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Abstract

One-shot action recognition allows the recognition of
human-performed actions with only a single training ex-
ample. This can influence human-robot-interaction posi-
tively by enabling the robot to react to previously unseen
behaviour. We formulate the one-shot action recognition
problem as a deep metric learning problem and propose
a novel image-based skeleton representation that performs
well in a metric learning setting. Therefore, we train a
model that projects the image representations into an em-
bedding space. In embedding space similar actions have
a low euclidean distance while dissimilar actions have a
higher distance. The one-shot action recognition problem
becomes a nearest-neighbor search in a set of activity refer-
ence samples. We evaluate the performance of our proposed
representation against a variety of other skeleton-based im-
age representations. In addition we present an ablation
study that shows the influence of different embedding vec-
tor sizes, losses and augmentation. Our approach lifts the
state-of-the-art by 3.3% for the one-shot action recognition
protocol on the NTU RGB+D 120 dataset under a compara-
ble training setup. With additional augmentation our result
improved over 7.7%.

1. Introduction

Action recognition is a research topic that is applicable in
many fields like surveillance, human robot interaction or in
health care scenarios. In the past, a strong research focus
was laid on the recognition of known activities, whereas
learning to recognize from few samples gained popularity
only recently [12, 18]. Because of RGB-D cameras avail-
ability and wide mobile indoor applicability, indoor robot
systems are often equipped with them [21, 31]. RGB-D
cameras that support the OpenNI SDK not only provide
color and depth streams, but also provide human pose es-
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Figure 1. [llustrative example of our method. Prior to training a
metric on the initial data, no class association could be formed
given a skeleton sequence. After training our one-shot action
recognition model, skeleton sequences can be encoded. A eu-
clidean distance on the encoded sequence allows class association
by finding the nearest neighbor in embedding space from a set of
reference samples. The colors are encoding the following classes:
throw, , grab other person’s stuff. Brighter arrow colors de-
note higher distance in embedding space.

timates in the form of skeleton sequences. These skeleton
estimates allow a wide variety of higher-level applications
without investing in the human pose estimation problem.
As the pose estimation approach is based on depth streams
[33], it is robust against background information as well
as different lighting conditions and therefore also remains
functional in dark environments. Especially in a robotics
context, one-shot action recognition enables a huge variety
of applications to improve the human-robot-interaction. A
robot could initiate a dialog, when recognizing an activity
that it is unfamiliar with, in order to assign a robot-behavior
to the observation. This can be done with a single refer-
ence sample, while standard action recognition approaches
can only recognize actions that were given during training
time. In our proposed one-shot action recognition approach,
observations are projected to an embedding space in which
similar actions have a low distance and dissimilar actions
have a high distance.
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A high distance to all known activities can be seen as
an indicator for anomalies. The embedding in a metric
learning setting allows online association of novel obser-
vations, which is a high advantage over classification tasks
that would require retraining or fine-tuning.

Deep metric learning based approaches are popular
for image ranking or clustering, like face- or person re-
identification [25, 30]. They have proven to integrate well as
an association metric, e.g. in person tracking settings to re-
duce the amount of id-switches [30]. Even though there are
skeleton-based image representations for recognizing activ-
ities from skeleton sequences, they have only recently been
used to learn a metric for one-shot action recognition [18].
Fig. 1 shows an illustrative example of an application of our
approach.

The contributions of this paper are as follows:

e We present a representation that reassembles skeleton
sequences into images.

e We integrate the representation into a deep metric
learning formulation to tackle the one-shot action
recognition problem.

e We furthermore provide an evaluation of related
skeleton-based image representations for one-shot ac-
tion recognition.

e The source code to reproduce the results of this
paper is made publicly available under https:
//github.com/raphaelmemmesheimer/
skeleton—-dml.

