
ForeSI: Success-Aware Visual Navigation Agent

Mahdi Kazemi Moghaddam, Ehsan Abbasnejad, Qi Wu, Javen Qinfeng shi and Anton Van Den Hengel
The Australian Institute for Machine Learning

The University of Adelaide
mahdi.kazemimoghaddam, ehsan.abbasnejad, qi.wu01, javen.shi and anton.vandenhengel@adelaide.edu.au

Abstract

In this work, we present a method to improve the effi-
ciency and robustness of the previous model-free Reinforce-
ment Learning (RL) algorithms for the task of object-goal
visual navigation. Despite achieving state-of-the-art re-
sults, one of the major drawbacks of those approaches is
the lack of a forward model that informs the agent about
the potential consequences of its actions, i.e., being model-
free. In this work, we augment the model-free RL with such
a forward model that can predict a representation of a fu-
ture state, from the beginning of a navigation episode, if
the episode were to be successful. Furthermore, in order
for efficient training, we develop an algorithm to integrate
a replay buffer into the model-free RL that alternates be-
tween training the policy and the forward model. We call
our agent ForeSI; ForeSI is trained to imagine a future la-
tent state that leads to success. By explicitly imagining such
a state, during the navigation, our agent is able to take bet-
ter actions leading to two main advantages: first, in the ab-
sence of an object detector, ForeSI presents a more robust
policy, i.e., it leads to about 5% absolute improvement on
the Success Rate (SR); second, when combined with an off-
the-shelf object detector to help better distinguish the target
object, our method leads to about 3% absolute improvement
on the SR and about 2% absolute improvement on Success
weighted by inverse Path Length (SPL), i.e., presents higher
efficiency.

1. Introduction
Object-goal visual navigation is the task where an agent

needs to navigate towards an instance of a given target ob-
ject in a previously unseen environment. This is an inher-
ently challenging problem since the agent needs to find the
shortest possible sequence of actions to first find a target ob-
ject (i.e. to intelligently explore) and then navigate towards
it (i.e. to plan and act accordingly while avoiding obstacles)
in a visually complex 3D environment [6, 20, 32, 38, 40].
The task is further complicated when at each time step the
agent only receives limited field-of-view visual inputs only.

Target: Toaster
I can imagine if I reach
the sub-goal I may find

the toaster.

Sub-Goal

Figure 1. Enabling an agent to imagine, i.e., to predict, states on
the path to success improves its ability to carry out complex tasks,
particularly in unseen environments. As opposed to the conven-
tional approaches, our ForeSI agent takes actions not only based
on the current state, but also a prediction of a successful future, to
achieve its goal.

This means the agent will need to learn simultaneously to
(1) build a good state representation that enables the agent
to localise itself as well as the target (if observed at some
point) and (2) efficiently use that state representation to (im-
plicitly) plan and navigate towards the target while avoiding
the obstacles. In a navigation episode, from every starting
point, there are typically multiple action sequences (i.e. tra-
jectories) that could lead to success, let alone the sequences
that might fail. Learning to select the right action at each
time step to create a trajectory that leads to the specified
target object is the primary challenge.

To tackle this problem, model-free RL algorithms are
typically used to train a single policy to perform all the
aforementioned tasks implicitly by mapping the input vi-
sual observations into the actions [3, 7, 8, 25, 39]. Explic-
itly incorporating the transition in the environment to pre-
dict the potential outcome of the actions, hailed model-
based RL, is also developed on other tasks and environ-

691

ments [10, 11, 13, 16, 42]. Those methods, however, are
generally harder to train, especially in a 3D rich environ-
ment, since every state transition in the environment has to
be accurately modelled. Therefore, their successful appli-
cation has been limited to much simpler benchmarks such
as Atari [13, 16, 33], Deepmind Control Suite [11, 12] or
robotic arm tasks [27, 29, 43]; unlike those problems, in
visual navigation, the testing environment is unseen, visu-
ally much more complex and at times significantly different
from the observed training environments.

To mitigate the above mentioned issues we propose our
Foresight Sub-goal Imaginator (ForeSI) agent. Intuitively,
as shown in Figure 1, ForeSI enables the agent to have a
foresight of a future sub-goal state through which it is more
likely to successfully achieve its goal. By explicitly incor-
porating the sub-goal information into the policy, the agent
can take better actions even when the target is not in the
field of view of it.

In particular, ForeSI helps with the navigation in two
main ways: firstly, it provides the agent with an imagined
(i.e. predicted) representation of a sub-goal state that will
help with successful task completion, i.e. stopping at the
right location; our empirical results in the absence of an ob-
ject detector support this hypothesis; secondly, it helps the
agent to constantly remember the sub-goal state to navigate
to even if that state is temporarily out of the field-of-view of
it; i.e. it improves the navigation efficiency. In summary, in
this work, our primary contributions are as follows:

1. We propose a method to enable visual navigation
agents to generate foresight of the states on the path
to success, i.e. sub-goal states, conditioned on the first
state and the target object.

2. We propose an attention mechanism for state-value es-
timation that helps to identify the sub-goal state used
to train our sub-goal generation module.

