly used modes of
interaction with computers. As small mobile devices, such
as tablets or phones, become more popular, the need for fast
and accurate text entry mechanisms, to replace the physical
keyboard, grows crucial [24, 10, 4]. Currently, the most
popular mechanism for such devices is a soft keyboard,
displayed on the device’s screen. Due to screen size, this
method is difficult and slow, especially for long texts [6].

Approaches that attempt using the device’s surrounding,
instead of its screen, typically require additional hardware,
such as marked gloves, a projector, or a wearable gyro-
scope, rendering them unfit for ubiquitous usage [13, 12,
11]. Hence, a Computer Vision based method, which em-
ploys nothing but the device’s built-in camera, is naturally
preferable when considering an application that should be
widespread. Current vision-based methods, however, are
also fundamentally lacking, since they either require a depth
sensor [29], placing the camera in non-feasible positions
(e.g., above the hands or on the wrist [19]), or are not per-
formance driven, and hence do not allow typing at natural
speeds (which can reach up to 80 Words Per Minute or more
for a skilled typist). For example, Yi et al. [29] do not ex-

1140



Figure 2. Example frames from a video of free typing on a surface.
Left: the keys ’a’ and ’y’ are active. Right: keys ’o’ and ’r’ are
active. Both frames were labelled automatically using the method
explained in section 3.

ceed 29.2 Words Per Minute, and Murase et al. [22] disre-
gard computational performance all together.

In this paper, we present typeNet, a novel vision-based
method that relies on a single front facing camera, at an
angle practical for mobile devices, allowing accurate typing
on flat surfaces at natural speeds, for typists trained in touch
typing. To achieve such a task, the most natural approach
would be to estimate and track fingertip positions, in an at-
tempt to form a virtual keyboard. This approach, however,
is challenging in terms of computational performance, and
is prohibitive to the user since the hands must be placed ac-
curately on an imaginary keyboard surface without visual
or tactile feedback. In touch typing, on the other hand, ev-
ery key is assigned to a specific finger (see Figure 1, bottom
left). This basic principle, that every typist is trained for, is
at the core of our method, since this induces similar hand
configuration for the same typed character across different
users, regardless of gender, ethnicity, or age. For example,
pressing the key ’e’ is always performed by moving the left
middle finger forward. Hence, typists can easily recreate
the typical motion they would have used with a keyboard
on any flat surface, using muscle memory. Indeed, all our
users required no training or explanation to transition from
keyboard to surface.

Equipped with this key observation, we propose using a
classification framework for the task at hand, applied on raw
video frames, rather than relying on estimating finger tip
locations or on tracking. Such an approach allows for faster
response times, and does not suffer from drift or recovery
effects following lost tracking. This approach also naturally
allows for un-calibrated typing, i.e. for free positioning of
the hands, not restricting the typist to a carefully considered
spatial location and angle, nor even requiring both hands to
be in alignment.

Developing such a system is challenging mainly due to
two reasons. The first is training data. Typing a key in
isolation is typically different, in terms of hand pose and
motion, compared to typing the same key in the midst of
a long text entry session. This means that in order to col-
lect usable data, typists should be filmed while typing non-
trivial text on a flat surface. This type of data, however,
is difficult to label, since it is unclear exactly what was

the typist’s intent at every frame. To overcome this chal-
lenge, we propose a self-refinement process, where data is
first collected on a keyboard (where ground truth labeling
is easily attainable, see Figure 3 phase I), and later on flat-
surface (Figure 3, phase III). A model that is trained on the
former is then used to generate the labeling for the latter
(see Figure 3, phase II). This labeling is then used to re-
train the network, in a manner typical to Expectation Max-
imization (EM) approaches, dramatically improving its ac-
curacy on flat-surface footage (see Section 5), even though
no frame-level supervision is provided for this domain. Us-
ing this scheme, we were able to generate a high-quality
labeled dataset consisting of 24:50 hours of keyboard typ-
ing videos from 26 different users, and 5:50 hours of flat-
surface typing footage from 10 different users. These, along
with the code of our method, can be found at (https:
//github.com/benadar293/typeNet).

