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Abstract

Given a facial matcher, in explainable face verification,
the task is to answer: how relevant are the parts of a probe
image to establish the matching with an enrolled image. In
many cases, however, the trained models cannot be manip-
ulated and must be treated as “black-boxes”. In this pa-
per, we present six different saliency maps that can be used
to explain any face verification algorithm with no manip-
ulation inside of the face recognition model. The key idea
of the methods is based on how the matching score of the
two face images changes when the probe is perturbed. The
proposed methods remove and aggregate different parts of
the face, and measure contributions of these parts individ-
ually and in-collaboration as well. We test and compare
our proposed methods in three different scenarios: synthetic
images with different qualities and occlusions, real face im-
ages with different facial expressions, poses, and occlusions
and faces from different demographic groups. In our exper-
iments, five different face verification algorithms are used:
ArcFace, Dlib, FaceNet (trained on VGGface2 and Casia-
WebFace), and LBP. We conclude that one of the proposed
methods achieves saliency maps that are stable and inter-
pretable to humans. In addition, our method, in combi-
nation with a new visualization of saliency maps based on
contours, shows promising results in comparison with other
state-of-the-art art methods. This paper presents good in-
sights into any face verification algorithm, in which it can
be clearly appreciated which are the most relevant face ar-
eas that an algorithm takes into account to carry out the
recognition process.

1. Introduction

Explainable face verification arises from the need to
have an understanding of the facial matcher models. This
methodology can help us, humans, to interpret and visualize
the models that are often considered as black-boxes. These
models are very effective, but it is not known what they do
internally, sacrificing interpretability for accuracy [22} [17].
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From this explanation, usually represented through a visu-
alization of a saliency or attention map, we can obtain a
reliable tool that provides us with information on what a
model has learned and what are the possible failures of the
model [29]. Thus, the explanation must be interpretable and
accurate, in which the limits of the model are known [21]].

In general, there have been several saliency map ap-
proaches proposed in the last years as explanations of deep
learning networks [4]. We distinguish the following ones:
methods based on the gradient of the class signal with re-
spect to the input image (Gradient-based attribution and
Grad-CAM) [26], 27, 28], [33], [3]]; a method that modifies the
network with a feedback loop to infer the activation status
of hidden layers [3]]; trained saliency models [8] [15]]; meth-
ods based on top-down and bottom-up information that es-
timates the winning probability of each neuron of the model
(Excitation Backprop) [33,[7]; a method that prunes the neu-
ral network in order to keep those neurons that contribute
to the prediction [13]]. All of them, however, require the
intrinsic model structure to manipulate or observe the out-
puts of model layers. This is not always available, or often
needs specialized knowledge of how the network has been
designed. On the other hand, there are general methods that
do not require to manipulate the network architecture. In
this family of true black-box explanation approaches, we
find LIME that uses a random selection of superpixels
and a linear decision model; RISE [19] and D-RISE [20]
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Figure 1. The proposed methods are based on how the matching
score between enrolled and probe images changes when the probe
is perturbed. The facial matcher is considered as a black-box.
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that analyze the response of the model when the input is
sampled randomly with square patches; and methods based
on perturbed input images that maximally affect the output
[10]. However, these models have been tested mainly
on object detection rather than face recognition.

For explainable face recognition, the most relevant meth-
ods that have been published are: a learnable module, xCos,
that can be added into the deep face verification model [16],
an exhaustive analysis of VGGface [18] to understand the
inner work [34], a learned structured face representation
that activates relevant face parts based on a Siamese net-
work [32], a model trained on a controlled dataset to un-
derstand its behavior [30]], and new evaluation protocols for
explainable face recognition based on triplets (probe, mate
and nonmate) and white-box saliency methods based on ex-
citation backprop among others [29]. All of them, however,
assume that they can access to the layers of the deep learn-
ing architecture used by the facial matcher. This is not al-
ways possible, especially in commercial software.