3. We propose an algorithm to efficiently integrate our
method into model-free RL which re-utilises the past
trajectories in hindsight via incorporating a replay
buffer; thus ForeSI does not require extra data collec-
tion.

4. We show the effectiveness of our method in improving
visual navigation performance when added to multiple
different baselines with different perception methods
and environment setups on AI2THOR [20].

2. Related Work
Visual Navigation Research on visual navigation has at-
tracted higher attention in recent years mainly due to the
availability of photo and sensor realistic 3D simulators
[6, 20, 32, 38, 40]. Various methods [4, 5, 8, 21, 39, 41, 44]
have been proposed. Some of them use Imitation Learning
(IL) as an approach to initialise a better policy [7, 8] when
expert demonstrations (i.e. state-action pairs) are available;

however, those demonstrations are expensive to collect in
real-world and methods trained using IL only typically suf-
fer from lack of generalisation. Therefore, model-free RL
algorithms are at the heart of most of the previous ap-
proaches [4, 5, 39, 41, 44]. In [39] the authors propose to
use meta-learning [9] to enable test-time adaptation while
in [7] and [8] the authors focus on improving the percep-
tion; in [7] the authors develop a graph neural network that
uses an off-the-shelf object detector [30] to exploit object
co-occurrence relationship. In a more recent work, Du et
al. [8] propose to further improve the perception by devel-
oping a Transformer [36] model to learn the object relations
more efficiently. In contrast to those works, the main focus
of our work is to improve the core RL algorithm by ex-
plicitly modelling the successful future of trajectories and
integrating that into the policy for more robust and efficient
decision making; we show our method works well along
with multiple different perception modules [7, 22, 39, 41].
For the first time, we augment model-free visual navigation
methods with a forward model that works well. Therefore,
in what follows we also review closely related methods de-
veloped on other problems/ tasks.
Model-Based RL ForeSI uses a forward model to gen-
erate future state representations, thus is closely related to
model-based RL [13, 16, 17, 33, 43]. In [37] the authors
train a recurrent model of the environment dynamics that
can be used for planning by unrolling an episode in imag-
ination. Similarly, in a more recent method [11, 13], the
authors train the policy purely on imagined episodes. In
all of those methods, the environment model is a recurrent
reconstruction-based model inspired by [10] which models
every state transition. Those methods have only recently
surpassed the model-free performance only on simpler toy
environments [16]; their generalisation to realistic visual
navigation in a 3D environment has not yet been explored
which means our method is the first step towards enabling
model-based RL in visual navigation. Moreover, in contrast
to those methods, we enable longer-term single-step for-
ward modelling which boosts the navigation performance
in unseen environments.
Experience Replay Modifying the distribution of
episodes in a replay buffer, known as hindsight experience
replay, has been explored in other applications [2, 31, 35].
The core idea of those approaches is to modify the distri-
bution of goal states in the replay buffer (i.e. hindsight) to
train a more generalisable policy able to reach arbitrary
goals provided during test time. Differently from them,
here we introduce a method that is trained in hindsight and
tested in foresight to generate successful (sub-)goal states
for visual navigation.
Goal-Conditioned RL Our method is also closely related
to goal-conditioned RL where the policy is trained while
conditioned on a given goal state. In [28] the authors use

692

W
o

rd

Em
b

ed
d

in
g

𝐽𝜋

Target:
Toaster

Sec. 4.3 & 4.4

FC

FORWARD

Replay
Buffer

FILL IMAGINATION BUFFER

𝐿𝐼

𝑺𝒐𝒇𝒕𝒎𝒂𝒙

𝐽𝑉
Sec. 4.2

ො𝒔𝝉

FC

𝜶

LSTM

Sec. 4.1

CNN
𝑉

𝜼

𝑰𝝉

𝒈𝝉

𝒔𝟎

𝝅(𝒔𝒊)

𝒔𝒕

𝑓𝒘

𝒎𝒂𝒙

Figure 2. We develop an attention mechanism to identify the sub-goal state that minimises the critic error (in hindsight, at the end of
an episode) and train our sub-goal generator to predict that state (in foresight, in the beginning of the episode). Our training algorithm
efficiently integrates ForeSI into actor-critic RL while avoiding extra data collection.

combinatorial optimisation on the states encoded using a
Variational Auto-Encoder (VAE) [19] to find a set of reach-
able sub-goals along a past trajectory. They use the selected
sub-goals to optimise the policy using Q-learning [24], an
off-policy RL algorithm. In [26] the authors use self-
imagined goals to train the agent to reach arbitrary goals.
Most recently, in [18] the authors use a VAE to learn to
generate goals during test time. While those methods are
related to ours, there are two fundamental differences: (1)
unlike ours, the application of those methods has been lim-
ited to simpler environments where there is little to no dif-
ference between training and test environments; (2) unlike
those most of those methods we use the selected sub-goals
during the training to learn to generate them in unseen test
environments, for the success.
3. Background

In visual navigation, the objective for the agent starting
from a random initial location is to take a sequence of ac-
tions (collectively, a trajectory) to reach a given target object
using only observed ego-centric RGB visual inputs. A nav-
igation episode ends if either the agent takes the ”STOP”
action or the maximum number of permitted actions is ex-
hausted. A trajectory is considered successful if the agent
stops within a defined circular proximity of any instance of
the target object. This problem is conventionally defined as
a Partially-Observable Markov Decision Process (POMDP)
denoted by the tuple {O,S,A,G,P, r, γ} [22]. Here, O is
the space of visual observations, S is the state space as en-
coded and observed internally by the agent, A is the action
space, G is the set of target objects given by the environ-
ment, P := p(st|st−1, at−1) is the transition function or
environment dynamics model (unknown) for state st ∈ S,
and r is the reward function and γ is the reward discount
factor.

