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Abstract

In this paper, we investigate visual-based camera re-
localization with neural networks for robotics and au-
tonomous vehicles applications. Our solution is a CNN-
based algorithm which predicts camera pose (3D transla-
tion and 3D rotation) directly from a single image. It also
provides an uncertainty estimate of the pose. Pose and un-
certainty are learned together with a single loss function
and are fused at test time with an EKF. Furthermore, we
propose a new fully convolutional architecture, named Co-
ordiNet, designed to embed some of the scene geometry.

Our framework outperforms comparable methods on the
largest available benchmark, the Oxford RobotCar dataset,
with an average error of 8 meters where previous best was
19 meters. We have also investigated the performance of
our method on large scenes for real time (18 fps) vehicle lo-
calization. In this setup, structure-based methods require a
large database, and we show that our proposal is a reliable
alternative, achieving 29cm median error in a 1.9km loop
in a busy urban area.

1. INTRODUCTION
Autonomous vehicle technologies need precise localiza-

tion systems. These can be provided by several sensors
(GPS, IMU, lidar, etc.), but Visual-Based Localization solu-
tion is becoming more and more reliable thanks to computer
vision progress [19]. In particular, Deep Neural Networks
are an appealing solution because of their low computation
cost and reduced memory footprint compared to structure-
based methods [28], which currently provide the most ac-
curate results. PoseNet [13] was the first ”camera pose re-
gressor”: given images labelled by corresponding poses in
a known environment, it learns to regress camera pose in an
end-to-end way. These models can operate in real time for
applications like robot localization or augmented reality.

However, poses predicted by learning are not as accu-
rate as structure-based methods [25]. In addition to mak-
ing larger localization error, absolute pose regression gen-

Figure 1. Visualization of CoordiNet online localization: given
an input camera image (bottom left), the network regresses 6-DoF
poses (red line) with uncertainty estimate (purple ellipsoid). These
predictions can be fused with an EKF (blue line), providing an ac-
curate localization function ability (29cm median error to ground
truth). Figure best viewed in color.

erates outliers very far from the actual camera poses, so
that trajectories are not consistent over time. These net-
works also fail to extrapolate outside of their training set
boundaries and consequently struggle to outperform image
retrieval baselines [26]. Given a large and heterogeneous
training dataset, CNNs are able to distinguish between static
features useful for localization and transient observations
depicted in the image (dynamic objects like vehicles and
pedestrians, weather conditions or different illumination).
But in practice such datasets are difficult to collect for lo-
calization tasks, resulting in an increased number of failures
of pose regressors.

In this paper, we propose a new pose regressor, named
CoordiNet, designed to mitigate some of the aforemen-
tionned limitations.

Even if visual localization is considered as a geometric
task (2D to 3D matches between 2D image features and 3D
points in the environment), pose regressors do not solve it
using geometric reasoning [26]. CNNs are widely known
for their ability to extract relevant features from images, but
surprisingly they fail to solve trivial geometric tasks like re-
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Figure 2. CoordiNet architecture: the input image is sent to a pretrained image encoder, then pose and uncertainty are predicted from
encoder features in two separate decoders. Pose decoder uses Coord convolutions layers. GAP and CWAP refer to Global Average Pooling
and Confidence Weighed Average Pooling.

trieving the cartesian coordinate of a colored pixel in a white
image [15]. Our work builds up on the previous idea and
embed geometrical hints in the architecture of camera pose
regression CNN. Our proposed architecture takes advantage
of the Cartesian representation of the image with the use of
Coord Convolutions [15] and spatial self-attention aware-
ness thanks to a confidence-weighted average pooling [8]
which replaces the standard global average pooling.

In order to make a robust localization system, one needs
to know when the predicted pose is not reliable. Comput-
ing uncertainty coupled with pose regression is a common
way to handle this problem [10]. However, widely used ap-
proaches to compute uncertainty for pose regression have
limitations for practical applications. They generate multi-
ple hypothesis for each single image at inference time, and
then compute mean and variance to estimate pose and un-
certainty [10, 9]. This increases a lot computational com-
plexity because several inferences are required. For prac-
tical applications, one needs uncertainty to be estimated
jointly with the pose regression and such estimated uncer-
tainty should be highly correlated to a potential level of er-
rors of regressed poses. To address this requirement, Co-
ordiNet was designed to predict uncertainty from activa-
tions of an hidden layer, so it can be jointly computed at
inference with pose regression and learn to associate poten-
tial failures with content of input image.