In this paper, we present a general approach to explain
face verification using true black-box methods. Thus, we
are able to analyze any facial matcher as a black-box with-
out accessing the internal structure of the facial matcher
model. In our approach, we only need the matching score
between two images (or the embedding of the individual
images to compute the score) as illustrated in Fig. [T} The
contributions of the paper are four-fold:

e A general agnostic methodology that can be used to ex-
plain any facial matcher (including algorithms based on
handcrafted features or commercial software).

e A new visualization of the saliency maps based on con-
tours as a promising alternative for the explanation.

e Explanations of face verification using five facial match-
ers, and experiments on synthetic images with different
qualities and occlusions, real face images with different fa-
cial expressions, poses, and occlusions and faces from dif-
ferent demographic groups.

e Adaption, implementation and comparison of LIME [23]]
and RISE [[19] to explain facial matchers.

2. Proposed Method

In our work, we propose six different methods to explain
black-boxes for face verification. The key idea is to evaluate
the matching between two face images A (enrolled image)
and B (probe image) by answering the question: How rele-
vant are the parts of B to establish the matching with A ?
To answer this question, our proposed methods analyze how
the matching score between face images A and B changes
when face image B is replaced by B’, a modification of B.
The approaches can analyze any facial matcher as a black-
box, i.e. with no manipulation inside of the face recognition
model, just analyzing the response under certain scenarios
as illustrate in Fig. [T}

Figure 2. Proposed saliency maps. Row-1: image pair (A,B), and
modifications of B removing one eye (B’) and one ear (B”). Row-
2: outputs of algorithm Greedy Removal after iteration t=1,2,3,8,
where the most important t regions are removed. Row-3: outputs
of algorithm Greedy Aggregation after iteration t=0,...,3, where the
most important t regions are aggregated. The matching score with
image A is given in each square. Row-4: saliency maps for algo-
rithms SO—, S1—, S0+, and S1+. Row-5: contour visualization of
fourth row. Row-6: saliency maps for algorithms SEQ and AVG,
and the corresponding contour visualizations SEQc and AVGc.

In face verification, the matching score between face im-
ages A and B is defined as follows:

s = score(A, B). (1)

Typically, it is the dot product of vectors x4 and x g, the
embeddings of images A and B respectively, with x4 =
f(A) and xp = f(B), and ||x4]| = ||xg|| = 1, so the
matching score s corresponds to the cosine similarity. The
perfect similarity, s = 1, occurs when A = B. In face
verification, if A and B are face images of the same person,
the matching score should be greater than a threshold. An
example using ArcFace [9] is shown in Fig. 2} where the
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matching score between two face images of Simone Biles
(A and B) is s = 0.5699.

We define B’ as a modification of B. For example, B’
can be the image after removing one eye of the face as il-
lustrated in Fig. 2] In this case, the matching score, using
(1), decreases to s’ = score(A,B’) = 0.4226. Another ex-
ample could be B” after removing one ear of the face as
shown in Fig. In this new case, the matching score de-
creases only slightly to s” = score(A, B”) = 0.5643. Like
human visual perception, we can say that face verification is
much more difficult when one eye is missing than when one
ear is missing [12]]. That is what happens in our example: if
we remove one eye, the matching score will decrease much
more than if we remove one ear.

2.1. Proposed Saliency Maps

Using the key idea of how score(A, B) changes when
replacing B by B’, we propose six different approaches to
build saliency maps:

o Single Removal (S0—): We define the modified face im-
age as:

B/, =Bo(1-G(0,4,5)), )

that is, a pixel-wise multiplication of image B and a mask
of the same size with values between 0 and 1, where the
elements of the mask corresponds to an inverted Gaussian
kernel of width o centered in (¢, j). In this operation, we
remove a circular region of B centered in (¢, j). An example
is illustrated in Fig. [2| (see B’ and B”). Single Removal is
performed for a set of coordinates {(, j)} distributed in a
grid manner across the image by steps of d pixels. For each
modified image, we define a saliency map value:

Hy (i,7) = score(A, B) — score(A, Bj;), 3)

that means, the different between the original score and the
modified score. In this saliency map, the larger this differ-
ence the more relevant is the removed part.

