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Abstract

Recent advances in generative adversarial networks
(GANs) have shown remarkable progress in generating
high-quality images. However, this gain in performance
depends on the availability of a large amount of train-
ing data. In limited data regimes, training typically di-
verges, and therefore the generated samples are of low
quality and lack diversity. Previous works have addressed
training in low data setting by leveraging transfer learn-
ing and data augmentation techniques. We propose a novel
transfer learning method for GANs in the limited data do-
main by leveraging informative data prior derived from self-
supervised/supervised pre-trained networks trained on a di-
verse source domain. We perform experiments on several
standard vision datasets using various GAN architectures
(BigGAN, SNGAN, StyleGAN2) to demonstrate that the pro-
posed method effectively transfers knowledge to domains
with few target images, outperforming existing state-of-the-
art techniques in terms of image quality and diversity. We
also show the utility of data instance prior in large-scale
unconditional image generation.

1. Introduction

Generative Adversarial Networks (GANs) are at the
forefront of modern high-quality image synthesis in recent
years [4, 24, 23]. GANs have also demonstrated excellent
performance on many related computer vision tasks such as
image manipulation [70, 17], image editing [41, 48, 18], and
compression [51]. Despite the success in large-scale image
synthesis, GAN training suffers from a several drawbacks
that arise in practice, such as training instability and mode
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collapse [11, 2]. This has prompted research in several non-
adversarial generative models [16, 3, 28, 25]. These tech-
niques are implicitly designed to overcome the mode col-
lapse problem, however, the quality of generated samples is
still not on par with GANs.

Current state-of-the-art deep generative models require a
large volume of data and computation resources. The col-
lection of large datasets of images suitable for training -
especially labeled data in case of conditional GANs - can
also be a daunting task due to issues such as copyright,
image quality. To curb these limitations, researchers have
recently proposed techniques inspired by transfer learning
[37, 57, 36] and data augmentation [21, 66, 63]. Advance-
ments in data and computation efficiency for image synthe-
sis can enable its applications in data-deficient fields such
as medicine [59] where labeled data procurement can be
difficult.

Transfer learning is a promising area of research [39,
40] that leverages prior information acquired from large
datasets to help in training models on a target dataset un-
der limited data and resource constraints. There has been
extensive exploration of transfer learning in classification
problems that have shown excellent performance on vari-
ous downstream data-deficient domains. Similar extensions
of reusing pre-trained networks for transfer learning (i.e.
fine-tuning a subset of pre-trained network weights from a
data-rich domain) have also been recently employed for im-
age synthesis in GANs [57, 37, 36, 56, 65] in the limited
data regime. However, these approaches are still prone to
overfitting on the sparse target data, and hence suffer from
degraded image quality and diversity.

In this work, we propose a simple yet effective way of
transferring prior knowledge in unsupervised image gener-
ation given a small sample size (∼ 100-2000) of the target
data distribution. Our approach is motivated by the formu-
lation of the IMLE technique [28] that seeks to obtain mode
coverage of target data distribution by learning a mapping
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between latent and target distributions using a maximum
likelihood criterion. We instead propose the use of data
priors in GANs to match the representation of the gener-
ated samples to real modes of data. In particular, we show
that using an informative data instance prior in limited and
large-scale unsupervised image generation substantially im-
proves the performance of image synthesis. We show that
these data priors can be derived from commonly used com-
puter vision pre-trained networks [49, 64, 37, 16] or self-
supervised data representations [5] (without any violation of
the target setting’s requirements, i.e. ensuring that the pre-
trained network has not been trained on few-shot classes
in the few-shot learning setting, for instance). In case of
sparse training data, our approach of using data instance pri-
ors leverages a model pre-trained on a rich source domain to
learn the target distribution. Different from previous works
[37, 56, 57] which rely on fine-tuning models trained on a
data-rich domain, we propose to leverage the feature rep-
resentations of the source model as data instance priors, to
distill knowledge [44, 15] into the target generative problem
setting.

We note that our technique of using instance level priors
for transfer learning becomes fully unsupervised in case the
data priors are extracted from self-supervised pre-trained
networks. Furthermore, in addition to image generation in
low data domain, we also achieve state-of-the-art Fréchet
inception distance (FID) score [14] on large-scale unsuper-
vised image generation.