Formally, a trajectory τ of length T + 1 consists of
a tuple (s0, a0, r0; s1, a1, r1; ..., sT , aT , rT) that is gener-
ated by taking action at at time t and observing the next
state according to the dynamics of the environment st+1 ∼

p(st+1 | st, at). A reward rt = r(st, at, st+1) is received
from the environment at each time step, which is conven-
tionally [7, 8, 39, 41, 44] defined as a large positive number
for a successful trajectory and a negative step penalty oth-
erwise, to encourage success in lowest possible number of
actions.

A common approach is to use actor-critic RL methods
for learning the optimal policy1 [7,39,41,44] for navigation
πθ(at | st,gτ ,θ) to choose action at at time t conditioned
on an embedding of the target object’s name gτ (e.g. us-
ing GloVe embedding [15]) for a given environment (i.e. a
room in AI2Thor) E. We use θ to denote the set of all the
parameters of the RL policy. Learning involves minimis-
ing Jπ(at | st,θ) the negative of expected advantage func-
tion while minimising the difference of the estimated value
function and the true return JV (st,θ) where we have:

Jπ(at | st,θ) = − log π(at | st,gτ ;θ)(rt + (1)
γVθ(st+1)− Vθ(st)) + βHHt(π)

JV (st,θ) =
1

2
(Vθ(st)−R)2 (2)

and R = Eτ∼π[
∑T

i=t γ
tri | st]. Here, Ht is the entropy

of the policy that acts as a regularizer with βH as its hyper-
parameter. The value function acts as a critic for the policy’s
generated actions. Typically random samples from the envi-
ronment containing various room types are taken by rolling
out the policy to obtain state-action-reward tuples to com-
pute those terms. Note that the value function is the only
information the agent has about the future potential of the
current state during training. However, during the test time,
the value function is not used by the agent anymore.

4. ForeSI
In this section we present details of our approach to en-

able explicit future sub-goal, or foresight, generation during
1Here, we drop the explicit dependency on the visual observations since

our state st is learnt using a (recurrent) deep neural network that captures
its representation.

693

the navigation.

4.1. Method Overview
Having a single policy with which to achieve various vi-

sual navigation tasks based solely on a target object’s name
is not trivial. The aim of our Foresight Sub-goal Imaginator
(ForeSI) agent (see Figure 2) is to enable predicting (i.e.,
imagining) a sub-goal state2 through which the agent has
maximal chances of success. Incorporating such a sub-goal
in the policy enables the agent to take better actions since it
has an indication of what states are important to visit in the
future and eliminates a need for unnecessary exploration at
test time. There are two main challenges to overcome: (1)
to determine the sub-goal state to be learned

In determining the sub-goal state to be learned, we note
that the sub-goal most valuably imagined is that with the
highest impact towards receiving the maximum reward. In
other words, the optimal sub-goal is the one with which we
could learn the best value function to estimate the expected
reward. Intuitively, when the agent reaches the optimal sub-
goal, finding the target and receiving the maximum reward
should be easy (see Section 4.2).

Once we find the optimal sub-goal, we can train a model
to predict or imagine 3 an instance for an unseen environ-
ment. To that end, we collect a replay buffer of the success-
ful trajectories to train our sub-goal generation module. In-
tuitively, when an agent navigates through particular states
to achieve its goal, imagining the sub-goal from a related
successful trajectory helps the agent to identify how to plan
and take actions in unseen environments (see Section 4.3).
This imagination is conditioned on the initial state and the
target object and is integrated into a parallel execution of the
policy in Asynchronous Advantage Actor-Critic (A3C) [23]
for best performance. This allows the agent to learn to both
imagine and navigate (see Section 4.4).

4.2. Hindsight: Learning to Identify Sub-Goal
In the first step, we consider learning to identify the sub-

goal state through which a navigation episode is success-
ful. To that end, the agent has to consider its current state
and the sub-goals it has navigated through with their corre-
sponding visual, target object and dynamics representation.
Intuitively, for the agent to obtain a high reward in a straight
path through a hallway, for instance, it should have chosen
the best action while at the previous corner to be success-
ful. Since the only aspect of the RL that considers the fu-
ture reward is the value function, we modify Eq. (1) using a
residual function of the past states as:

Vθ(st) ≈ Vθ(s
⋆
t), s⋆t =

t∑
j=0

αjvω(sj) + st . (3)

2Note that a sub-goal state could potentially be the final goal state.
3Note we use sub-goal generation, imagination and prediction inter-

changeably throughout this work.