2. Related Work

Action recognition is a broad research topic that varies
not only in different modalities like image sequences, skele-
ton sequences, data by inertial measurement units but also
by their evaluation protocols. Most common protocols are
cross-view or cross-subject. More recently, one-shot pro-
tocols have gained attention. As our approach focuses on
skeleton-based one-shot action recognition, we present re-
lated work from the current research state directly related
to our method. Skeleton based action recognition gained
attention with the release of the Microsoft Kinect RGB-D
camera. This RGB-D camera not only streamed depth and
color images, but the SDK also supported the extraction of
skeleton data. With the NTU RGB+D dataset [26, 12] a
large scale RGB-D action recognition dataset that also con-
tains skeleton sequences has been released. The progress
made on this dataset gives a good indication of the per-
formance of various skeleton-based action recognition ap-
proaches.

Because convolution neural architectures showed great
performance in the image-classification domain, a variety of

research concentrated on finding image-like representations
for different research areas like speech recognition [6].

Representations for encoding spatio-temporal informa-
tion were explored in-depth for recognizing actions [16, 1].
They focus on a classification context by associating class
labels with skeleton sequences, in contrast to learning an
embedding space. The idea of representing motion in
image-like representations lead to serious alternatives to se-
quence classification approaches based on Recurrent Neural
Networks [8] and Long Short Term Memory (LSTM) [13].
Wang et al. [28] presented joint trajectory maps. View-
points from each axis were set and encoded 3D trajectories
for each of the three main axis views. A simple Convolu-
tional Neural Network (CNN) architecture was used to train
a classifier analyzing the joint trajectory maps. Occlusion
could not be directly tackled, therefore the representation
by Liu et al. [16] added flexibility by fusing up to nine rep-
resentation schemes in separate image channels. A simi-
lar representation has recently shown to be usable also for
action recognition on different modalities and their fusion
[17]. Kim et al. [9] on the other hand presented a com-
pact and human-interpretable representation. Joint move-
ment contributions over time can be interpreted. Interesting
to note is also the skeleton transformer by Li et al. [10].
They employ a fully connected layer to transform skeleton
sequences into a 2 dimensional matrix representation.

Yang et al. [32] present a joint order that puts joints
closer together if their respective body parts are connected.
It is generated by a depth-first tree traversal of the skele-
ton starting in the lower chest. Skepxels are small 5 x 5-
pixel segments containing the positions of all 25 skeleton
joints in a random but fixed order. Liu et al. [11] use this
2D structure as it is more easily captured by CNNs. Each
sample of a sequence is turned into multiple sufficiently dif-
ferent Skepxels which are then stacked on top of each other.
These Skepxels differ only in their joint permutation. The
full Skepxel-image of a sequence of skeletons is assembled
width-wise, without altering the joint permutation within
one row of Skepxels. Caetano et al. [1] generate two im-
ages containing motion information in the form of an ori-
entation and a magnitude. The orientation is defined by the
angles between the motion vector and the coordinate axes.
The angles are stored in the color channels of an image,
with time in horizontal and the joints in TSSI order in verti-
cal direction. The gray-scale magnitude image contains the
euclidean norm of the motion vectors instead.

One-shot recognition in general aims at finding a method
to classify new instances with a single reference sample.
Possible approaches for solving problems of this category
are metric learning [27, 7], or meta-learning [4]. In action
recognition, this means a novel action can be learned with a
single reference demonstration of the action. In contrast to
one-shot image classification, actions consist of sequential
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Figure 2. NTU RGB+D 120 skeleton joint positions.

data. A single frame might not contain enough context to
recognize a novel activity.