Another great challenge in realizing such a system is the
need for real-time performance. Every aspect of our de-
sign is also aware of this constraint, from the general ap-
proach of classification, to the network’s architecture. Most
notably, we have developed a light-weight language layer,
which resolves uncertainties the vision produces through
language dependent priors, that is specifically designed for
performance and to integrate well with the vision-based pre-
dictions (see Section 3.3). Additionally, we boost perfor-
mance by avoiding a seemingly necessary step: to reduce
the amount of required data, we separate the hands from
their background during training. However, we avoid the
burden of segmentation during inference time using a train-
ing scheme based on features removal and their gradual in-
troduction [1]. Using this scheme, we guide the network to
focus on the hands themselves instead the background.

We demonstrate our approach through a series of exper-
iments, and witness a character-level accuracy of 93.5% on
average for users the system has already seen, and 85.7%
accuracy on average for previously unseen users, at natu-
ral typing speeds. Compared to other text entry works (Ta-
ble 2), it is clear our method is the first to rely on a simple
camera alone, while maintaining accuracy that is compara-
ble to equipment-heavy methods, even without considering
interactivity. We perform further ablation studies to mea-
sure the effectiveness of the various steps of the method, in-
cluding a comparison to classifying frames according to es-
timated hand poses, rather than raw frames (see Section 5.2
and Supplementary). This validates the design of our real-
time system to recognize arbitrary text with high accuracy
from a single, conveniently located, camera. We strongly
believe that this line of work, when further investigated and
with enough training data, could revolutionize the way we
interact with mobile devices in the near future.
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2. Related work
Virtual keyboards have been sought after through many

different directions, employing various sensing devices to
replace the physical keyboard - an RGBD camera (such as
the Kinect), a stereo configuration, or even a single RGB
camera. Other devices are also proposed, such as motion
sensors, either in a fixed position (such as Leap Motion), or
placed on the typer’s arms.

Virtual keyboard methods can be divided into two cate-
gories: (i) Methods that allow any virtual key to be pressed
by any finger, and (ii) methods that require each key to only
be pressed by a certain finger, according to the standard
touch typing guidelines.

Non-standard typing. In the first group, notable ear-
lier works are Samsung’s SCURRY [13], which uses gy-
roscopes and motion sensors worn on the fingers, Sense-
board [11], which uses bands of rubber and plastic worn on
the palm, Key-glove [25], which uses a glove that detects
finger motion, and VKB [12], which projects a keyboard on
a surface using a laser diode, and detects keystrokes using
an infra-red camera. Du et al. [7] use an LCD projector, that
projects a keyboard image onto the typing surface, and a 3D
range camera for keystroke detection. The main drawback
of the latter works is the need for cumbersome equipment
that is impractical for mobile devices. Also, methods in this
category set absolute key locations, and therefore provide
no flexibility in the placement of the hands and in key local-
ization. Our method requires no equipment other than the
camera, and allows flexibility in hand location and angle.

Touch typing. In the second category, Mujibiya et al. [19]
use a depth camera located above the typer’s hands. They
detect key strokes by matching hand postures to a database
of 3D images, and by detection of finger tips touching the
surface. The drawbacks of this method are the camera an-
gle, and the need for a depth camera, which are impractical
for mobile applications. Similar work was done by Murase
et al. [21, 22], who use a single mobile phone camera. They
estimate depth (to decide which row is pressed) by various
hand features, e.g. ratio between hand height and width.
In the follow-up work, they improve depth estimation using
Real Adaboost on the hands’ HOG features. The setup in
this work is the most similar to ours, however the system is
tested on a single user typing the same sentence 10 times,
while the typing speed is not even reported. These acute
differences make this and our systems incomparable.