Here, vω(sj) is a linear function of the input and αj is the
jth dimension of α, which is defined as follows:

α = softmax
(
qω(st)kω([s0 : st])

⊤
√
t+ 1

)
. (4)

Here, qω and kω are linear functions analogous to the query
and key in an attention mechanism [36] with s0:t the con-
catenation of the states up to time t. We denote all of our
sub-goal selection parameters by the set ω. Moreover, αj is
the correlation between state j and the current state t, and
its magnitude specifies the likelihood that state j is an im-
portant sub-goal to reach.

Effectively, we use the attention mechanism described
above to identify the sub-goal state that minimises the state
value function estimation error. Using the key-query prod-
uct above we choose the state in the past that is most related
with the current state. Interestingly, if the state is novel (i.e.,
uncorrelated with the past states) we allow the agent to as-
sign a high attention weight to its most recent state. We
select the state with the maximum attention weight as the
sub-goal state at the end of an episode, i.e., ŝτ = st∗ where
t∗ = argmaxt αt (note α has length T + 1). We subse-
quently task ForeSI to learn to generate this sub-goal. Us-
ing this method we ensure that the imagination will guide
the policy towards a state that has the highest correlation to
a successful goal state. Additionally, allowing for the sub-
goal state to be different from the previously achieved goal
state helps avoid repeating the potentially sub-optimal tra-
jectories.

4.3. Foresight: Learning to Generate Sub-Goal
For learning to imagine, or generate, the selected sub-

goal state ŝτ we consider a replay buffer. The replay buffer,
denoted by M is filled with tuples of (s0,gτ , ŝτ), an initial
state, an embedding representation of the target object gτ

for trajectory τ and the sub-goal. We then devise the fol-
lowing objective to train our sub-goal generation function
fw:

min
w

E(s0,gτ ,ŝτ)∼M

∣∣∣ŝt − fw([s0 : gτ])
∣∣∣ (5)

where w is the set of parameters of our the sub-goal gener-
ation module and [:] denotes concatenation of vectors. For
fw we use a multi-layer percepteron and a bottleneck with
the intuition that the structure of the sub-goal distributions
lies in a lower dimensional space. Intuitively, the imagina-
tion module does not need to generate every single dimen-
sion of the state accurately, since there might be unneces-
sary information about the other objects or the background
scene in the representation. It might also include dynamic
objects that constantly change location and/ or appearance
across different environments. Using a smooth version of
an L1 loss, we avoid penalising such inexact predictions too
harshly.

694

We use a shared recurrent state encoding for both the
policy and the sub-goal generation module. Therefore, the
generated sub-goal state representation not only has infor-
mation about the sub-goal’s visual appearance but also en-
codes the history of the past observations and actions before
that state. Hence, we essentially generate a representation
of the whole trajectory that leads the agent to a successful
goal state. Furthermore, sharing the state encoder that is
trained along with the policy helps generate sub-goal states
that are directly useful for the action selection. This is as
compared to methods such as [10] where the agent needs
to first perform a random policy search to collect a dataset
from the environment, and then use only the visual features
for generating future states.

Since computing the expectation in Eq. (5) is imprac-
tical due to the buffer size and the constant change in the
distribution of states, we only consider the latest collected
tuples to update the model’s parameters. That is, we update
the model when |M |= Mmax and empty the buffer.

4.4. RL Integration
To use ForeSI we condition the policy on the imag-

ined sub-goal state. This way the policy learns to take ac-
tions based on the current state and the imagined one to
achieve its goal. One potential issue with this approach is
that it could bias the policy towards exploiting the known
imagined sub-goal states and avoiding essential exploration,
hence degrading the performance. We address this issue by
adding Gaussian noise to the imagined states. Therefore, in
practice the generated sub-goal is as follows:

at ∼ πθ(at | st,gτ , Iτ) and,

Iτ = fw([s0 : gτ]) + η, η ∼ N (0, σ2I) (6)

Here, 0 is a vector of all zeros, I is the identity matrix, and
σ2 is the variance of the noise. The additive noise is de-
cayed during training to allow more exploration when the
agent is more unsuccessful (i.e., the imagination is not ro-
bust enough) and exploit otherwise. We choose the noise
level by adjusting the variance, that is,

σ2 = max(σ2
max − ρ, 0) (7)

where σ2
max is a pre-defined maximum variance threshold,

and ρ is a moving average of the success rate over the past
episodes. This simple heuristic ensures the noise level is
proportionate to the success rate, for instance, if ρ = 0.9
and success rate is around 90% we completely remove the
added noise.