Along with the NTU RGB+D 120 dataset, Liu et al.
[12] presented a one-shot action recognition protocol and
corresponding baseline approaches. The Advanced Parts
Semantic Relevance (APSR) approach extracts features by
using a spatio-temporal LSTM method. They propose a
semantic relevance measurement similar to word embed-
dings. Body parts are associated with an embedding vec-
tor and a cosine similarity is used to calculate a semantic
relevance score. Sabater et al. [24] presented a one-shot
action recognition approach based on a Temporal Convo-
lIutional Network (TCN). After normalization of the skele-
ton stream, they calculate pose features and use the TCN
for the generation of motion descriptors. The descriptors at
the last frame, assumed to contain all relevant motion from
the skeleton-sequence, are used to calculate the distances
to the reference samples. Action classes are associated by
thresholding the distances. Previous work on multi-modal
one-shot action recognition [18] proposed to formulate the
one-shot action recognition problem as a deep metric learn-
ing problem. Signals originating from various sensors are
transformed into images and an encoder is trained using
triplet-loss. The focus in that work was on showing the
multi-modal applicability, whereas in this work we concen-
trate on skeleton-based one-shot action recognition.

3. Approach

We propose a novel, compact image representation for
skeleton sequences. Additionally, we present an encoder
model that learns to project said representations into a met-
ric embedding space that encodes action similarity.

3.1. Problem Formulation

A standard approach for action recognition is trained on
a set of classes C, where the training and test sets share the
same C classes. Thus, a test set 7 share the same classes
as the training set D. In a one-shot action recognition set-

ting, C classes are known in an auxiliary training set D,
while the evaluation set 7 contains U novel classes, pro-
viding a single reference sample per class in a reference set
R, where |R| = U. We consider the one-shot action recog-
nition problem as a metric learning problem. Our goal is
to train a feature embedding ¥ = fo (/) with parameters ©
which projects input images I € {0, ..., 255} *Wx3 linto
a feature representation # € X?. H denotes the height of the
image, W denotes the width of the image in an RGB chan-
nel image and d is the given target embedding vector size.
The feature representation reflects minimal distances in em-
bedding space for similar classes. For defining the simi-
larity we follow [29], where the similarity of two samples
(L, ;) and (I;, Z;) is defined as D;; :=< &;, ¥; >, where
< -, > denotes the dot product, resulting in an K x K
similarity matrix D.

3.2. Skeleton-DML Representation

We encode skeleton sequences into an image represen-
tation. Fig.2 shows the skeleton as contained in the NTU
RGB+D 120 dataset. On a robotic system, these skeletons
can be either directly extracted from the RGB-D camera
[33] or from a camera image stream using a human-pose
estimation approach [2]. The input in our case is a skele-
ton sequence matrix S € RYV*MX*3 where each row vector
represents a discrete joint sequence (for N joints) and each
column vector represents a sample of all joint positions at
one specific time step of a sequence length M. The matrix
is transformed to an RGB image I € {0, ..., 255} H>W>3,
Note, in contrast to [18, 3] the joint space is not pro-
jected to the color channels but unfolded per axis sepa-
rately like depicted in Fig. 3, and Fig.4. This results in a
dataset D = {(I;,y;)}}£, of K auxiliary training images
with one image per skeleton sequence I; . x with labels
y; € {1,...,C}. In contrast to the representations used
for multimodal action recognition [17] or skeleton based
action recognition [28, 16] the proposed representation is
more compact. In comparison to [3, 18] our representa-
tion separates the joint values for all axes as blocks over the
width, keeping all joint values grouped locally together per
axis. In [18] the color channels are used to unfold the joint
values. As the skeleton-sequence is represented as an im-
age, the model needs to be applied only to a single image
for inference.

3.3. Feature Extraction

For better comparability between the approaches we use
the same feature extraction method as previously proposed
in SL-DML [18]. Using a Resnet18 [5] architecture allows
us to train a model that converges fast and serves as a good
feature extractor for the embedder. The low amount of pa-
rameters allows practical use for inference on autonomous
mobile robots. Weights are initialized with a pre-trained
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Skeleton Sequence Image Representation

Figure 3. Skeleton-DML skeleton representation. x and z denote
the skeleton joint component in joint space, the number of joints
is reflected by N, which relates to the height of the image H,
the sequence length M relates with the width of the image W'.
Note, instead of projecting the temporal information throughout
the width of the image, we project the joint space locally for each
dimension and assemble the joint axis blocks over the width.

model and are optimized throughout the training of the em-
bedder. After the last feature layer we use a two-layer per-
ceptron to transform the features to the given embedding
size. The embedder is refined by the metric learning ap-
proach.