The saliency map H = Hj; has been sparsely computed,
that means, H is given only in pixels (4, j) that belong to the
grid defined in steps of d pixels. For this reason, we smooth
the obtained saliency map using a convolutional Gaussian
kernel of width o. This operation can fill the elements of
matrix H that were not considered in the grid evaluation:

D = conv(H, G(0)). 4)

Additionally, we scale the smoothed saliency map between
0 and 1 using the min-max normalization:
D-D min
S—__— —7T" 5
Dmax - Dmin ( )
The algorithm is given in further details in Algorithm[I] The
output in Fig. 2]is shown as SO-.

e Greedy Removal (S1-): We repeat the Single Removal
procedure iteratively. In each iteration, the most relevant
part of image B is removed. Thus, image B is replaced by
B;; where (i, j) is (i*,j*), the coordinates that maximize
@]). In this approach, we start with By = B, and after each
iteration we obtain image B in which the most relevant part
of image B;_; is removed. The output of each iteration in
our example is show in Fig. [2| as B—(t) for B; with t =
1,2, 3, 8 (the reader can observe that B—(0) is shown as B).
The saliency map is defined in the pixels (¢*, j*) where the
part is removed, and the saliency map value is the difference
of the new matching score with the previous one.

Hy (i%,75") = score(A,B;) —score(A,B;_1), (6)

The iteration stops when a maximal number of iterations is
achieved or the difference of the scores is low enough, that

Algorithm 1 — Removal Saliency Maps (S, and S7')
Input:
A —Face image A
B —Faceimage B
o — Width of Gaussian mask
d - Steps
0  —Minimal incremente allowed
tmax — Maximal number of iterations

N, M < size(A)
H, <« zeros(N, M)
H; <« zeros(N, M)

> height and width of face images
> initialization of saliency map
> initialization of saliency map

By +B > initialization of removing image
t +~0 > initialization of iteration counter
St «+ score(A, By) > matching score
As <+ 1 > initialization of difference of scores
while As > 6 and t < tax do

t «—t+1

St — 1

fori=0:d: N do
forj=0:d: Mdo
ng —B; 10 (1 — G(O’,ZM]))
s' < score(A, Bj;)
if t = 0 then
Hi (i,5) + so— s
if s < s; then
S¢ 8
(1", 57) < (4, 7)
B: + B;J
As +— St — St—1
H{ (i%,7%) < As
Sy« minmax(conv(Hg , G(0)))
ST < minmax(conv(Hi , G(0)))

> smooth and
> normalization

Output:

Sy,S7 > normalized saliency maps
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happens in our example by ¢ = 8 where the difference of
the scores is 0.0372 only. We use (@) and (5 to smooth
and normalize the saliency map. The algorithm is given in
further details in Algorithm[I] The output in Fig. ]is shown
as S1—.

o Single Aggregation (S0+): We define the modified face
image by considering a circular region of B in (3, j):

B}, =BoG(0,i,]), (7)

That is, a pixel-wise multiplication of image B and a mask
of the same size with values between 0 and 1, where the
elements of the mask corresponds to a Gaussian kernel of
width o centered in (4, 7). This operation corresponds to ag-
gregate a circular region of B to a black image. An example
is illustrated in Fig. [2|(see in B+(1) a region centered in the
right part of the mouth). Single Aggregation is performed
for a set of coordinates {(7, j)} distributed in a grid manner

Algorithm 2 — Aggregation Saliency Maps (Sa' and Sf)
Input:
A —Face image A
B —Faceimage B
o — Width of Gaussian mask
d
0

— Steps
— Minimal incremente allowed
tmax — Maximal number of iterations

N, M <+ size(A)

HS < zeros(N, M)
H < zeros(N, M)
Bo <« zeros(N, M, 3)