Finally, we integrate the sub-goal selection and the imag-
ination into the on-policy Asynchronous Advantage Actor-
Critic (A3C) [23] algorithm which allows for efficient and
parallel training of multiple agents. We revise the training

Algorithm 1: Training One ForeSI Agent
Randomly initialise θ,w,ω
Initialise replay buffer M = ∅
σ2 = σ2

max ▷ Imagination Noise
while episode < MAX EPISODE do

(s0, gτ) ∼ ERND ▷ ERND is a random environment
Iτ = fw([s0 : gτ] + η, η ∼ N (0, σ2I) ▷ Eq. (6)
while at ̸= STOP & t ≤ T do

at ∼ πθ(a | st,gτ , Iτ)
end
Compute α using eq. (4) for the trajectory
Update θ and ω via eq. (8) and (9)
if trajectory is successful in the environment then

ŝτ = st∗ , t∗ = argmaxt αt

M = M ∪ {s0,gτ , ŝτ} ▷ Update Buffer
Update the average success rate ρ
if |M |= Mmax then

for epoch ≤ Epochmax do
for {s0,gτ , ŝτ} ∈M do

ω ←− ω − β∇w|ŝt − fw([s0 : gτ])|
end

end
M = ∅

Update σ2 ▷ Eq. (7)
end

objectives to integrates ForeSI into A3C:

J ⋆
π (at | st,θ) = − log π(at | st,gτ , Iτ ;θ)(rt + (8)

γVθ(s
⋆
t+1)− Vθ(s

⋆
t)) + βHHt(π)

J ⋆
V (st,θ) =

1

2
(Vθ(s

⋆
t)−R)2 (9)

We summarise the training of our approach in Algorithm 1.
As may be observed, in the spirit of A3C, each agent stores
its own replay buffer and computes its noise level hyper-
parameter proportionate to its moving average success rate.

5. Experiments
In this section we present implementation details of

our method as well as extensive experiments to show how
ForeSI improves the visual navigation performance of mul-
tiple significantly different baselines.

5.1. Experimental Setup
We use the AI2THOR [20] environment to benchmark

our results. The simulator consists of photo-realistic indoor
environments (i.e., houses) categorised into four different
room types: kitchen, bedroom, bathroom and living room.
We run our experiments on two distinct setups of this sim-
ulator for fair comparison against previous state-of-the-art
approaches. In both of those setups 20 different scene lay-
outs of each room type are used for training; 5 scenes for
validation and 5 for the test. We provide the final results
on the test set based on the best performing model on the

695

Method SPL SR SPL>5 SR>5
First Setup

A3C [39] 14.68 33.04 11.69 21.44
A3C+MAML [39] 16.15 ±0.5 40.86 ±1.2 13.91 ±0.5 28.70 ±1.5
A3C+ForeSI 15.23 ±0.4 36.80 ±1.1 13.14 ±0.3 27.55 ±1.4
A3C+MAML+ForeSI 16.75 ±0.5 45.5 ±1.0 15.8 ±0.6 34.7 ±1.1

Second Setup
A3C+ORG [7] 37.5 65.3 36.1 54.8
A3C+ORG+ForeSI 39.41 ±0.3 68.0 ±0.6 36.85 ±0.4 56.11 ±0.8

Table 1. A quantitative comparison of our method against four representative baselines. The baseline methods are significantly different in
perception, policy modelling and environment setup. ForeSI improves the performance of all of them including the previous state-of-the-
arts [7, 39]. SPL>5 and SR>5 show the metrics for trajectories longer than 5 steps.

validation set. For a fair comparison, we follow the exact
object configuration and target object list according to the
baseline methods.

In the first setup, we follow the configuration as used
in [39,41]. In this setup the target object is selected from the
following list: pillow, laptop, television, garbage can, box,
bowl, toaster, microwave, fridge, coffee maker, garbage
can, plant, lamp, book, alarm clock, sink, toilet paper, soap
bottle and light switch. Here a trajectory is considered suc-
cessful if the agent stops within 1 meter circular proximity
of the target object while the object is visible in the ego-
centric view of the agent.

In the second setup, we follow the configuration recently
introduced in [7]. The distribution of the target objects and
the object location configuration in this setup is significantly
different. The following objects are added to the list of the
targets compared to the first setup: cellphone, chair, desk
lamp, floor lamp, kettle, pan, plate, pot, remote control,
stove burner; moreover, the following objects are removed
from the list in the first setup: pillow, box, plant, lamp, toilet
paper, soap bottle. The difference in the target objects can
also affect the navigation performance due to differences in
size, distant visibility etc. Lastly, here the successful tra-
jectory criterion is relaxed to a 1.5 meters circular distance
around the target object.

Following the recent conventions in visual navigation
tasks [1, 7, 39, 41] we evaluate the performance of our
method using two main metrics: Success Rate (SR) and
Success weighted by inverse Path Length (SPL), calculated
as

∑
si

Lg
i

Li
, where Lg

i is the ground truth shortest path to
the target, Li is the length of the trajectory as taken by the
agent and si is the binary success indicator.

5.2. Implementation Details
We use A3C [23] as the basis of our method. This actor-

critic algorithm is a good fit for visual navigation tasks
since the agents can explore in parallel and asynchronously,
which is more computationally efficient. Our method can
potentially be integrated into other actor-critic algorithms
since it only relies on the critic to identify the sub-goals

during the training.
Our backbone model comprises a single layer LSTM

state encoder with 512 hidden states. The input to the
encoder at each time step is the visual features extracted
from a pre-trained ResNet-18 [14] and the Glove embed-
ding [15] of the target object, as visualised in Figure 2. Note
the Glove embedding in the second setup is replaced with
a one-hot vector embedding following the settings in [7].
The policy comprises of a single fully-connected layer that
outputs the distribution over 6 actions, {RotateLeft, Rota-
teRight, MoveAhead, LookDown, LookUp, Stop}, using a
Softmax activation function. The state-value head is a two-
layer MLP that maps the attended state representation to a
single scalar value. We use a reward of 5 for task comple-
tion and a negative step penalty of -0.01 for each taken ac-
tion. We implement the attention mechanism as three fully
connected layers of size 512 that map the query, key and
value.