We summarize our main contributions as follows:
• We propose Data InStance Prior (DISP), a novel trans-

fer learning technique for GAN image synthesis in
low-data regime. We show that employing DISP in
conjunction with existing few-shot image generation
methods outperforms state-of-the-art results. We show
with as little as 100 images our approach DISP results
in generation of diverse and high quality images (see
Figure 3).

• We demonstrate the utility of our approach in large-
scale unsupervised GANs [34, 4]. It achieves the new
state-of-the-art in terms of image quality [14] and di-
versity [46, 33].

We call our method data instance prior (and not just data
prior), since it uses representations of instances as a prior,
and not a data distribution itself.

2. Related Work
Deep Generative Models In recent years, there has been
a surge in the research of deep generative models. Some
of the popular approaches include variational auto-encoders
(VAEs) [43, 25], auto-regressive (AR) models [54, 53] and
GANs [12]. VAE models learn by maximizing the vari-
ational lower bound of training data likelihood. Auto-
regressive approaches model the data distribution as a prod-

uct of the conditional probabilities to sequentially generate
data. GANs comprise of two networks, a generator and a
discriminator that train in a min-max optimization. Specif-
ically, the generator aims to generate samples to fool the
discriminator, while the discriminator learns to distinguish
these generated samples from the real samples. Several re-
search efforts in GANs have focused on improving the per-
formance [20, 8, 42, 24, 23, 4, 63] and training stability
[47, 13, 1, 34, 31, 6]. Recently, the areas of latent space
manipulation for semantic editing [48, 18, 69, 41] and few-
shot image generation [56, 36, 37] have gained traction in an
effort to mitigate the practical challenges while deploying
GANs. Several other non-adversarial training approaches
such as [16, 3, 28, 62] have also been explored for gener-
ative modeling, which leverage supervised learning along
with perceptual loss [64] for training such models.

Transfer Learning in GANs While there has been ex-
tensive research in the area of transfer learning for clas-
sification models [60, 39, 52, 40, 9], relatively fewer ef-
forts have explored this on the task of data generation
[57, 56, 37, 65, 36]. [57] proposed to fine-tune a pre-trained
GAN model (often having millions of parameters) from a
data-rich source to adapt to the target domain with lim-
ited samples. This approach, however, often suffers from
overfitting as the final model parameters are updated using
only few samples of the target domain. To counter overfit-
ting, the work of [37] proposes to update only the batch
normalization parameters of the pre-trained GAN model.
In this approach, however, the generator is not adversari-
ally trained and uses supervised L1 pixel distance loss and
perceptual loss [19, 64] which often leads to generation of
blurry images in the target domain. Based on the assump-
tion that source and target domain support sets are similar,
[56] recently proposed to learn an additional mapping net-
work that transforms the latent code suitable for generating
images of target domain while keeping the other parame-
ters frozen. We show that our method DISP outperforms
the leading baselines in few-shot image generation includ-
ing [37, 56, 66].

A related line of recent research aims to improve large-
scale unsupervised image generation in GANs by employ-
ing self-supervision - in particular, an auxiliary task of ro-
tation prediction [6] or using one-hot labels obtained by
clustering in the discriminator’s [29] or ImageNet classi-
fier feature space [45]. In contrast, our method utilizes in-
stance level priors derived from the feature activations of
self-supervised/supervised pre-trained networks to improve
unconditional few-shot and large-scale image generation,
leading to simpler formulation and better performance as
shown in our experiments in Section 5.3 and Supplemen-
tary. Recently, some methods [21, 66, 63, 67] have lever-
aged data augmentation to effectively increase the number
of samples and prevent overfitting in GAN training. How-
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Figure 1: Discriminator overfitting in limited data. left: when trained on 10% data of CIFAR-100 FID of baseline model on training set increases very
early in training(at around 15k iterations) unlike the FID curve of DISP. middle: Discriminator score on training and validation images remain similar to
each other and consistently higher than score of generated images for DISP model. right: Discriminator score on training and validation images diverges
and the training collapses for the baseline model.

ever, data augmentation techniques often times alter the true
data distribution and there is a leakage of these augmen-
tations to the generated image, as shown in [67, 66]. To
overcome this, [66] recently proposed to use differential
augmentation and [21] leveraged an adaptive discrimina-
tor augmentation mechanism. We instead focus on lever-
aging informative instance level priors and also show how
our method can be used in conjunction with augmentation
techniques [66] to further improve the performance.