3.4. Metric Learning

Metric learning aims to learn a function to project an im-
age into an embedding space, where the embedding vectors
of similar samples are encouraged to be closer, while dis-
similar ones are pushed apart from each other [29]. We
use a Multi-Similarity-Loss in combination with a Multi-
Similarity-Miner [29] for mining good pair candidates dur-
ing training. Positive and negative pairs (by class label)
that are assumed to be difficult to push apart in the em-
bedding space are mined. Fig.5 gives an artificial exam-
ple of how positive and negative pairs are mined. Positive
pairs are constructed by an anchor and positive image pair
{L, I+} and its embedding f(I,), preferring pairs with a
low similarity in embedding space (high distance in embed-
ding space) with the following condition:

D, < %ifDok +e. (1)
Similar, if {I,, I, } is a negative pair, the condition is:
Dol > %1:12 Do — €, 2)

where k is a class label index and € is a given margin.

Note, these conditions support the mining of hard pairs,
i.e. a positive pair where the sample still has a high dis-
tance in embedding space and a negative pair that still has a
low distance in embedding space. This forces sampling that
concentrates on the hard pairs. A set of positive images to
an anchor image I, are denoted P;, analog, a set of negative
images to I, are denoted ;.

Given mined positive- and negative pairs allows us inte-
gration into the Multi-Similarity loss, as derivated by Wang
et al. [29]:

K

1 1 —a(Dir—
Lys = 4 Z {alog 1+ Z e~ (Dir=N]
i=1 keP;
) 3
+Blog [1 + Z e'B(D““*/\)} },
kENi

where «, § and A are fixed hyper-parameters.

In contrast to SL-DML we do not apply weighting to the
classifier- and embedder loss, as no significant improvement
has been achieved according to [18]. After the model op-
timization, associating an action class to a query sample
and set of reference samples is now reduced to a nearest-
neighbor search in the embedding space. The classifier and
encoder are jointly optimized.

3.5. Implementation

Our implementation is based on PyTorch [20], [22]. We
tried to avoid many of the metric learning flaws as pointed
out by Musgrave et al. [19] by using their training setup
and hyperparameters, where applicable. Key differences are
that we use a Resnet18 [5] architecture and avoid the pro-
posed four-fold cross validation for hyperparameter search
in favour of better comparability to the proposed one-shot
protocol on the NTU RGB+D 120 dataset [12]. Note, we
did not perform any optimization of the hyperparameters. A
batch size of 32 was used on a single Nvidia GeForce RTX
2080 TI with 11GB GDDR-6 memory. We trained for 100
epochs with initialized weights of a pre-trained Resnet18
[5]. For the multi similarity miner we used an epsilon of
0.05 and a margin of 0.1 for the triplet margin loss. A RMS-
Prop optimizer with a learning rate of 10~ was used in all
optimizers. The embedding model outputs a 128 dimen-
sional embedding.

4. Experiments

We used skeleton sequences from the NTU RGB+D 120
[12] dataset for large scale one-shot action recognition.

The dataset is split into an auxiliary training set, repre-
senting action classes that are used for training, and an eval-
uation set with the classes used for testing. In the one-shot
protocol, the evaluation set does only contain novel, previ-
ously unseen, actions. One sample of each evaluation class
serves as reference demonstration. This protocol is based on
the one proposed by [12] for the NTU RGB+D 120 dataset.
First, we trained a model on the auxiliary training set. The
resulting model transforms skeleton-sequences encoded as
an image representation into embeddings for the reference
samples and evaluation samples. We then calculate the
nearest neighbor from the evaluation set embeddings to the
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Figure 4. Exemplary representation for a throwing activity of the NTU-RGB+D 120 dataset. A skeleton-sequence serves an input and can
be represented as an image directly [3, 17]. Our Skeleton-DML representation groups -, y-, 2 joint values locally in % blocks per axis
and assembles them into the final image representation. All axis blocks are laid out aside.
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Figure 5. A possible intermediate state of the embeddings during the training process of two classes (left). During training, pairs, that are
difficult to push apart in embedding space, are mined (middle). Given the blue anchor sample, the most difficult positive pair is the blue
sample with the highest distance in embedding space. Similar, the closest red sample in embedding space is the corresponding negative
sample. The overall goal is to separate the samples in embedding space (right) by minimizing the inter-class scatter and maximize the