Our ForeSI’s fw comprises 6 fully connected layers that
receive the concatenation of the state representation and
the target object embedding as input. We use a tanh non-
linearity in all layers to mimic the behaviour of the LSTM
state encoder.

We use a replay buffer of size 32 for each agent to train
its sub-goal generation module separately. We, then, trans-
fer the learnt weights to a shared model between the agents,
asynchronously, and we empty the replay buffer. For the
additive noise in sub-goal generation (see Section 4.4), we
use σ2

max = 0.9 and the last 100 episodes to compute the
moving average for the success rate.

5.3. Results
In Table 1 and Table 2 we compare our approach to that

of state-of-the-art baselines in two separate simulator se-
tups as discussed in Section 5.1. The first baseline, A3C,
is only using the backbone model described in Section 5.2
trained using A3C RL algorithm. This is the main baseline
that shows how a simple RL objective can perform without
any extra components or modifications. A3C+ForeSI is the
variant of A3C upgraded with our method. We see that em-

696

Method Bathroom Bedroom Kitchen Living
First Setup

+MAML 28.49/69.6 8.65/29.2 17.8/43.6 7.71/21.6
+MAML+ForeSI 27.03/73.6 8.81/27.6 21.55/54.0 9.61/26.8

Second Setup
+ORG 49.87/83.89 35.43/62.21 38.63/69.02 29.33/47.83
+ORG+ForeSI 47.44/80.4 38.15/65.6 41.09/72.87 30.39/52.14

Table 2. Detailed comparison against previous state-of-the-art
methods on the two different setups; SPL/SR are reported per
room type. Our method is general enough to improve performance
in 3/4 of the room types, with a marginal performance impact on
1/4. Notably, we improve the SR of trajectories in the ”kitchen”
and ”living room” by a large margin where the trajectories are gen-
erally longer and generating the sub-goal is more important.

powering the agent with forward modelling improves the
success rate by more than 3%. The improvement on longer-
horizon tasks, i.e., longer trajectories, is even more signifi-
cant, more than 6%. We conjecture that this is mainly be-
cause in longer trajectories, in the absence of ForeSI, the
agent can more easily forget the objective by focusing more
on short term tasks such as obstacle avoidance. Further-
more, in longer trajectories, it is, also, more likely to follow
a path that does not lead to success from the very beginning
when ForeSI is not used. Using ForeSI, however, helps the
agent to constantly remember the (sub-)goal and, thus, take
the actions that are more likely to achieve the goal.

Additionally, we, also, evaluate the performance of our
approach when used along with a self-adaptive baseline,
where we utilise meta-learning similar to A3C+MAML
[39] for test-time policy adaptation. A3C+MAML shows a
considerable performance boost over the simple A3C base-
line as shown in Table 1. Despite that, when combined
with our method in A3C+MAML+ForeSI we observe an
additional absolute improvement of around 5% in success
rate on both the short and long trajectories. This further
demonstrates the modularity of our approach by showing
that it improves both adaptive, and non-adaptive, baseline
methods. Note that while the absolute improvement in both
the short and long trajectories present similar figures, the
relative improvement is much larger for long trajectories.
This, again, supports the previous hypothesis that our imag-
ination can effectively help address both the LSTM forget-
ting problem and finding the correct path to the success-
ful target. Furthermore, nearly 2% improvement compared
to A3C+MAML+ForeSI on the SPL over the long tra-
jectories implies that ForeSI helps avoid futile wandering
around.

The third baseline that we compare our method against is
A3C+ORG [7]. In that method the authors use an off-the-
shelf object detector, i.e. FasterRCNN [30], and incorporate
the detected object bounding boxes along with their confi-
dence scores into the policy by building a neural graph, in-
spired by [41]. Their method builds a better state represen-
tation that renders finding target objects much easier for the

agent. As long as the objects are detected by the object de-
tector the agent can learn to directly navigate towards them
taking a relatively short trajectory. The authors also modify
the environment setup as discussed in Section 5.1. There-
fore, we find that a suitable baseline to compare against
to demonstrate the modularity of our approach. We build
our approach using their method as the backbone which we
call A3C+ORG+ForeSI. We observe that our method im-
proves the success rate by over %2 compared to [7]. This
shows that irrespective of the quality of the state representa-
tions empowering the agent with a forward model using our
method can help improve the navigation performance. Note
that we do not further compare our results with the addition
of imitation learning into this problem, as the authors did
in [7]. This is because, in this paper, we are only concerned
about integrating a forward model into model-free RL.