Yi et al. [29] use a Leap Motion sensor to detect taps.
Labeling of images was done manually. A language model
provides the user with suggestions for words that are consis-
tent with the sequence of tapping fingers. The main draw-
back in this work is the low typing speed, and relying on a

Figure 3. Pipeline of our method. We first train typeNet on fully la-
belled keyboard-based frames (Phase I). We then use the network
to label surface-based footage with pre-defined texts, by optimiz-
ing alignment of predicted probabilities with the pre-defined text,
using dynamic time warping (Phase II, Section 3.2) — a process
we call self-refinement. Lastly, we train the network again on both
the surface-based and keyboard-based sequences (Phase III). Dur-
ing inference, we use our custom language layer (Section 3.3), to
produce a more likely and accurate result.
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Figure 4. typeNet architecture. For every frame of an input video,
a short temporal context sequence is extracted and fed into a light-
weight convolutional network (Resnet18, He et al. [9]). The latent
features are encoded Using a GRU, and are finally converted to
keypress probabilities through a fully connected layer.

Leap Motion camera rather than a simple camera. Richard-
son et al. [23] use a hand tracking system to detect typing.
However, they require marked gloves to allow for sufficient
tracking accuracy, which makes the system impractical. In
contrast, our method provides natural typing speed with no
additional equipment besides the single RGB camera — a
setting most suitable for mobile usage.

3. Our method
The core idea behind our method is the classification of

short sequences, acquired by a single camera (e.g., mobile
or webcam). Our problem setup is such that the sequences
contain the two palms of a user while typing, from the front

1142



(see Figure 1, bottom right). Note that while other an-
gles are better in terms of accuracy (e.g., from above the
palms), they are less practical for mobile use, where having
the screen visible during typing is critical. Additionally, we
assume touch typing standards (see Figure 1, bottom left).

The process from a bird’s eye view is depicted in Fig-
ure 3. Our training process is divided into three phases,
which we describe below. During inference, we estimate
which of the keys are active (i.e., currently pressed), for
each frame in a multi-label manner. Usually, no more than a
single key is pressed during a frame, but in some cases, such
as an overlap between rapid key presses, or while press-
ing the shift modifier, we could see up to three keys being
pressed at the same frame. Inference is run sequentially
over the video frames, where for each frame we predict
the probabilities for its active keys. Using these probabili-
ties, we search for a sequence of predictions that maximizes
these estimations, along with a language model score, using
Beam Search, as explained in section 3.3. For this purpose,
we have collected training data of two kinds:

• Keyboard typing: We collected videos of typists on
a keyboard, from the aforementioned angle. The key-
board is used to mark the timing of key events, thus
allowing automatic labeling of all frames in the video.

• Surface typing: In this case, the typists were recorded
while typing on an arbitrary flat surface, in a similar
angle. Some used the desk, while others preferred
some padding, like notebooks. This data is used to
fine-tune the network during the third phase for free
surface typing.

Note that the network trained on keyboard data can read-
ily be used on another surface. However, as we demon-
strate, the style of free typing on a surface differs from that
of a keyboard, which impacts accuracy, which is why train-
ing on surface data is necessary.

3.1. Phase I - initial training

During the first phase, we directly train typeNet to clas-
sify per-frame key presses on a keyboard. To create a simi-
lar environment as possible to the next phases, we have use
a split and flat keyboard (see Figure 3, Keyboard Capture).

The architecture of typeNet can be seen in Figure 4.
As can be seen, we employ temporal context, which intu-
itively helps disambiguate between keys of the same fin-
ger by detecting the finger movement rather then just the
hand configuration. We incorporate temporal context in two
ways. First, during feature extraction, we stack neighboring
frames on the one in question as additional channels (see
Figure 4, left). Secondly, we apply an RNN over the se-
quence of extracted features. For computational efficiency,
we use the slim Resnet18 backbone for feature extraction,

and a 2-layer GRU followed by a fully connected layer for
classification (see Supplementary for details). In addition,
in order to reduce the amount of training data required, we
encourage the network to ignore the image backgrounds.