Both poses and uncertainty are learned together with a
unified loss function. Finally, the predicted uncertainties
can be used in any post processing step as a covariance ma-
trix attached to the pose prediction, for instance in a graph
factor [5] formulation or within a Kalman filter.

The main contributions of this paper are:

• a method to train jointly pose prediction and uncer-
tainty, with reliable uncertainty estimate and an im-
proved training stability,

• a new fully convolutional architecture that integrates
geometric clues and outperforms monocular state of

the art methods on all public benchmarks with a large
margin,

• an extensive evaluation of deep pose regressors in sev-
eral areas with large scale datasets, showing that Co-
ordiNet can be used in real-time (18 Hz with ROS im-
plementation on a RTX2080 embedded GPU) for ve-
hicle localization,

• we show that pose predictions combined with reliable
uncertainties in a simple EKF exhibits smooth trajec-
tories and remove outliers.

In the following section we review the related work. In
section 3, we describe our architecture and the intuition be-
hind it. Later, we present how to learn pose and uncertainty
together. In section 4, we present results of multiple exper-
iments to prove the benefit of our approach: ablation study,
comparison with related methods and experiments on large-
scale applications. Section 5 concludes the paper.

2. RELATED WORK
In this section we present current status of research con-

cerning camera pose regression with neural networks and
uncertainty estimation for these methods. We also briefly
discuss the benefit of this approach compared to other
visual-based localization solutions.

PoseNet [13] was the first deep learning method to
regress absolute camera pose from an image in an end-to-
end way. It uses a pretrained image encoder (GoogLeNet
in the first version), followed by a global average pooling
and 2 fully connected layers which output 7 scalars (3 for
translation and 4 for rotation). It works in real time but has
several drawbacks. We present here these limitations and
how they have been addressed by previous work.

State-of-the-art image based localization methods are
built on a rich representation of the environment: a 3D point
cloud where each 3D point is linked to a set of handcrafted
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or learned descriptors [24]. New image poses are computed
by matching 2D features in the image to 3D points in the
point cloud (F2P). Pose regressors have the main advan-
tage of carrying a much more compact scene representation
(weights of the network) compared to standard image local-
ization methods (3d point cloud or image database). Mean-
while, overall accuracy of these networks is one step lower
than other visual-based localization solutions. In order to
increase pose accuracy, loss function have been improved
in the second version of PoseNet [11]. It uses homoscedatic
uncertainty to weight translation and rotation loss in order to
equilibrate the training. Several innovations have been pro-
posed to improve the architecture of the network: Hourglass
network [17] proposes an encoder-decoder architecture, At-
Loc [31] and RVL [9] use an attention module before the
fully-connected layers. VLocNet++ [22] investigates multi-
task learning to improve pose accuracy and learn to predict
pose and semantic segmentation with a shared backbone.
Another type of pose regressors produce a dense map of
scene coordinates where each image pixel is associated to a
3D point in the scene [1]. The pose can be computed using
at least 3 of these predicted scene coordinates. These type
of networks can be more accurate than F2P solutions but are
not able to cover large areas [2].

Then, inference on consecutive images in a video results
in a discontinuous sequence of pose (see figure 1). This
can be improved by providing previous images as an ad-
ditional input. Then, [30] and Vidloc [4] propose to use a
LSTM architecture to handle temporal processing. VLoc-
Net [29] is trained with an additional constraint on the rel-
ative pose of consecutive images to improve accuracy and
provide smooth pose sequences. MapNet [3] proposes to
constraint relative poses with signals from other sensors like
visual odometry or GPS. Xue et al. [32] model the problem
with a graph neural network which learn the dependency be-
tween 8 frames. In our work, we rely on an external filtering
tool (EKF) to post-process poses and generate a smooth tra-
jectory. Similar post-processing method, with a pose graph
optimization formulation, have already been used in [3, 9].

Finally, as we predict absolute pose, localization errors
can be very large when failure cases happen. To handle this,
we need a way to filter out these outliers. Uncertainty esti-
mation is an ideal tool because it can be used to post pro-
cess poses according to uncertainty values, using tools like
Kalman filters [33] or factor graphs [5]. In [12], the authors
provide a very clear study about uncertainty in computer
vision with Bayesian Deep Learning. There are 2 types of
uncertainty one can model:

• Epistemic uncertainty (or model uncertainty) is the un-
certainty on the weights of the network. It measures
the degree of knowledge of the network about input
data. A simple way to approximate it is Monte Carlo
Dropout [6] (MCD): train a network with dropout lay-

ers and keep them active at inference time. Several
inference on the same data will provide a sample of re-
sults. The mean is used as prediction and the variance
is epistemic uncertainty. Bayesian PoseNet [10] uses
this method to estimate uncertainty of pose regression.
RVL [9] proposes a prior guided dropout on input im-
age: it removes areas where dynamic objects appear
and allows to generate a Monte Carlo sample too.