3. Preliminaries

We briefly describe Conditional Generative Net-
works(cGANs) before discussing our methodology. cGANs
consists of a generator network G which is trained adversar-
ially with a discriminator network D to learn a target data
distribution q(x|y). Given a noise vector z and a condition
vector y, G generates a sample x e.g. an image and the role
of D is to distinguish between real samples and those gener-
ated from G. Conditional GANs use auxiliary information
y for e.g. class label of the sample as input in the generator
and discriminator networks. The standard hinge loss [50]
for training cGANs is given by:

LD = Ey∼q(y)

[
Ex∼q(x|y)[max(0, 1−D(x, y))]

]
+ Ey∼q(y)

[
Ez∼p(z)[max(0, 1 +D(G(z|y), y))]

]
LG = −Ey∼q(y)

[
Ez∼p(z)[D(G(z|y), y)]

] (1)

where the discriminator score D(x, y) depends on input
image (either real or fake) and conditional label y [35, 38].
The label information is generally passed into G through a
one-hot vector concatenated with z or through conditional
batch norm layers [7, 10].

4. Methodology

We propose a transfer learning framework, Data In-
Stance Prior (DISP), for training GANs that exploits knowl-
edge extracted from self-supervised/supervised networks,
pre-trained on a rich and diverse source domain in the form
of instance level priors. GANs are observed to be prone to
mode-collapse that is further exacerbated in case of sparse
training data. It has been shown that providing class label
information in GANs significantly improves training stabil-
ity and quality of generated images as compared to uncon-
ditional setting [35, 6]. We take motivation from the recon-
structive framework of IMLE [28] and propose to condition
GANs on image instance prior that acts as a regularizer to
prevent mode collapse and discriminator overfitting.

Knowledge Transfer in GAN GANs are a class of im-
plicit generative models that minimize a divergence mea-
sure between the data distribution q(x) and the generator
output distribution G(z) where z ∼ p(z) denotes the latent
distribution. Intuitively, the minimization of this divergence
objective ensures that each generated sample G(z) is close
to some data example x ∼ q(x). However, this does not
ensure the converse, i.e. each real sample has a generated
sample in its vicinity, which can result in mode dropping.
To counter this, especially in limited data regime, we pro-
pose to update the parameters of the model so that each real
data example is close to some generated sample similar to
[28] by using data instance priors as conditional label in
GANs. We use the image features extracted from networks
pre-trained on a large source domain as the instance level
prior to enable transfer of knowledge.

Given a pre-trained feature extractor C : Rp → Rd,
which is trained on a source domain using supervisory sig-
nals or self-supervision, we use its output C(x) as the con-
ditional information during GAN training. G is conditioned
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Figure 2: Overview of our proposed technique, Data Instance Priors (DISP) for transfer learning in GANs. Top: DISP training with feature C(x) of a
real sample x as a conditional prior in the conditional GAN framework of [35]. C is a pre-trained network on a rich source domain from which we wish to
transfer knowledge. Bottom: Inference over trained GAN involves learning a distribution over the set of training data prior {C(x)} to enable sampling of
conditional priors.

on C(x) using conditional batch-norm [10] whose input is
Gemb(C(x)), where Gemb is a learnable projection matrix.
During training we enforce that G(z|C(x)) is close to the
real image x in discriminator feature space. Let the dis-
criminator be D = Dl ◦Df (◦ denotes composition) where
Df is discriminator’s last feature layer and Dl is the final
linear classifier layer. To enforce the above objective we
map C(x) to discriminator’s feature layer dimension using
a trainable projection matrix Demb and minimize distance
between Demb(C(x)) and Df of both real image x and gen-
erated image G(z|C(x)) in an adversarial manner. Hence,
our final GAN training loss for the discriminator and gener-
ator is given by:

LD =Ex∼q(x)[max(0, 1−D(x, C(x)))]

+ Ex∼q(x),z∼p(z)[max(0, 1 +D(G(z|C(x)), C(x)))]

LG =− Ex∼q(x),z∼p(z)[D(G(z|C(x)), C(x))]
(2)

where

D(x,y) = Demb(y) ·Df (x) +Dl ◦Df (x) (3)

In the above formulation, the first term in Eq. 3 is the pro-
jection loss as in [35] between input image and conditional
embedding of discriminator. Since conditional embedding
is extracted from a pre-trained network, above training ob-
jective leads to feature level knowledge distillation from C.
It also acts as a regularizer on the discriminator reducing its
overfitting in the limited data setting. As shown in Figure 1,
the gap between discriminator score (Dl ◦ Df ) of training
and validation images keeps on increasing and FID quickly
degrades for baseline model as compared to DISP when

trained on only 10% data of CIFAR-100. Moreover, enforc-
ing feature Df (G(z|C(x))) to be similar to Demb(C(x))
promotes that for each real sample, there exists a generated
sample close to it and hence promotes mode coverage of
target data distribution. We demonstrate that the above pro-
posed use of data instance priors from a pre-trained feature
extractor, while designed for a limited data setting, also ben-
efits in large-scale image generation. Our overall method-
ology is illustrated in Figure 2 and pseudo code is provided
in the Supplementary section.

Random image generation at inference Given the train-
ing set Dimage = {xj}nj=1 of sample size n and its corre-
sponding training data prior set Dprior = {C(xj)}nj=1, the
generator requires access to Dprior for sample generation.
In case of few-shot and limited image generation where size
of Dprior is less, to create more variations, we generate im-
ages conditioned on prior samples from a vicinal mix distri-
bution i.e

G(z|p) where p ∼ Vmix (4)

The vicinal mix distribution is defined as:

Vmix(p) =
1

|Dprior|2

|Dprior|∑
i,j

Eλ [δ(λ · pi + (1− λ) · pj)]

where λ ∼ U [0, 1] and δ(.) is dirac-delta function
(5)

In case of large-scale image generation, we learn a Gaus-
sian Mixture Model (GMM) [58] on Dprior. This enables
memory efficient sampling of conditional prior from the
learned GMM distribution during inference:

G(z|N (µ,Σ)) where µ,Σ ∼ GMM(Gemb(Dprior)) (6)
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SNGAN (128 x 128)

Method Pre-
training Anime Faces

FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑

From scratch ✗ 120.38 0.61 0.00 140.66 0.31 0.00
+ DISP-Vgg16 66.85 0.71 0.03 68.49 0.74 0.15

TransferGAN ✓ 102.75 0.70 0.00 101.15 0.85 0.00
+ DISP-Vgg16 86.96 0.57 0.02 75.21 0.70 0.10

FreezeD ✓ 109.40 0.67 0.00 107.83 0.83 0.00
+ DISP-Vgg16 93.36 0.56 0.03 77.09 0.68 0.14
+ DISP-SimCLR 89.39 0.46 0.025 70.40 0.74 0.22

ADA ✗ 78.28 0.87 0.0 159.3 0.69 0.0
+ DISP-Vgg16 60.8 0.90 0.003 79.5 0.85 0.004

DiffAugment ✗ 85.16 0.95 0.00 109.25 0.84 0.00
+ DISP-Vgg16 48.67 0.82 0.03 62.44 0.80 0.19
+ DISP-SimCLR 52.41 0.77 0.04 64.53 0.78 0.22

BSA* ✓ 92.0 - - 123.2 - -
GLANN + DISP-Vgg16 67.07 0.87 0.01 60.11 0.95 0.08

Table 1: Few-shot image generation performance using 100 training im-
ages (↓: lower is better; ↑: higher is better). Precision and Recall scores
are based on [27]. FID is computed using 10k, 7k generated and 10k, 7k
real samples for Anime and Faces respectively. * denotes directly reported
from the paper.