Ignoring the background serves two purposes. The first
is to prevent the network from considering spurious de-
tails in the background, thus requiring less training data.
The second is better generalization. This aids the following
phases, since teaching the network to ignore the background
also teaches it to ignore the keyboard being used during typ-
ing. Our solution starts with an off-the-shelf hand segmen-
tation solution, which removes the background (including
the keyboard) before training, (see Figure 3, BG Handling,
top left). Since segmentation networks are computationally
intensive, we seek to avoid running them during inference.
To do this, we employ traditional augmentations, i.e. we
move the hand positions in the image, and replace the back-
ground with a random patch from the COCO dataset. In
addition, we gradually increase the background’s intensity
from α = 0, to α = 1, thus teaching the network to im-
plicitly ignore the background (Figure 3, BG Handling), as
proposed by Arar et al. [1] (See Supplementary for details).

3.2. Phase II - Self-Refinement

One of the central challenges of our work lies with the
difference between typing styles on surfaces and on a key-
board. The typical user does not accurately imitate the hand
movements performed on a keyboard when typing on a sur-
face, due to the lack of haptic feedback that guides the fin-
gers to specific positions [8]. Therefore, the system must
be trained on free typing performed on surfaces as well.
Labeling such data on a frame-by-frame level is challeng-
ing since the accurate timing of a key’s press and release
is required. Hence we introduce a self-refinement proce-
dure: After training the network on keyboard-based data,
we record users typing known text on a flat surface. In or-
der to obtain per-frame labeling for such videos, we find the
optimal alignment between the video and the text using dy-
namic time warping. This paradigm of weakly supervised
learning, where weakly supervised data is assigned maxi-
mum likelihood labels for training, is known as Expectation
Maximization (EM) [5].

Dynamic time warping (DTW) is a dynamic program-
ming algorithm, designed for finding the optimal alignment
between two sequences which may vary in speed [20]. It
is common in areas such as speech recognition, where the
alignment between an audio sequence and a text sequence is
required. It operates in quadratic time and space - O(MN),
where M,N are the lengths of the two sequences, and re-
quires a local distance function, between tokens of the two
sequences.
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We use our trained network as a local distance measure.
We infer the active key probabilities vector for each frame,
and minimize the alignment between the video and the pre-
defined text, padded between characters with the none class,
using DTW. As a distance function, we use the Euclidean
L2 distance between the network’s predicted probabilities
vector, and the one-hot representation of the character.

Typically, a key press lasts 3-5 frames at 30FPS. Frames
that are mapped to more than one character (singular
points), are typically due to type errors of the user (e.g.,
user missed a character from the target text), and are not
assigned a label. We perform further post-processing to ex-
tend this labeling to be multi-label, see Supplementary.

The result is a frame-by-frame labeling of typing per-
formed on surfaces, with some false negative detection (i.e.,
a keypress was performed but not detected), but very few
false positives. The missing frames usually stem from a typ-
ing error made by the user (which we disregard during the
labeling process), or by the system marking a single press
incompletely (e.g., a key is active for 4 frames but is labeled
for only 1 or 2 of them). To avoid these mislabelings, we
do not label frames with no predicted active key. To detect
the none class (where no key is active), we rely on the key-
board sessions. This configuration is preferable since it does
not inject noisy labeling into the training process, while not
hurting detection since specifically for the none case, it does
not matter whether the underlying typing mechanism is a
keyboard or a surface - the user is not interacting with it
anyway.

We note that this self-refinement process differs from
Pseudo-labelling [27, 14, 28]. The latter relies on the exist-
ing network’s predictions alone, while self-refinement uses
a stronger prior of the pre-defined text for labeling, which
allows labeling with higher accuracy (see Table 4 for com-
parison).

After obtaining the per-frame labeling, we can perform
the final training phase of the network, which employs the
data acquired from both the keyboard and flat surface (Fig-
ure 3, Surface Training). Example frames, as seen through
the camera, are depicted in Figure 2.