5.4. Ablation Studies
What to Imagine: In our approach, we learn to generate
the sub-goal state from the agent’s own successful naviga-
tion episode; we could, however, consider alternative ap-
proaches that we compare here. Firstly, we seek to answer
whether our ForeSI provides the agent with valuable infor-
mation about its future sub-goal states.

In Table 3, we consider a random state generation by re-
placing the output of our sub-goal generation with tanh(s)
where s is sampled from a Gaussian noise, i.e. s ∼
N (0, 0.5I), shown in Ours-RND. The tanh non-linearity
assures that the noise is similar in values to the states gener-
ated by our sub-goal generation, but are nonetheless rather
random and meaningless. As observed, this leads to a dete-
rioration in the success rate compared to the original base-
line, A3C+ORG. We hypothesise that, because it is unin-
formative, the policy learns to dismiss the randomly gen-
erated state to some extent, but not completely, hence the
slight performance degradation.

We further compare our approach with the case of pre-
dicting the weighted average of the states in Equation 3,
rather than a single sub-goal. The intuition for this exper-
iment is that knowing the attended states gives the agent
valuable information about what important future states are
expected to be traversed. As shown in Ours-ATT of Ta-
ble 3 this leads to improved performance which indicates
it is helpful to know about the sub-goal states ahead of the
agent; however, since the sub-goal is not always identifiable

Method SPL SR
A3C+ORG [7] 37.5 65.3
Ours-RND 37.57 64.8
Ours-INT 37.78 63.8
Ours-ATT 37.76 65.4
Ours-ForeSI 38.66 67.6

Table 3. Ablation study of different variants of our method. ForeSI
avoids the unnecessary complications of multi-step future predic-
tions. Our future state predictions are meaningful.

697

Target: Box Target: LaptopTarget: SinkTarget: Lamp

Figure 3. Qualitative comparison of navigation episodes of ForeSI against the baseline method [39] in four different room types. The
examples represent cases where our method improves both the robustness and the efficiency of navigation. For more examples and failure
refer to supplementary material.

Ground Truth State Representations Imagined State Representations

Figure 4. t-SNE comparison of the sub-goal states generated using our sub-goal method against the ground truth states. Our agent’s
predicted sub-goals closely follow the structure of the ground-truth and are clustered similarly.

(multiple sub-goals and trajectories could have the same at-
tended states) the performance gain is rather insignificant.

Sub-Goal Generation Interval: Rather than generating
the sub-goal from the initial state, we can consider generat-
ing multiple sub-goals in fixed intervals every given number
of steps. In that case, in each interval step, a different sub-
goal is predicted. As shown in Ours-INT in Table 3, this
leads to a performance degradation. We believe this is be-
cause the policy collapses to a deterministic one due to the
constraints on predicting multiple sub-goals. Consequently,
the agent stops exploring and converges to a sub-optimal
solution.

Explicitly Structured Sub-Goal Generation: It can be
seen in Figure 4 that ForeSI can accurately learn the struc-
ture in the state representations used by the agent’s state
encoder. To further investigate the quality of the gener-
ated states we train a Conditional Variational Auto-Encoder
(C-VAE) [34] to learn to encode the state representations.
Then, we use ForeSI to generate the latent state of the C-
VAE rather than working directly on the agent’s state rep-
resentations. We compare the average loss achieved by our
module trained directly on the agent’s state representations
with that of trained on the latent representations of the C-
VAE. We observe that direct sub-goal generation achieves

a lower average loss, 0.012 vs 0.018, while being signifi-
cantly less complex.
5.5. Qualitative Comparison

In Figure 3 we present four sample navigation episodes
where our method improves both the efficiency and robust-
ness of the baseline [39]. We refer the reader to Table 1
for the overall test set results; more navigation examples,
including the failure cases, can be found in the supplemen-
tary material.

6. Conclusion and Future Work
In this work, we showed that integrating a forward model

into visual navigation using ForeSI improves both the ro-
bustness and efficiency of navigation. We achieved this by
enabling our agent to imagine (i.e. to predict) a future sub-
goal state that leads to a successful navigation episode. Our
extensive experiments show how ForeSI can be integrated
into a wide variety of methods to improve their navigation
performance. While it has been proven effective, we con-
sider this work as an initial step towards enabling forward
modelling for visual navigation. One interesting future di-
rection may be to investigate the role of sub-goal generation
for better exploration. Moreover, we may also improve the
sub-goal generation by better learning from failed episodes
due to inaccurate sub-goals.

698

References
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and
Anton van den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3674–
3683, 2018.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh
Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hind-
sight experience replay. Advances in neural information pro-
cessing systems, 30:5048–5058, 2017.

[3] Matthew Chang, Arjun Gupta, and Saurabh Gupta. Seman-
tic visual navigation by watching youtube videos. arXiv
preprint arXiv:2006.10034, 2020.

[4] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,
Abhinav Gupta, and Ruslan Salakhutdinov. Learning
to explore using active neural slam. arXiv preprint
arXiv:2004.05155, 2020.

[5] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Ab-
hinav Gupta, and Russ R Salakhutdinov. Object goal naviga-
tion using goal-oriented semantic exploration. Advances in
Neural Information Processing Systems, 33, 2020.