5. Experiments
We perform extensive experiments to highlight the ef-

ficacy of our data instance prior module, DISP in unsu-
pervised training based on SNGAN [34], BigGAN [4] and
StyleGAN2 [24] architectures. For extracting image prior
information, we use the last layer activations of: Vgg16 [49]
classification network trained on ImageNet; and SimCLR
[5] network trained using self-supervision on ImageNet. We
conduct experiments on (1) few-shot (∼ 25-100 images),
(2) limited (∼ 2k-5k images) and (3) large-scale (∼ 50k-
1M images) data settings. For evaluation, we use FID [14],
precision and recall scores [27] to assess the quality and
mode-coverage/diversity of the generated images.

5.1. Few-Shot Image Generation

Baselines and Datasets We compare and augment our
methodology DISP with training SNGAN from scratch and
the following leading baselines: Batch Statistics Adaptation
(BSA) [37], TransferGAN [57], FreezeD [36], ADA [22]
and DiffAugment [66]. In case of BSA, a non-adversarial
variant, GLANN [16] is used which optimizes for image
embeddings and generative model through perceptual loss1.
We use our data priors to distill knowledge over these image
embeddings. For more training and hyperparameter details,
please refer to Supplementary.

We perform experiments on randomly chosen 100 im-
ages at 128 × 128 resolution from: (1) Anime2 and (2)

1The code provided with BSA was not reproducible, and hence this
choice

2www.gwern.net/Danbooru2018

BigGAN (128 x 128)
Method Places2.5k FFHQ2k CUB6k

FID ↓ FID ↓ FID ↓

MineGAN 75.50 75.91 69.64

TransferGAN 162.91 126.23 138.87
+ DISP-Vgg16 57.35 44.43 23.37

FreezeD 191.04 161.87 142.47
+ DISP-Vgg16 50.58 43.90 26.90

DiffAugment 56.48 31.60 36.09
+ DISP-Vgg16 30.76 23.19 15.81
+ DISP-SimCLR 26.65 21.06 12.36

Table 2: FID of different techniques on limited data image generation.
FID (lower is better) is computed using 10k, 7k, 6k generated and real
samples (disjoint from training set) for Places2.5k, FFHQ2k, CUB datasets
respectively. All above approaches are initialized with BigGAN model
pre-trained on ImageNet.

FFHQ [23] datasets. The above choice of datasets follows
from the prior work BSA. For methods with pre-training,
we finetune SNGAN pre-trained on ImageNet as done in
[37] (there is no class label intersection of the above datasets
with ImageNet classes). We also show additional results
at 256 × 256 resolution on additional datasets (Pandas,
Grumpy Cat, Obama) with StyleGAN2 [24] in supplemen-
tary.
Results Using DISP shows consistent improvement in FID
and Recall over all baseline methods as shown in Table 5.
Fig 3 shows samples generated via interpolation between
conditional embedding of models trained via DISP-Vgg on
DiffAugment and vanilla DiffAugment. These results qual-
itatively show the improvement obtained using our DISP
transfer learning approach. Comparatively, the baseline,
vanilla DiffAugment, fails to generate realistic interpolation
and for the most part, presents memorized training set im-
ages. DISP also performs better when training is done from
scratch as compared to FreezeD and TransferGAN but is
worse than DiffAugment + DISP. We present additional ab-
lation studies in Supplementary.
Performance on varying number of training images We
vary the number of training examples in Anime dataset from
25-500 for baseline few-shot algorithms and their respective
augmentations with DISP-Vgg16. The FID metric compar-
ison in Fig 3c shows the benefit of our approach when used
with existing training algorithms. The FID metric for all ap-
proaches improves (decreases) with the increase the number
of training images with DISP out-performing correspond-
ing baselines. Sample images generated by our approach
are shown in Supplementary.
Memorization Test To evaluate whether trained GANs are
actually generating novel images instead of only memo-
rizing the training set, we calculate FID between images
randomly sampled from training set with repetition and the
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(a) (b)
(c)