3.3. Language model

For many text entry systems (e.g., [23, 29]), a language
model over the predicted text is employed to improve ac-
curacy. A language model, by definition, receives a string,
of any length, and returns its likelihood. In our method, we
also make use of such a model, but in a way that consid-
ers the original probabilities predicted by the vision model
rather than just the predicted text, making it stronger than
standard automatic correction. We combine the vision and
language scores using Beam Search, as explained below.

Since we add a single character at a time, we use a
character-level language model, rather than a word-level
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Figure 5. Beam Search illustration: Given N candidate sequences
(3 in this example), and candidate labels of a new frame (left), each
of them is concatenated to each of the candidate sequences, yield-
ing 6 new ones (middle). The N sequences with highest scores are
selected, and the rest are pruned (right).

one. We normalize likelihood by string length in order
to avoid the natural bias (undesired in our case) towards
shorter strings: the probability of a string is considered to
be the geometric mean of the probabilities of each of its
characters given the ones preceding it.

Real-time performance. The current SOTA in character
level language models is achieved by Transformers. In-
deed, using a Transformer (such as shown by Sukhbaatar
et al. [26]) results in very accurate text predictions. How-
ever, it is not feasible in real-time. To perform the Beam
Search in real-time, we use an LSTM based character-level
language model [18, 17]. See Supplementary for further
details on optimization of the Beam Search performance.

Beam Search is an optimized search method designed to
enable retroactive error correction on sequential domains
(which a greedy search would fail to provide) [16]. During
inference, each frame of the video is assigned a multi-label
probability vector by the vision model, rectified to account
for same finger keys correlation. From all possible predic-
tion sequences, we search for those that maximize the sum
of the vision model probabilities, and the language model
scores assigned to the corresponding string. To reduce com-
plexity, during inference we select one key per frame at
most, even though this is a multi-label problem. We have
seen that this does not affect text accuracy. We search for
the optimal sequences as in standard Beam Search (see il-
lustration in Figure 5): for each frame, we hold the N best
candidate sequences so far, where N is a hyper parameter
(beam width), empirically chosen to be 10 for all our exper-
iments (N = 3 in the figure). Denote by C the candidate
classes in the current frame (including the none class). Each
of the classes is concatenated to each of the N current se-
quences, yielding N · |C| new candidate sequences. From

1144



these, only the best N are chosen, according to the target
score. In order to maintain effectiveness on long sequences,
the average scores are computed over a fixed-length suf-
fix of each sequence. Keeping the N best sequences after
each frame, rather than only the first, allows to correct errors
retroactively over a short temporal window.

The adaptation of standard Beam Search to our setting
includes the following (see Supplementary for full details):
(i) A low threshold of vision score, for candidate classes
(ii) From all candidate sequences yielding the same string,
keeping only the highest scoring sequence (iii) Maximizing
the sum of vision and language scores.

4. Evaluation
4.1. Dataset

We introduce the TypingHands26 dataset. Our dataset
comprises videos of standard touch typing of 26 users. Total
typing time for each user varies between 30 minutes and
90 minutes on the keyboard, summing up to 24:50 hours.
The dataset also contains flat-surface typing data (where the
users receive no live visual feedback) of 10 of the users:
20-50 minutes for 8 users, and 7-8 minutes for 2 additional
ones. Detailed information on the dataset is provided in the
Supplementary material. Overall, there are approximately
3M labeled frames, of which ∼39% contain an active key.
All keyboard sessions are fully labeled at the frame level.
From the surface data, ∼41% of the frames are labeled. The
unlabeled frames mostly have no active key, as explained in
Section 3.2.

The texts are mainly excerpts from classic English litera-
ture, to cover a wide vocabulary and combinations of letters.
Texts also include New York Times articles and scientific ar-
ticles, and some word lists containing less frequent letters,
such as ’j’, ’q’, ’x’ and ’z’.

Each of the videos is segmented frame by frame to ex-
tract the palms and remove the background, as mentioned in
section 3. After segmentation, we extract bounding boxes
around each of the hands. During training, we place the
hands in random image locations, and on random back-
grounds from the COCO dataset (in varying intensity, as
proposed by Arar et al. [1]), on the fly.