intra-class distance to the class centers in embedding space.
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Figure 6. Result graph for increasing auxiliary training set sizes.

reference embeddings. As the embeddings encode action
similarity, we can estimate to which reference sample the
given test sample comes closest. Beside the standard one-
shot action protocol and experiments with dataset reduc-
tion, we give an ablation study that gives a hint on which

combination of embedding size, loss, transformation and
representation are yielding best results with our approach.
Further, we integrated various related skeleton-based im-
age representations that have been previously proposed for
action recognition into our one-shot action recognition ap-
proach to compare them.

4.1. Dataset

The NTU RGB+D 120 [12] dataset is a large scale ac-
tion recognition dataset containing RGB-D image streams
and skeleton estimates. The dataset consists of 114,480 se-
quences containing 120 action classes from 106 subjects in
155 different views. We follow the one-shot protocol as
described by the dataset authors. The dataset is split into
two parts: an auxiliary training set and an evaluation set.
The action classes of the two parts are distinct. 100 classes
are used for training that define the auxiliary set, 20 classes
are used for testing that define the evaluation set. A single
sample per class from the evaluation set serves as reference
sample. The unseen classes and reference samples are doc-
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hugging other person grab other person’s stuff

Figure 7. From top to bottom: A RGB Frame, the corresponding skeleton sequences and the image representation of those sequences are
shown. The latter is used in our one-shot action recognition approach. The first two sequences contain single person activities, whereas
the remaining two contain two person interactions. The grab other person’s stuff sequence was shorter than the hugging other person

sequence.

Table 1. One-shot action recognition results on the NTU RGB+D
120 dataset.

Approach Accuracy [%]
Attention Network [15] 41.0
Fully Connected [15] 42.1
Average Pooling [14] 429
APSR [12] 453
TCN [24] 46.5
SL-DML [18] 50.9
Ours 54.2

Table 2. Results for different auxiliary training set sizes for one-
shot recognition on the NTU RGB+D 120 dataset in %.

#Train Classes APSR [12] SL-DML [18] Ours
20 29.1 36.7 28.6
40 34.8 42.4 37.5
60 39.2 49.0 48.6
80 42.8 46.4 48.0
100 453 50.9 54.2

umented in the accompanied dataset repository'. Al, A7,
Al3, A19, A25, A31, A37, A43, A49, A55, A61, A67, A73,
A79, A85, A91, A97, A103, A109, Al1l5 are previously un-
seen. As reference, the demonstration for filenames starting

'https://github.com/shahroudy/NTURGB-D

with S001C003PO0OSR00I* are used for actions with IDs
below 60 and S0I18C003PO0SR0O0I* for actions with IDs
above 60. As no hold-out validation set is defined, we de-
fined a separate validation set separated from the auxiliary
training set by using the following classes during develop-
ment for validation: A2, A8, Al4, A20, A26, A32, A3S8, A44,
A50, A56, A62, A6S, A74, A80O, A86, A92, A9S, A104, Al10,
A116. One-shot action recognition results are given in Ta-
ble 1. Like Liu et al. [12] we also experimented with the
effect of the auxiliary training set reduction. Results are
given in Fig. 6 and Table 2. In addition, we analyze differ-
ent representations in Table 4 and the influence of different
embedding vector sizes, metric losses and augmentations
on two representations more detailed in Table 3.