Figure 3: (a) and (b): Sample interpolations between two generated images for models trained in few-shot setting : Scratch (Row 1), Scratch + DISP-
Vgg16 (Row 2), FreezeD (Row 3), FreezeD + DISP-Vgg16 (Row 4), DiffAugment (Row 5), DiffAugment + DISP-Vgg16 (Row 6). (c): FID (lower is
better) performance graph of few-shot image generation by varying the training samples from 25 to 500 images of Anime dataset for different approaches
on SNGAN model.

separate test set for Anime and FFHQ dataset. For Anime
dataset, we get an FID of 81.23 and for FFHQ, 100.07. On
comparing these numbers to Table 5 we observe that only
on using DISP with existing algorithms, we achieve a better
FID score suggesting that our approach is able to generate
novel/diverse samples instead of just memorizing or over-
fitting to training data.
Analyzing the feature space of Vgg-16/SimCLR pre-
trained network for Anime dataset To examine the use-
fulness of Vgg features on Anime dataset, we evaluate it on
the anime character classification task. We took a subset of
70k images from the Anime Face dataset that had labels as-
signed among the 50 character tags. Each character tag has
around 1000-1500 images. We train a single linear classi-
fier on Vgg-16 features of 50k samples and evaluate it on the
rest 20k samples. We observe an accuracy of 75% and 67%
on training and test sets respectively. When a single linear
classifier is trained upon SimCLR features, the respective
accuracies were 81% and 63.5%. This highlights that even
for fine-grained and out of domain distributions like Anime,
pre-trained Vgg-16 features are semantically rich enough to
achieve a decent classification score.

5.2. Limited Data Image Generation

In many practical scenarios, we have access to moderate
number of images (1k-5k) instead of just a few examples,
however the limited data may still not be enough to achieve
stable GAN training. We show the benefit of our approach
in this setting and compare our results with: MineGAN[56],
TransferGAN, FreezeD, and DiffAugment. We perform ex-
periments on three 128×128 resolution datasets: FFHQ2k,
Places2.5k and CUB6k following [56]. FFHQ2k contains
2K training samples from FFHQ [23] dataset. Places2.5k is
a subset of Places365 dataset [68] with 500 examples each

sampled from 5 classes (alley, arch, art gallery, auditorium,
ball-room). CUB6k is the complete training split of CUB-
200 dataset [55]. We use the widely used BigGAN [4] ar-
chitecture, pre-trained on ImageNet for finetuning. Table 2
shows our results; using DISP consistently improves FID
on existing baselines by a significant margin. More imple-
mentation details are given in supplementary and sample
generated images via our approach are shown in Figure 4.
Experiments on CIFAR-10 and CIFAR-100 We also
experiment with unconditional BigGAN and StyleGAN2
model on CIFAR-10 and CIFAR-100 while varying the
amount of data as done in [66]. We compare DISP with
DiffAugment on all settings and the results are shown in Ta-
ble 3. In the limited data setting (5% and 10%) augmenting
DiffAugment with DISP gives the best results in terms of
FID for both BigGAN and StyleGAN2 architectures. When
trained on complete training dataset DISP slightly outper-
forms DiffAugment on BigGAN architecture. For imple-
mentation details, please refer to supplementary.

5.3. Large-Scale Image Generation

In order to show the usefulness of our method on
large-scale image generation, we carry out experiments on
CIFAR-10, CIFAR-100 [26] and ImageNet-32×32 datasets
with 50k, 50k and ∼ 1.2M training images respectively at
32 × 32 resolution. For a higher 128 × 128 resolution, we
perform experiments on FFHQ and LSUN-bedroom [61]
datasets with 63k and 3M training samples. We use a
ResNet-based architecture for both discriminator and gener-
ator similar to BigGAN [4] for all our experiments. We also
compare DISP with SSGAN [6] and Self-Conditional GAN
[29]. Implementation and training hyperparameter details
are provided in Supplementary.
Results Table 4 reports the FID, precision and recall score
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(a) Places (2.5k) (b) FFHQ (2K) (c) CUB (6K)

Figure 4: Samples of generated image in limited data training setting : FreezeD (Row 1), FreezeD + DISP-Vgg16 (Row 2),
DiffAugment (Row 3) and DiffAugment + DISP-Vgg16 (Row 4).