4.2. Metrics

Although our model’s performance can be evaluated us-
ing standard classification metrics on frames: precision, re-
call, etc., we are more concerned with the text accuracy.
We use the normalized Levenshtein distance [15], which is
a standard metric for evaluating text entry systems [3]. It
measures the minimum amount of edits required to change a
given string into a target string, relative to the target string’s
length. We apply it both on the character-level and word-
level over the produced text. The target length (used for

normalization) is the number of target characters, or words,
for the character- and word-level metrics, respectively. We
define the text accuracy as:

Acc(pred, target) = 100 · (1− dN (pred, target)) (1)

where dN is the normalized metric, on either character or
word level. Thus we can speak of text accuracy percentage.

5. Experiments
10 of the 26 users in the dataset have recorded surface

data, therefore we focus our analysis on them, leaving one
surface session for each user for testing. The lengths of the
test sessions are between 2:30-5:00 minutes, except for the
users Sh. and Jo. (see Supplementary material for further
information about our dataset and in particular time and text
length of the test sessions). In total, the test sessions sum up
to ∼31 minutes and ∼13K entered characters.

Training details. We train the network with a batch size
of 24 and sequence length of 48 frames, using a sticky hid-
den state. We use an Adam optimizer with learning rate
10−4 and weight decay 10−6 for all our experiments. Ad-
ditionally, we reduce the learning rate by a factor of 0.5
upon 5 epochs with no improvement in the training loss.
We perform random temporal subsampling during training
for robustness to variance in typing speeds.

As already mentioned, for the surface data we assign
labels only to frames with at least one active key. How-
ever, the RNN requires full video sequences. Therefore,
during training we feed it with the full sequence, but back-
propagate the loss only for frames with assigned labeling.

We note that in all surface sessions recorded using this
prototype, the users received no visual feedback — an un-
doubtedly disadvantageous scenario. We leave investigating
the effect of live visual feedback on users’ surface accuracy
to future work.

The results are shown in Table 1. We report character
level, word level, and frame level accuracy, with 4 different
language-based correction policies. We also report frame-
level precision, recall, and F1 score on the test sessions’
labeled frames. As can be seen, the system handles various
typing speeds in real-time (30 FPS) at a promising accuracy.
Mean character level accuracy with our real-time language
layer is 93.5%. We note that the average character-level ac-
curacy for proficient touch typists on a physical QWERTY
keyboard is 98.2% [2], which is our upper bound.

In addition, we tested our system’s performance on a new
user - for each user, we trained a network on all other ones.
Validation and early stopping were done on surface sessions
of the seen users. Results can be seen in Table 3. As can be
expected, the accuracy is lower for users that the network
has never seen, however this does demonstrate encouraging

1145



Figure 6. Example of our system’s output text in test time, after
applying beam search with an LSTM language model, for the user
Ni. More examples can be seen in the Supplementary material,
and the video.

generalization capabilities, suggesting that given a more di-
verse dataset, the system would deal well with unseen users.

5.1. Ablation studies

In order to examine the effect of our training scheme
and self-refinement, we followed five different training
schemes, reported in Table 4: training only on keyboard
data (row 1), training first on keyboard data, and fine-tuning
on surface data labeled using self-refinement (row 2), train-
ing on all data from scratch (row 3), and finally our scheme
- training first on keyboard data, and fine-tuning on surface
data (labeled using self-refinement) combined with key-
board data (row 4). In addition, we performed the sec-
ond training phase using Pseudo-labels [14], rather than la-
bels obtained by self-refinement (row 5). All five schemes
were run for the same amount of time, where the used point
was selected according to the character-level Levensthein
distance, measured on validation surface sessions different
than the test surface sessions.

To evaluate the effect of the language layer on the test ac-
curacy, we tested our system with no language model, with
an LSTM-based one, and with a Transformer based one (see
Table 1, columns 2-9). Both models increase the accuracy
significantly, on both character- and the word-level. An ex-
cerpt from a test output text can be seen in Figure 6. The
full test outputs can be found in the Supplementary. We also
applied Google’s auto-correct on the output of the LSTM-
based language layer, which gave further improvement.