> height and width of face images
> initialization of saliency map

> initialization of saliency map

> black image

t +~—0 > initialization of iteration counter
St + score(A, By) > matching score
As <+ 1 > initialization of difference of scores
while As > 6 and ¢t < tyax do

t «—t+1

st <0

fori=0:d: N do
forj=0:d: Mdo
B}, < B;_1® (BoG(0,4,7))
s' < score(A, Bj;)
if t = 0 then
H (i,5) + 8 — s0
if s’ > s; then
S¢ 5
(1",57) (4, 7)
B: + B;J
As St — St—1
Hi(i%,5%) + As
S¢ « minmax(conv(H7 , G(0)))
ST < minmax(conv(H, G(0)))

> smooth and
> normalization

Output:

St, ST > normalized saliency maps

across the image by steps of d pixels. For each modified
image, we define a saliency map value:

Hy (i, j) = score(A, Bj;) — score(A, Z), ®)

where Z is a black image, i.e. an image of zeros of the same
size as B. That means, the larger this difference the more
relevant is the aggregated part. We use (4) and (5) to smooth
and normalize the saliency map. The algorithm is given in
further details in Algorithm[2] The output in Fig. [2]is shown
as SO+.

o Greedy Aggregation (S1+): We repeat the Single Aggre-
gation procedure several times to aggregate in each iteration
the most relevant part of image B. In this iterative process,
we start with By = Z, a black image, and after each iter-
ation we obtain image B; in which the most relevant part
of image B is aggregated to B;_;. The image of each it-
eration in our example is show in Fig. [2[ as B+(t) for B,
(the reader can observe that B+(0) is a black image). The
saliency map is defined in the pixels (¢*, j*) where the part
is aggregated, and the saliency map value is the difference
of the new matching score with the previous one:

Hi (i*,7*) = score(A, By) — score(A,B;_1), (9)

The iteration stops when a maximal number of iterations is
achieved or the difference of the scores is low enough, that
happens in our example by ¢ = 3 where the difference of
the scores is 0.0386 only. We use (@) and (3) to smooth
and normalize the saliency map. The algorithm is given in
further details in Algorithm[2] The output in Fig. 2]is shown
as S1+.

¢ Sequential Removal/Aggregation (SEQ): We start with
Greedy Aggregation until the matching score is greater than
a threshold, and we switch to Greed Aggregation until the
matching score is lower than another threshold. We re-
peat this sequence several times to find a reduced image B,
which matching score is very similar to the original one.
The reported saliency map is the corresponding saliency
map H, of the last iteration. We use (@) and (3] to smooth
and normalize the saliency map.

e Average Removal/Aggregation (AVG): The first four
procedures compute different saliency maps that show rele-
vant parts of the face image B when matching to face image
A. The strategies remove and aggregate relevant parts, and
measure individual contributions of these parts and in col-
laboration as well. For these reasons, we think that a aver-
age of these four saliency maps can provide a good insight
into the significance of each part face image B. The average
is computed as S,y = (Sg +S7 +Sg +S7)/4.

2.2. Proposed Visualization

Typically, the saliency map is visualized using a color
heat map (red for high values and blue for low values). The
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heat map is superimposed onto the face image, so in the
same face image, we can visualize the most relevant parts
of the face in red, orange and yellow, and the regions with
less significance in green and blue.

Instead of superimposition of heat maps, we propose to
superimpose contours because they do not alter significantly
the details of the face image. A contour is defined as a con-
tinuous line that corresponds to a boundary of the saliency
map having the same saliency value. In our visualization,
the color of the contours are the same colors of the heat
map and we use 8-10 contour lines.

In Fig. [2| the six proposed saliency maps are shown as
superimposed heat maps as S0-, S1-, S0+, S1+, SEQ and
AVG, and as contours as CO-, C1-, CO+, C1+, SEQc and
AVGc respectively.

3. Experimental results

In this section, we show the experimental results that we
achieved using the proposed saliency maps. Firstly, as san-
ity check [1]], we computed saliency maps for enrolled faced
with random probe images and different facial matchers.
The results show random saliency maps, which means that
the proposed methods are dependent of the model and data.