• Aleatoric uncertainty (or data uncertainty) is the vari-
ance of the network output which can be caused by
noise in input data. We can choose between heterosce-
datic aleatoric uncertainty which can vary with input
data and homoscedatic uncertainty which measures the
overall variance in the outputs of a task as it is not de-
pendent on input data. Heteroscedatic can be predicted
directly from the network, as shown in [14, 12], by
using a maximum likelihood loss function. This for-
mulation can be extended to multivariate uncertainty,
as shown by [23] where correlation between outputs
variables is learned. Finally, HydraNet [18] combines
epistemic and aleatoric uncertainties to provide consis-
tent orientation estimates.

We decide to learn heteroscedatic uncertainty as an auxil-
iary task during the training of our model. Thus, we ob-
tain an uncertainty estimate at test time for less computation
than with MCD.

3. METHOD
In this section, we first present our network architec-

ture. Then we show how pose and uncertainty estimate are
learned together during training and finally present the fu-
sion at test time for a reliable localization.

3.1. Adapting convolutional architectures to exploit
spatial information

Figure 3. Visualization of pooling activations: bottom images
are inputs of the model, top images are inputs multiplied by the
upsampled confidence map of the pooling layer (presented in Fig-
ure 2).

Inspired by Features-to-Points approaches [7], where lo-
cation of 2D features in the image is linked to 3D points
in the environment, we designed our architecture to fol-
low this approach. CNNs are already good to retrieve the
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topological-level position [20] (e.g. at a street level) thanks
to image content, but in order to reach higher accuracy, one
could compare the precise location of objects of interest in
image coordinates. Current architectures are inspired from
image classification task which deals with semantics and is
expected to be invariant to spatial location of objects in the
image. However, as our task deals with scene geometry, we
want to mitigate this translation invariance in order to take
account of precise feature positions.

To do so, we replace standard 2D convolution by Co-
ord convolution, introduced by [15] in a study about CNN
limitations on simple geometric tasks. Coord convolutions
concatenate 2 additional channels, that contain hard-coded
pixel coordinates, to the input tensor before applying the
convolution, as illustrated in Figure 2.

Finally, we propose to use confidence weighted average
pooling (CWAP), instead of global average pooling (GAP),
inspired from previous success of this method in other ap-
plications [8]. In order to transform a feature map into a
single scalar, GAP simply computes the mean of the fea-
ture map. CWAP computes a weighted mean using an ad-
ditional channel as a confidence map, providing a weight
for each spatial location. These weights are predicted ac-
cording to previous layer activation so we can compare this
computation to a low-cost self-attention mechanism. Exam-
ples of activation mask of the confidence map are shown in
figure 3.1. We observe that on small scenes of Cambridge
Landmarks, the pooling always highlights the same object
regardless of camera pose (here front of Kings College). On
larger scenes, there is no common object visible in all the
scene. In this case, the pooling masks areas where dynamic
objects appear.

The entire architecture of our model is depicted in Fig-
ure 2. We use two decoder heads to predict poses and un-
certainties from a latent representation obtained by an im-
age encoder. Our architecture is fully-convolutional, i.e the
number of parameters of the decoder does not depend on
the size of the input image. Compared to a standard pose
regressor that uses fully connected layers to regress the fi-
nal pose, our decoder contains one order of magnitude less
parameters (e.g. for an image size of 360 × 640 and a la-
tent representation with 512 feature maps, a one-layer fully
connected decoder has 0.8M parameters compared to 0.6M
parameters in our pose decoder).

3.2. Joint learning of pose and heteroscedatic un-
certainty

Pose regression problem can be modeled by the equation
Y = fW (I), where f is the neural network with weights
W , Y is the predicted pose and I is the input image. In
Bayesian Deep Learning [12], W , I and Y are considered
as random variables and uncertainty is the variance of these
variables.

In our problem, Y ∈ SE(3). We decompose the 6-DoF
pose with a 3D translation vector [Tx, Ty, Tz] and a unit
quaternion [Qx, Qy, Qz, Qw] for rotation.