Details on our experiments, as well as further experi-
ments and ablation studies, are provided in the Supplemen-
tary material - robustness to changes in angle, changes in
typing speed, the effect of temporal context, and more.

5.2. Comparisons

Alternative approach - hand pose estimation. We
compare our method to classification based on estimated
hand pose from the Google Media Pipe Hand Hand Land-
mark Model [31] and show superior performance of 93.5%

compared to 54.8%, as can be seen in the Supplementary.
Existing virtual keyboards. We summarise existing

virtual keyboard methods in Table 2. As can be seen, ours
is the only method using only a simple camera, not requir-
ing any additional equipment or advanced sensing devices.
Beside having a more simple and applicable setting, our
method is the only one allowing natural typing speeds, with
the exception of Richardson et al. (row 7), who use marked
gloves and an HMD, and a camera located above the hands.

The only existing work operating with a simple cam-
era alone, to our knowledge, is that of Murase et al. [22],
who also use the challenging yet favorable camera angle as
we do, and report almost identical accuracy. However, they
disregard typing speed altogether, and test their system on
a single user, typing a single sentence of 69 characters re-
peated 10 times. In contrast, our test set comprises 10 users,
with overall time of ∼ 31 minutes, and ∼ 13K entered char-
acters. Due to this very limited usage scenario, we did not
include this work in the Table.

6. Discussion
In this paper, we have presented typeNet, the first sys-

tem, as far as we know, that lends itself to rapid text en-
try for mobile devices. The system employs nothing but a
single camera, runs in interactive rates, and operates from
an angle that is challenging, but convenient for mobile use.
We note that for reaching a product level, higher accuracy
is required — we believe the accuracy should be at around
97% (i.e. 99% excluding human typing errors) for the sys-
tem to be productizable. Regardless, this paper has demon-
strated that the presented approach, of leveraging touch typ-
ing standards to drastically improve computational perfor-
mance and accuracy, holds great merit, even though it does
not address untrained typists. Relying on relatively scarce
data of only 26 users, the system still presents high levels
of accuracy for users it is already familiar with, at natural
typing speeds of up to 80 Words Per Minute, and shows
promising preliminary results for unknown users. We note
that an extensive user study is required in order to provide a
user-friendly system that can be deployed on end-devices.

Except for collecting significantly more data and incor-
porating more elaborate feedback for the user (e.g., through
a suggestions mechanism), we believe the most merit for the
system can stem from its better generalization to new users.
This includes creating larger datasets, but also implies an
interesting direction for future work, that takes user specific
typing styles into account.

Another direction for future work lies with the language
layer. Strengthening the language layer will most likely im-
prove performance. This includes examining the layer’s ar-
chitecture, the data used for training, and perhaps applying
another language pass on the output text, regardless of the
vision signal.
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User Raw C W LSTM C W AC C W Transf. C W P R F1 W/M
Gi. 90.6 70.2 93.7 80.8 93.7 84.6 93.5 82.7 90.1 82.3 86.1 ∼ 85
Am. 89.6 56.9 95.4 85.0 95.0 88.9 93.7 87.6 93.7 85.7 89.5 ∼ 74
Ni. 92.3 68.8 93.4 76.1 95.1 84.2 94.9 81.8 82.6 80.7 81.7 ∼ 68
Joh. 94.8 73.0 96.5 83.0 96.7 87.3 96.1 84.6 89.0 87.4 88.2 ∼ 62
Sh. 82.3 39.2 88.3 67.6 84.1 73.0 86.8 66.2 87.2 80.0 83.4 ∼ 55
Be. 96.5 84.9 97.9 90.2 98.2 93.3 98.4 93.7 96.8 87.1 91.7 ∼ 46
Ey. 82.1 28.6 81.5 26.8 84.1 48.2 83.3 35.7 92.5 87.7 90.0 ∼ 45
Jor. 92.2 78.2 94.0 85.1 95.5 88.5 94.0 85.1 93.9 94.3 94.1 ∼ 42
Ro. 89.0 71.8 89.0 65.9 90.9 75.3 89.0 72.9 92.5 91.4 92.0 ∼ 36
Jo. 82.6 48.9 85.1 59.6 85.5 57.4 83.0 51.1 89.3 78.6 83.6 ∼ 33