[6] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha
Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador,
Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, et al.
Robothor: An open simulation-to-real embodied ai platform.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3164–3174, 2020.

[7] Heming Du, Xin Yu, and Liang Zheng. Learning object re-
lation graph and tentative policy for visual navigation, 2020.

[8] Heming Du, Xin Yu, and Liang Zheng. Vtnet: Visual trans-
former network for object goal navigation. arXiv preprint
arXiv:2105.09447, 2021.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks,
2017.

[10] David Ha and Jürgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018.

[11] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Moham-
mad Norouzi. Dream to control: Learning behaviors by la-
tent imagination, 2020.

[12] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Ville-
gas, David Ha, Honglak Lee, and James Davidson. Learning
latent dynamics for planning from pixels. In International
Conference on Machine Learning, pages 2555–2565. PMLR,
2019.

[13] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and
Jimmy Ba. Mastering atari with discrete world models. arXiv
preprint arXiv:2010.02193, 2020.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[15] RichardSocher JeffreyPennington and ChristopherD Man-
ning. Glove: Global vectors for word representation. Cite-
seer.

[16] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos,
Blazej Osinski, Roy H Campbell, Konrad Czechowski,
Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey
Levine, et al. Model-based reinforcement learning for atari.
arXiv preprint arXiv:1903.00374, 2019.

[17] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos,
Blazej Osinski, Roy H Campbell, Konrad Czechowski,
Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey
Levine, et al. Model-based reinforcement learning for atari.
arXiv preprint arXiv:1903.00374, 2019.

[18] John Kanu, Eadom Dessalene, Xiaomin Lin, Cornelia Fer-
muller, and Yiannis Aloimonos. Following instructions by
imagining and reaching visual goals, 2020.

[19] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[20] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d
environment for visual ai, 2017.

[21] Xiangyun Meng, Nathan Ratliff, Yu Xiang, and Dieter Fox.
Scaling local control to large-scale topological navigation,
2019.

[22] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,
Andrew J Ballard, Andrea Banino, Misha Denil, Ross
Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learn-
ing to navigate in complex environments. arXiv preprint
arXiv:1611.03673, 2016.

[23] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In Maria Florina Balcan and Kil-
ian Q. Weinberger, editors, Proceedings of The 33rd Interna-
tional Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pages 1928–1937,
New York, New York, USA, 20–22 Jun 2016. PMLR.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[25] Mahdi Kazemi Moghaddam, Qi Wu, Ehsan Abbasnejad, and
Javen Shi. Optimistic agent: Accurate graph-based value es-
timation for more successful visual navigation. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 3733–3742, 2021.

[26] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl,
Steven Lin, and Sergey Levine. Visual reinforcement learn-
ing with imagined goals. In Advances in Neural Information
Processing Systems, pages 9191–9200, 2018.

[27] Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-
supervised learning of long-horizon tasks via visual subgoal
generation. arXiv preprint arXiv:1909.05829, 2019.

[28] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey
Levine. Planning with goal-conditioned policies. In Ad-
vances in Neural Information Processing Systems, pages
14843–14854, 2019.

699

[29] Aske Plaat, Walter Kosters, and Mike Preuss. Model-based
deep reinforcement learning for high-dimensional problems,
a survey. arXiv preprint arXiv:2008.05598, 2020.

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015.

[31] Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and
Jian Peng. Exploration via hindsight goal generation. In
Advances in Neural Information Processing Systems, pages
13485–13496, 2019.

[32] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A platform for embodied ai research, 2019.

[33] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with
a learned model. Nature, 588(7839):604–609, 2020.

[34] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. In Advances in neural information process-
ing systems, pages 3483–3491, 2015.

[35] Yunhao Tang and Alp Kucukelbir. Hindsight expectation
maximization for goal-conditioned reinforcement learning,
2020.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[37] Théophane Weber, Sébastien Racanière, David P. Reichert,
Lars Buesing, Arthur Guez, Danilo Jimenez Rezende,
Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess,
Yujia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis,
David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning, 2018.

[38] Luca Weihs, Jordi Salvador, Klemen Kotar, Unnat Jain, Kuo-
Hao Zeng, Roozbeh Mottaghi, and Aniruddha Kembhavi.
Allenact: A framework for embodied ai research. arXiv
preprint arXiv:2008.12760, 2020.

[39] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,
Ali Farhadi, and Roozbeh Mottaghi. Learning to learn how to
learn: Self-adaptive visual navigation using meta-learning.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6750–6759, 2019.

[40] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra
Malik, and Silvio Savarese. Gibson env: Real-world percep-
tion for embodied agents. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9068–9079, 2018.

[41] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and
Roozbeh Mottaghi. Visual semantic navigation using scene
priors. arXiv preprint arXiv:1810.06543, 2018.

[42] Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model
as a graph: Learning latent landmarks for planning. arXiv
preprint arXiv:2011.12491, 2020.

[43] Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel,
Matthew Johnson, and Sergey Levine. Solar: Deep struc-
tured representations for model-based reinforcement learn-
ing. In International Conference on Machine Learning,
pages 7444–7453. PMLR, 2019.

[44] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement
learning. 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017.

700