For translation, we model Tx, Ty, Tz as 3 independent
Gaussian variables centered on the actual pose with vari-
ances σ2

Tx
, σ2

Ty
, σ2

Tz
. Our framework predicts these σ2 un-

certainties, which represent the expected noise in the output
pose, depending on input image. As we made it data de-
pendent, it is called heteroscedatic uncertainty. In practice,
each uncertainty is learned relatively to a loss function. In
our case, we want to have one uncertainty estimate for each
translation component, so we use 3 separate L1 translation
losses LTx , LTy , LTz .

For rotation, we can not use the same formulation, first
because individual components of a unit quaternion are
clearly not independent, but also because the 3D rotation
group SO(3) is not euclidean. As a result, we optimize ro-
tation with a single loss function LR, resulting in a single
rotation uncertainty estimate σ2

R. An other manner to learn
uncertainty for rotation have been proposed in [18], but we
found out that in practice our 1-dimension uncertainty es-
timation work well and leave the integration of multivari-
ate rotation uncertainty estimation in pose regression for
future work. Our choice for LR is the geodesic distance be-
tween rotations, defined as the minimal angular difference
between 2 rotations:

LR = cos−1((tr(MpredM
−1
GT )− 1)/2) (1)

where Mpred and MGT are predicted and reference 3D ro-
tations, converted to rotation matrices. [34] has shown that
this optimization objective performs better than L2 loss.

Finally, we combine these 4 loss functions by minimiz-
ing the negative log-likelihood of our model. We do not
learn σ2 directly but use s = log σ2 for numerical stability,
following [11]. Our final optimization objective becomes:

Lσ(I) =
∑

i∈[Tx,Ty,Tz,R]

Li(I)e
−si(I) + si(I) (2)

This loss function is actually the same than the learn-
able weights pose loss [11], except that uncertainty values
are outputs of the network instead of free scalar values (ho-
moscedatic uncertainty).

To minimize this loss function, the network needs to
learn accurate poses in order to decrease Li losses. When
a challenging image is provided, the network can predict
high uncertainties in order to reduce the weights of regres-
sion losses in the objective. The second term acts as a pe-
nalization term to avoid infinite uncertainties. The best way
to minimize this cost is to predict uncertainties proportional
to loss values.

This method also has desirable effects for training. When
used with homoscedatic uncertainty, each individual loss
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will contribute to the final loss with approximately the same
weight. As our uncertainties vary with input data, this
property is extended at a data level : each training sam-
ple will contribute to the batch loss with an approximately
equal weight, whereas usually large errors contribute more.
Contrary to the object classification problem where samples
having larger error should be main target for optimizing the
network, we want every sample to be considered equally
important in the optimization process.

3.3. Localization under uncertainty

At test time, we fuse together the regressed pose with
learned uncertainties in order to filter out failure cases and
obtain a smooth and temporally consistent trajectory. This
is a desirable property in autonomous driving and robotics
applications, because localization could be directly used by
the planning algorithm to compute control command.

We propose to use an Extended Kalman Filter (EKF)
with an omnidirectional motion model for this fusion step.
Integration is done by providing only the absolute pose
measurement given by the network to the filter. We attach
a simplified diagonal covariance matrix Σ to each measure-
ment, defined by:

Σ = I6 ∗
[
σ2
Tx
σ2
Ty
σ2
Tz
σ2
Rσ

2
Rσ

2
R

]t
.

This formulation is limited to represent uncertainty in
SE(3): first because in practice the covariance between
variables can be non-zero. Another limitation discussed ear-
lier is the use of a one dimensional rotation uncertainty σ2

R.
We tried to use more sophisticated formulations, where non-
diagonal coefficients are learned, inspired by [23, 18], but
observed a lower pose regression accuracy with this formu-
lation. One reason could be that vectors in equation 2 are
replaced by matrices, leading to a lower numerical stability
during training. We plan to improve our model of covari-
ance matrix in SE(3) as a future work. However, we show
in 4.3 that our proposal is sufficient in practice to reach our
target: a consistent trajectory where outliers are filtered.

Uncertainty calibration: During the evaluation of our
method, we observed that learned uncertainties often under-
estimate the actual error (see 4.3). This is caused by over-
fitting: at the end of the training procedure, the model per-
forms very well on training images and the uncertainty layer
learns a distribution of errors which does not represent the
actual distribution in test conditions. To mitigate this effect,
we propose a 2 steps training procedure: available training
data is split in a training set and a validation/calibration set.
We first train CoordiNet with the training set with the pro-
cedure described in 3.2, and then fine-tune the uncertainty
layer on the calibration set while all other layers are freezed.
This enable to calibrate uncertainties on examples represen-
tative of test conditions. Since the use of a validation set is

Figure 4. Calibrated uncertainties. Comparison between uncali-
brated (left) and calibrated (right) uncertainties, plotted for x (top)
and y (bottom) axis.

a common machine learning practice, this calibration step
does not make our method more data-intensive than others.
We show in figure 4 the benefit of uncertainty calibration
for proper uncertainty estimation on a test sequence.