4.2. Training Set Size Reduction

An interesting question that comes up when evaluating
one-shot action recognition approaches is how much aux-
iliary training classes are required to get a certain perfor-
mance. Liu et al. [12] already proposed to evaluate the
one-shot action recognition approach with varying auxiliary
training set sizes. Aligned with Liu et al. [12] we use aux-
iliary training sets containing 20, 40, 60, 80 auxiliary train-
ing classes while remaining a constant evaluation set size of
20. For practical systems, where only a limited amount of
training data is available, this evaluation can give an impor-
tant insight about which performance can be achieved with
lower amounts of provided training data. It is also inter-
esting to observe how an approach performs when adding
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Table 3. Ablation study for our proposed one-shot action recog-
nition with different representations, embedding sizes, losses and
augmentations. Results are given for a training over 200 epochs.
Units are in %.

Representation 128 256 512  Transform Loss

SL-DML [18] 552 50.6 527 None MS
SL-DML [18] 515 517 540 None ™
SL-DML [18] 51.8 553 5538 Rot MS
SL-DML [18] 53.6 548 555 Rot ™
Ours 547 515 531 None MS
Ours 47.5 519 540 None ™
Ours 553 58.0 58.6 Rot MS
Ours 56.0 55.1 56.1 Rot ™

more training data. Table 2 and Fig. 6 give results for differ-
ent training set sizes for SL-DML [18], APSR [12] and our
Skeleton-DML approach, while remaining a static valida-
tion set. With just 20 training classes, our approach per-
forms comparably to the APSR approach. With a small
amount of training classes, the SL-DML approach performs
best. In our experiments, Skeleton-DML performs better
when providing a larger auxiliary training set size. At an
auxiliary training set size of 60 classes, our approach per-
forms comparably well to SL-DML. With 80 classes in the
auxiliary training set our approach starts outperforming SL-
DML. 1t is interesting to note that, aligned with the results
from SL-DML, our approach seems to be confused by the
20 extra classes that are added to the 60 classes.

4.3. Ablation Study

To distill the effects of the components, we report their
individual contributions. We examine influence of the rep-
resentation, augmentation method and different resulting
embedding vector sizes. Inspired by Roth et al. [23] we ex-
periment with different embedding vector sizes of 128, 256,
512. In addition, we included the SL-DML representation,
compare a Triplet Margin loss (TM) and a Multi-Similarity
loss (MS) and included an augmentation with random rota-
tions of 5°. In total, 24 models were trained for this ablation
study. We trained these models for 200 epochs, as we ex-
pected longer convergence due to the additional augmented
data. Results are given in Table 3. In the table, we highlight
important results. We highlight interesting results by dif-
ferent colors in the table (best result without augmentation
(55.2%), embedding size of 128 (56.0%), embedding size of
256 (58.0%), TM loss (56.1%), overall, MS loss, augmen-
tation, embedding size of 512 (58.6%)). For SL-DML the
augmentation had a positive influence with higher embed-
ding vector sizes of 512. Whereas the augmentation with
embedding sizes of 128 only improved with the TM loss.
With the MS loss and a low embedding size the augmen-

Table 4. Ablation study for different representations.

Representation Accuracy [%]
Skepxel [11] 29.6
SkeleMotion Orientation [1] 34.4
SkeleMotion MagnitudeOrientation [1] 39.2
TSSI [32] 41.0
Gimme Signals [17] 41.5
SkeleMotion Magnitude [1] 44.4
SL-DML [18] 50.9
Ours 54.2

tation did lower the result. For our Skeleton-DML repre-
sentation the augmentation improved the results throughout
the experiments for both losses. The best results without
augmentation were achieved by the SL-DML representation
with an embedding vector of size 128 and a MS loss. The
overall best results were achieved with a MS loss and em-
bedding vector size of 512 and augmentation by rotation us-
ing the Skeleton-DML representation, which improved the
results of 4.4% over our approach under a comparable train-
ing setup as SL-DML.