3.1. Comparison of Saliency Maps

We compare ten different explanation approaches for
face verification in the matching of eleven pairs of the same
person using ArcFace [9]. For this person, from MORPH
dataset [24], we have eleven face images as shown in the
first row of Fig. A, B, C, ... K. The first two ones are
original face images, the last nine images are synthetic ver-
sions of image B as follows: images C, D, E are images
with different resolutions; images F, G, H with different
blurriness; images images I, J, K are images with occlu-
sions (eye patch, eyes with black rectangle, and face-mask
respectively). The eleven pairs for the face matching eval-
uation consist of pairs (A,A), (A,B), (A,C), ... (AK), i.e.
all pairs have image A as first image (enrolled image), and
each of the eleven images as second image (probe image).

The ten saliency maps to be compared are shown in Fig.
LIME [23]] (adaption of original algorithm that shows the
relevant parts of the face image), LIME-map (saliency map
of LIME), RISE [19]] (adaption of original algorithm using
square masks), RISE-Gauss (RISE algorithm with Gaus-
sian masksﬂ and our six proposed algorithms described in
section[2.1} SO—, S1—, SO+, S1+, SEQ and AVG.

For the not-occluded face images (from A to H) —face
images with different degrees of quality—, we distinguish
saliency maps based on LIME and RISE approaches do not

'We create LIME-map (random selection of superpixels with a saliency
map using RISE strategy) and RISE-Gauss (that replaces squares by Gaus-
sian masks) as simple modifications of the original algorithms.

show always relevance in the periocular region and nose.
That is not the case of five of the six proposed methods (ex-
cluding SEQ that shows sometimes saliency outside of the
face). In particular, AVG is very stable in the center of the
face, showing the best results in this experiment.

A similar performance is achieved with occluded faces
I, J, K, where the most relevant information of the face is
in the not occluded parts of the face. We observe that the
saliency maps of the proposed methods focused on the rele-
vant parts of the faces (and not on the occlussion). In these
images, again LIME approaches do not offer good results,
however, RISE approaches can be used to explain occluded
faces. The disadvantage of LIME and RISE methods is the
random component in the evaluation, this indicates that the
results vary slightly with each run of the algorithm.

In our experiments, the proposed method AVG is very
stable and focused on the relevant parts of the face images.
In addition, we believe, that the visualization of the saliency
map using contours, as can be seen in AVGc in Fig.
shows a very promising alternative for the explanation. The
contour visualization highlights the most important areas of
the face using colored lines, without altering much of the
visual information of the face.

For these reasons, in the next experiments, the results of
the saliency maps are presented using AVGC, that means, it
is the average of the first four proposed saliency maps (SO0—,
S1-, S0+, S1+) using contour visualization.

3.2. Evaluation of Facial Matchers

In this section, we report the results in five different face
verification algorithms achieved by our proposed method
AVG using contour visualization. The five algorithms are
ArcFace [9], DIib [14], FaceNet [25] (trained on VGGface2
[6] and Casia-WebFace [31]]) and LBP (local binary pat-
terns) [2]]. The first four algorithms are methods based on
deep learning, and the last one is a method based on hand-
crafted features developed before the deep learning age.

For the evaluation of the face verification algorithm we
use 18 pairs using 18 face images of Angela Merkel, as
shown in Fig. in the rows called original: A, B, C, ... R.
All of them are original face images with different facial ex-
pressions, poses, and occlusions (with her hands, face-mask
and a glass of wine). The 18 pairs for the face matching
evaluation consist of pairs (A,A), (A,B), (A,C), ... (A,R),
i.e. all pairs have image A as first image (enrolled image),
and each of the 18 images as second image (probe image).