4. EXPERIMENTS
In this section, we evaluate CoordiNet in multiple sce-

narios. First, we compare to related methods on public
datasets. Next, we investigate how performance of Co-
ordiNet scales with the size of the dataset by focusing on
privately collected datasets which are orders of magnitude
larger than public ones. Third, we demonstrate that once
CoordiNet is fused with EKF it could be considered as a
good alternative for reliable localization in practical tasks.
Finally, we conduct an ablation study to highlight impor-
tance of individual contributions we propose in this paper.

4.1. Results on public benchmark

4.1.1 Oxford Robotcar

First, we compare our method to related work on Oxford
Robotcar dataset [16]. We reproduced the experiments done
by Huang et al. [9]. The model is trained on 2 scenes (Full
and Loop) using only 2 training sequences in each case.
While Full is tested on one sequence, 2 sequences are used
for Loop. Full scene is particularly challenging because the
area is very large (9 kms) and the network can fail to gen-
eralize with only 2 different sequences in the training set.
We resize input images to 256 × 455. We train our model
with ResNet34 encoder for a fair comparison with previ-
ous methods, and keep a fixed learning rate of 1e−4. We
compare CoordiNet to other monocular methods, but also
to sequential methods using several images as input. Unlike
other benchmarks, comparison on Oxford dataset is usually
done comparing mean error instead of median error. Our
opinion is that median error is more meaningful because it
is not corrupted by outliers, so we report both.

Results are reported in table 1 and figure 5. Not only Co-
ordiNet beats other monocular methods but also sequential
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Table 1. Results on Oxford RobotCar dataset (Camera pose regression without post-processing). CoordiNet is compared to other neural
network pose regressors. Green cells represent best translation results. Orange cells represent previous best monocular method, to whom
CoordiNet should be compared for a fair evaluation. All methods use ResNet34 as image encoder. Table best viewed in color.

Oxford RobotCar Dataset Mean error comparison Median error comparison
Method Loss input Loop Full Average Loop Full Average
CoordiNet Heterosc. 1 4.15m / 1.44° 14.96m / 5.74° 9.56m / 3.59° 2.27m / 0.86° 3.55m / 1.14° 2.91m / 1.00°
CoordiNet Homosc. 1 4.06m / 1.44° 11.99m / 6.15° 8.03m / 3.80° 2.42m / 0.88° 4.21m / 1.06° 3.32m / 0.97°
AD-MapNet Homosc. 2 6.45m / 2.98° 19.18m / 4.60° 12.82m / 3.79°
AtLoc+ Homosc. 2 7.53m / 3.61° 21.0m / 6.15° 14.27m / 4.88° 4.06m / 1.98° 6.40m / 1.50° 5.23m / 1.74°
AtLoc Homosc. 1 8.73m / 4.63° 29.6m / 12.4° 19.17m / 8.52° 5.36m / 2.10° 11.1m / 5.28° 8.23m / 3.69°
AD-PoseNet Homosc. 1 6.40m / 3.09° 33.82m / 6.77° 20.11m / 4.93°
MapNet Homosc. 2 9.29m / 3.34° 44.61m / 10.38° 26.95m / 6.86°
PoseNet Homosc. 1 7.9m / 3.53° 46.61m / 10.45° 27.26m / 6.99°

Table 2. Results on Cambridge Landmarks dataset. Refer to legend of table 1 for color meaning.