Mean 91.4 68.7 93.5 78.7 94.1 84.0 93.6 81.5 91.0 85.7 88.3 -

Table 1. Reported accuracy for test surface sessions. From left: Test character- (C) and word- (W) level text accuracy, for no language
layer (raw, columns 2-3), after Beam Search using a real-time LSTM language model (columns 4-5), after applying Google’s auto-correct
on the latter (AC, columns 6-7), after Beam Search using a Transformer (columns 8-9), and raw frame level metrics - precision, recall and
F1 score, (rows 10-12). Last column is the user’s typing speed, measured by words per minute.

Method Free Equipment Angle Feedback Acc. C (%) Max W/M
Canesta [24] No Sensor, projector + light, Front Yes 96.3 61
Du et al. [7] No 3d range camera, projector Above Yes 88.6 30
CamK [30] No Simple camera + paper Front Yes 93 30
Scurry [13] Yes Wearble gyroscope None Yes 86.5 -
ATK [29] Yes Leap Motion Beneath Yes 86 / 99.7 (UER) 29.2

Richardson et al. [23] Yes HMD + Marked gloves Above Yes 97.35 (UER) 73
Ours Yes Simple camera Front No 93.5 80+

Table 2. Existing virtual keyboards. For each method we report whether it relies on fixed virtual key locations or allows free typing (column
2), the required equipment (column 3), the camera angle relative to the hands (column 4), whether or not the user receives visual feedback
(column 5), the measured average character-level text accuracy (column 6) and maximum typing speed in words/minute (column 7). Kim
et al. (Scurry, row 4) do not report typing speed. UER - uncorrected error, i.e., remaining errors after correction by user.

User C W LSTM C W AC C W
Be. 87.9 55.1 91.7 67.7 93.5 78.2
Ni. 76.2 28.7 81.2 47.8 82.4 59.5
Gi. 82.0 42.8 85.6 56.0 86.5 68.4
Joh. 79.0 31.7 85.8 60.2 86.0 66.4
Jor. 79.9 36.8 85.2 62.1 85.8 69.0
Am. 83.1 46.4 83.7 45.8 86.4 64.1
Me. 81.6 41.3 85.7 56.8 86.9 68.1

Table 3. Test accuracy for users unseen by the system.

More future work lies in investigating the application
of our proposed self-refinement framework to other fields,
where a sequential detector requires adaptation to a new do-
main, such as in speech recognition (ASR), automatic lip
reading, and automatic music transcription (AMT).

Finally, we believe this system highlights the common
problems with current text entry methods for mobile de-
vices, and suggests a promising direction to its solution,
using modern Machine Learning techniques. We hope this
method will lead to significant impact on the way we inter-
act with mobile devices, by allowing natural typing speeds

Training Raw C W LSTM C W
Only KB 82.0 40.4 82.1 50.3

KB, Surface 84.8 45.8 81.0 39.2
KB+Surface 88.5 58.1 91.6 72.8

KB,KB+Surface 91.4 68.7 93.5 78.7
Pseudo-Labels 86.2 49.8 91.2 72.0

Table 4. Effect of Self-Refinement on accuracy: training only on
keyboard data (row 1), training on keyboard data and fine-tuning
on surface data (row 2), training from scratch on both keyboard
and surface data (row 3), training on keyboard data, then fine-
tuning on both keyboard and surface data with self-refinement
(row 4), and training on keyboard data, then fine-tuning on both
keyboard and surface data with Pseudo-labels (row 5).

even in a mobile scenario.
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