Method CIFAR-10 CIFAR-100
100% data 20% data 10% data 100% data 20% data 10% data

BigGAN 17.22 31.25 42.59 20.37 33.25 42.43
+ DISP 9.70 16.24 27.86 12.89 21.70 31.48
+ DiffAugment 10.39 15.12 18.56 13.33 19.78 23.80
+ DiffAugment & DISP 9.52 14.24 18.50 12.70 16.91 20.47
StyleGAN2∗ 11.07 23.08 36.02 16.54 32.30 45.87
+ DiffAugment∗ 9.89 12.15 14.5 15.22 16.65 20.75
+ DiffAugment & DISP 9.50 10.92 12.03 14.45 15.52 17.33

Table 3: Comparison of FID on Unconditional CIFAR-10 and CIFAR-100 image generation while varying the amount of training data. Here, all mentioned
approaches are trained with random-horizontal flip augmentation of real images. BigGAN-DiffAugment includes consistency regularization [63] following
the implementation provided by authors [66]. We report the checkpoint with the best FID value for each model. ∗ denotes directly reported from paper.

on the generated samples and the test set for baselines and
our approach (DISP). For fitting GMM, the number of com-
ponents are fixed to 1K for all datasets. DISP achieves
better FID, precision and recall scores compared to leading
baselines. Sample qualitative results and generation with la-
tent interpolation are shown in the supplementary. We also
evaluate the quality of inverted images for 128 × 128 res-
olution on FFHQ and LSUN datasets using Inference via
Optimization Measure (IvOM) [33] to emphasize the high
instance-level data coverage in the prior space of GANs
trained through our approach (details on IvOM calcula-
tion are provided in supplementary). Table 7 shows the
IvOM and FID metric between inverted and real query im-
ages. Figure 5 shows sample inverted images. We observe
both from qualitative and quantitative perspective, models
trained via DISP inverts a given query image better than the
corresponding baselines. We also perform an ablation ex-
periment to analyze the effect of different priors in DISP for
CIFAR-100 dataset. As shown in Table 8, the FID metric re-
mains relatively similar for different priors when compared
to the baseline.

Memorization test For analyzing memorization in
GANs, we evaluate it on the recently proposed test to detect
data copying [32]. The test calculates whether generated

samples are closer to the training set as compared to a sep-
arate test set in the inception feature space using three sam-
ple Mann-Whitney U test [30]. The test statistic CT << 0
represents overfitting and data-copying, whereas CT >> 0
represents underfitting. We average the test statistic over 5
trials and report the results in Table 6. We can see that us-
ing data instance priors during GAN training does not lead
to data-copying according to the test statistic except in case
of FFHQ dataset where both DISP and baseline CT values
are also negative.

Performance gain due to knowledge distillation vs Mem-
orization of real image features We conduct an additional
experiment where we use the features of a Resnet50 net-
work trained on 75% label-corrupted CIFAR-100 as Data
Instance Priors to train CIFAR-100 BigGAN architecture.
This results in a significantly higher FID (22.82) in compar-
ison to using prior feature from Resnet50-SimCLR trained
on clean CIFAR100 dataset,(FID 14.62, Table 8). This
highlights that performance depends on the quality of pre-
trained network features and not only because features of
real images are leveraged as prior during generation. If this
was not the case then using features of Resnet50 trained
on 75% label-corrupted CIFAR-100 would have resulted in
similar performance.
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Method CIFAR-10 CIFAR-100 FFHQ LSUN-Bedroom ImageNet32x32
FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑ FID ↓ P ↑ R ↑

Baseline 19.73 0.64 0.70 24.66 0.61 0.67 21.67 0.77 0.47 9.89 0.58 0.42 16.19 0.60 0.67
SSGAN 15.65 0.67 0.68 21.02 0.61 0.65 - - - 7.68 0.59 0.50 17.18 0.61 0.65
Self-Cond GAN 16.72 0.71 0.64 21.8 0.64 0.60 - - - - - - 15.56 0.66 0.63

DISP-Vgg16 11.24 0.74 0.64 15.71 0.70 0.62 15.83 0.76 0.55 4.99 0.66 0.54 12.11 0.64 0.62
DISP-SimCLR 14.42 0.68 0.65 20.08 0.67 0.62 16.62 0.77 0.53 4.92 0.62 0.53 14.99 0.60 0.63

Table 4: Comparison of DISP with Baseline, SSGAN[6] and Self-Cond GAN[29] in large-scale image generation setting on FID, Precision and Recall
metrics.