From the results shown in Fig. [] it is clear that the
explanation of LBP reveals that this method is making its
decisions by paying attention to parts of the face that are
obviously not relevant, because many saliency maps are fo-
cused on occluded parts and does not consider the perioc-
ular area to be of major relevance. On the other hand, the
results for the four methods based on deep learning show
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methods are SO—, S1—, S0+, S1+, SEQ and AVG. The last row (AVGC) is the contour visualization of AVG.

more interpretable explanations, because the saliency maps
are focused on relevant parts. In addition, these methods
exclude in the vast majority of cases the occluded zones
of the faces. From the four deep learning methods, Dlib
is probably the most questioned because the maps are very
focused on small regions of the face, downplaying other ar-
eas of the face that should contribute to facial recognition.
The other three methods (ArcFace, FaceNet trained on VG-
Gface2 and Casia-WebFace) make good use of the areas of
the face, highlighting the focus on the periocular area and
the nose.

3.3. Explanations on Demographic Groups

In our last experiment, we try to answer the question
about what are the most relevant parts of the face when deal-
ing with demographic groups. For this end, we use MORPH
data set [24] and select randomly 100 pairs (of 100 differ-
ent persons) for each of the following demographic groups:
FB black female, FW, white female, MB black male, MW,
white male, F female, M, male, B black, and W white. For
each group, we compute the mean of the 100 saliency maps
using our proposed approach AVG. The results for five face
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Figure 4. Saliency map using proposed method AVGc for five face verification algorithms between image A and images A, B, ... R.

verification approachs (ArcFace, Dlib, Facenet (trained on ence across the demographic groups, because the saliency
VGGface?2 and Casia-WebFace) and LBP) are shown in Fig. maps (in each face verification method) are very similar to
[l In this figure, a representative face of the demographic each other. There are differences between the face verifica-
group is presented as background. The most important re- tion methods, but no major differences between the demo-
sult in this experiment, is that there is no significative differ- graphic groups.
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Figure 5. Explanations using AVGc on demographic groups of MORPPH: F/M - Females/Males, B/W - Black/White.

Again, the explanation of LBP reveals that this method
is making its decisions by paying attention to parts of the
face that are not relevant (for example the gray top corners
of the images). Additionally, the lines of saliency maps of
LBP are rather horizontal than concentric.

On the other hand, the deep learning methods show ring
patterns centered in the center of the face. In ArcFace, the
center is clearly in the nose. As in previous experiment, the
explanation for the four methods based on deep learning are
more interpretable to humans, because the saliency maps
are focused on the faces.

3.4. Implementation

The proposed methods have been implemented in
Python using Google Colalﬂ Computational times for each
pair are approx. 1, 3, 1, 3, 6, 6 minutes for SO—, S1—,
S0+, S1+, SEQ and AVG respectively. In our experiments:
N =M =256,d =8,0 =19,60 = 0.05, tmax = 20. The
parameters were set manually.

4. Conclusions

In this paper, we present different saliency maps that can
be used to explain any face verification algorithm. The key
idea of the methods is based on how the matching score of
two face images changes when replacing one of the face

2Code and images are available in https: //domingomery.ing.
puc.cl/material/.

images with a modification of itself. We propose six differ-
ent approaches to build saliency maps avoiding any manip-
ulation inside of the face recognition model. Four of these
methods remove and aggregate relevant parts of the face,
and measure individual contributions of these parts and in
collaboration as well. The other two methods use combi-
nations of these four methods, where the most promising
result has been achieved by the average of the four men-
tioned methods, yielding stable saliency maps focused on
relevant parts of the faces. We test and compare our pro-
posed methods in three different scenarios: synthetic im-
ages with different qualities and occlusions, real face im-
ages with different facial expressions, poses, and occlusions
and faces from different demographic groups. In our exper-
iments, five different face verification algorithms are used.
Moreover, we propose a new visualization of saliency maps
based on contours. Instead of superimposition of heat maps,
we propose to superimpose contours because they do not al-
ter significantly the details of the face image. The contour
visualization shows a very promising alternative for the ex-
planation. This paper presents a qualitative explanation of
any face verification algorithm, in which it can be clearly
appreciated which are the most relevant face areas that an
algorithm takes into account to carry out the recognition.
We believe that our approach can be used to evaluate com-
mercial off-the-shelf face recognition systems as well.
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