4.4. Comparison with Related Representations

To support the effectiveness of our proposed representa-
tion in a metric learning setting we compare against other
skeleton-based image representations. We use the publicly
available implementation for the SkeleMotion [1], SL-DML
[18], Gimme Signals [17] and re-implementations of the
TSSI [32] and Skepxels [11] representations to integrate
them into our metric learning approach. These represen-
tations have been described in Section 2 more detailed.

The overall training procedure was identical as all mod-
els were trained with the parameters described in Sec-
tion3.5. The experiment only differed in the underlying
representation. Results for the representation comparison
are given in Table 4. While most of the representations ini-
tially target action recognition and are not optimized for
one-shot action recognition, they are still good candidates
for integration in our metric learning approach. We did not
re-implement the individual architecture proposed by the
different representations but decided to use the Resnet18 ar-
chitecture for better comparability.

Our Skeleton-DML approach shows best performance
followed by SL-DML. The SkeleMotion Magnitude [1] rep-
resentation transfers well from an action recognition setting
to a one-shot action recognition setting. Interesting to note
is that the SkeleMotion Orientation [1] representation, while
achieving comparable results in the standard action recog-
nition protocol, performs 10% worse than the same repre-
sentation encoding the magnitude of the skeleton joints. An
early fusion of magnitude and orientation on a representa-
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Figure 8. UMAP embedding visualization for our approach.
Classes are: drink water e, throw e, tear up paper e, take off
glasses e, reach into pocket e, pointing to something with finger

, wipe face ¢, falling -, feeling warm e, hugging other person e,
put on headphone «, hush (quite) -, staple book e, sniff (smell) e,
apply cream on face e, open a box e, arm circles e, yawn e, grab
other person’s stuff e, take a photo of other person .

tion level did not improve the Skelemotion representation,
but yields a result in between both representations. Similar
observations have been made in [18] by the fusion of iner-
tial and skeleton sequences. The lower performing modality
adds uncertainty to the resulting model in our one-shot set-
ting.

A UMAP embedding of all evaluation samples is shown
in Fig. 8 for our Skeleton-DML approach. Our approach
shows better capabilities in distinguishing the actions throw
and arm circles. In our approach those clusters can be sepa-
rated quite well whereas SL-DML struggles to discriminate
those two classes.

4.5. Result Discussion

We evaluated our approach in an extensive experiment
setup. Aside from lower performance on lower amounts
of classes for training, our approach outperformed other
approaches. For fair comparison we report the result of
3.3% over SL-DML for training with 100 epochs and with-
out augmentation, as under these conditions the SL-DML re-
sult was reported. With augmentation and training for 200
epochs, we could improve the baseline for 7.7%. Our ap-
proach learns an embedding model that captures semantic
relevance from joint movements well. E.g. Skeleton-DML
differentiates well between activities that primarily contain
hand- or leg-movements. Interactions between multiple per-
son and single person activities are also separated well. Ac-
tivities to which similar joint movements contribute to are
still challenging. These are the activities that are formed by
the main cluster in Fig. 8.

5. Conclusion

We presented a one-shot action recognition approach
based on the transformation of skeleton sequences into an

image representation. On the image representations, an em-
bedder is trained which projects the images into an em-
bedding vector. Distances between encoded actions re-
flect semantic similarities. Actions can then be classi-
fied, given a single reference sample, by finding the near-
est neighbour in embedding space. In an extensive exper-
iment setup we compared different representations, losses,
embedding vector sizes and augmentations. Our represen-
tation remains flexible and yields improved results over SL-
DML. Additional augmentation by random 5 degree rota-
tions have shown to further improve the results. We found
the overall approach of transforming skeleton sequences
into image representations for one-shot action recognition
by metric learning a promising idea that allows future re-
search into various directions like finding additional repre-
sentations, augmentation methods or mining and loss ap-
proaches. Especially in robot applications one-shot action
recognition approaches have the potential to improve hu-
man robot interaction by allowing robots to adapt to un-
known situations. The required computational cost for our
approach is low, as only a single image representations of
the skeleton-sequence needs be embedded by a comparably
slim Resnet18-based embedder.
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