Method 50k 100k 200k 500k
GMM 4.99 4.92 4.81 4.43
Time (s) 383.96 1063.99 1993.93 4397.56

Table 5: Relationship among the number of random samples used in the
GMM, FID value obtained and the time taken for learning the GMM.

Methods CIFAR-10 CIFAR-100 FFHQ LSUN ImageNet
32x32

CT CT CT CT CT

Baseline 3.02 4.26 -0.15 2.59 10.5
DISP-Vgg16 1.58 3.05 -0.81 1.06 8.53
DISP-SimCLR 2.86 3.48 -1.49 0.13 9.91

Table 6: Test for evaluating data-copy and memorization in GANs [32]
for different approaches and datasets. Test statistic CT << 0 denotes
overfitting and data-copying, and CT >> 0 represents under-fitting.

Method FFHQ LSUN-Bedroom
IvOM ↓ FID ↓ IvOM ↓ FID ↓

Baseline 0.0386 85.06 0.0517 115.02
+ DISP-Vgg16 0.0142 73.85 0.0191 129.4
+ DISP-SimCLR 0.0125 71.44 0.0161 116.11

Table 7: IvOM and FID measure on 500 random test images of FFHQ
and LSUN-Bedroom datasets.

Relationship between the number of random samples
used for fitting GMM and its corresponding FID Fit-
ting a GMM model is inhibitive for large-scale datasets
e.g. ImageNet and LSUN-Bedroom where the training data
is in millions. We observed this during our experiments
and therefore use a subset of randomly sampled 200K in-
stances for these datasets for fitting GMM in Table 4. Ta-
ble 5 further shows the relationship between the number of
random samples used for fitting GMM and the correspond-
ing FID (average of 3 runs with a standard deviation of less
than 1%) on the LSUN-Bedroom dataset for DISP-Vgg16
trained model on LSUN-Bedroom. As can be seen, even a
small subset of training data can still be used to achieve
better performance than baselines in relatively less time.
This experiment was performed on a system with 32 CPU
cores, 64 GB RAM, and processor Intel(R) Xeon(R) CPU
@ 2.20GHz.

Figure 5: Images generated through IvOM for randomly sampled test set
images on FFHQ and LSUN-Bedroom. (Top to Bottom:) Original images,
Baseline, Baseline + DISP-Vgg16, Baseline + DISP-SimCLR.

Method CIFAR-100
Baseline 24.66
+ DISP-SimCLR (ImageNet) 16.26
+ DISP-SimCLR (CIFAR-100) 14.62
+ DISP-ResNet50 (Places-365) 14.68
+ DISP-Resnet50 (ImageNet) 14.62

Table 8: Comparison of FID when using prior from different pre-trained
models on CIFAR-100.

6. Conclusion

In this work, we present a novel instance level prior
based transfer learning approach to improve the quality and
diversity of images generated using GANs when a few train-
ing data samples are available. By leveraging features as
priors from rich source domain in limited unsupervised im-
age synthesis, we show the utility of our simple yet effective
approach on various standard vision datasets and GAN ar-
chitectures. We demonstrate the efficacy of our approach
in image generation with limited data, where it achieves the
new state-of-the performance, as well as on large-scale set-
tings. As future work, it would be interesting to explore the
application of prior information in image editing tasks.

458



References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
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lot. Controlling generative models with continuous factors
of variations. In ICLR, 2020.

[42] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. In International Conference on
Learning Representations, 2016.

[43] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In ICML, 2014.

[44] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. In ICLR, 2015.

[45] Alexander Sage, Eirikur Agustsson, Radu Timofte, and Luc
Van Gool. Logo synthesis and manipulation with clustered
generative adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5879–5888, 2018.

[46] Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lučić, Olivier
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