Method Backbone input Old Hospital Kings College StMarysChurch Shop Facade Average
VLocNet ResNet50 2 1.07m / 2.41° 0.84m / 1.42° 0.63m / 3.91° 0.59m / 3.53° 0.78m / 2.82°
CoordiNet EffNet b3 1 0.97m / 2.08° 0.70m / 0.92° 1.32m / 3.56° 0.69m / 3.74° 0.92m / 2.58°
CoordiNet ResNet34 1 1.43m / 2.86° 0.80m / 1.22° 1.32m / 4.10° 0.73m / 4.69° 1.07m / 3.22°
LSTM-Pose 2 1.51m / 4.29° 0.99m / 3.65° 1.52m / 6.68° 1.18m / 7.44° 1.30m / 5.51°
PoseNet ResNet34 1 2.17m / 2.94° 0.99m / 1.06° 1.49m / 3.43° 1.05m / 3.97° 1.43m / 2.85°
AD-PoseNet ResNet34 1 non reported 1.3m / 1.67° 2.28m / 4.80° 1.22m / 4.64° /
MapNet ResNet34 2 1.94m / 3.91° 1.07m / 1.89° 2.00m / 4.53° 1.63m / 4.22° 1.66m / 3.64°
Bay. PoseNet 1 2.57m / 5.14° 1.74m / 4.06° 2.11m / 8.38° 1.25m / 7.54° 1.92m / 6.28°

networks with a margin of 4 meters in translations. Rotation
is also improved on Loop scene and performs equally well
as sequential methods on Full scene. We observe that train-
ing with uncertainty improves median accuracy by 13%
even if mean error is higher. It confirms that this training
method attenuates the impact of outliers.

4.1.2 Cambridge Landmarks

Then, we also report CoordiNet performances on Cam-
bridge Landmarks. This dataset contains several small out-
door scenes with small training datasets. We train our model
with both ResNet34 and EfficientNet-b3, and again com-
pare CoordiNet to monocular and sequential methods. Im-
ages are computed at full resolution (640×350). Results are
reported in table 2. Compared to other monocular methods,
CoordiNet reports best results on all scenes.

4.2. Results on large-scale datasets

Our interest is to use CoordiNet for localization in large
environments for practical applications. Publicly available
benchmarks are limited to particular use case scenarios
where data could be collected within few days. In scenar-
ios related to development of localization functions for self-
driving cars, one could rely on much larger scope of data
available. In this section, we explore how well CoordiNet
performs scales given amount of data provided for training
is an order of magnitude higher compared to public bench-
marks.

To do so, we use Oxford RobotCar dataset with a larger
experiment : 15 sequences in training data resulting in 890k
images in training set, 2 sequences used as validation and 7
test sequences, including the benchmark test sequence.

We also collected videos in Paris and Shanghai ar-
eas using dashcam cameras. We recovered ground truth
poses from videos thanks to a large scale 3D reconstruc-
tion pipeline based on colmap SfM software [27], similar
to [21]. We provide examples from these datasets in fig-
ure 7 and we briefly introduce them:

• Shanghai dataset: a road of 3.3km, that contains
highway and smaller roads. Very busy traffic observed
in most of sequences. Training set: 12 sequences with
123k images. Validation set: 6 sequences with 32k im-
ages. Test set: 9 sequences with 48k images.

Figure 5. Results on Oxford experiment. Left images are Loop
results (2014-06-23-15-36-04, 2014-06-26-08-53-56) trained with
2 sequences, right images are Full results (2014-12-09-13-21-02).
Middle right is trained with 2 sequences, right is trained with 15.
Color map represents errors at a given location: blue is ∼ 1m error
and red is > 5m error. Figure best viewed in color.
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Figure 7. Samples from Paris (top) and Shanghai (bottom)
datasets.

• Paris dataset: A loop of 1.9km in urban area. One
part along the Seine is challenging because of mirror
reflection in buildings, the other goes through complex
intersections with sometimes busy traffic. Training set:
6 sequences with 148k images. Validation set: 2 se-
quences with 30k images. Test set: 2 sequences with
13k images.

We train CoordiNet on these 2 datasets in addition to
Oxford, but also use available implementation of Huang et
al. [9] to compare performances with related methods (AD-
PoseNet) and report results in table 3.

We see that CoordiNet outperforms previous SOTA pose
regressor on large areas by an order of magnitude and ob-
serve that larger training sets allow to reach sub-meter ac-
curacy on test data. Enlarged Oxford training set from 2 to
15 sequences enables to decrease mean error from 9.56m to

Table 3. Results on large scale dataset.
CoordiNet (ours) AD - PoseNet [9]

Oxford median 1.53m / 0.46° 7.91m / 1.13°
mean 7.11m / 2.93° 19.89m / 4.51°

Shanghai median 0.69m / 0.69° 9.24m / 0.47°
mean 0.90m / 0.87° 11.78m / 1.49°

Paris median 0.29m / 0.29° 3.75m / 1.03°
mean 0.51m / 0.44° 5.11m / 1.25°

1.94m and median error from 3.55m to 1.25m on the same
test sequence. We conclude that by collecting large image
datasets and using CoordiNet as a pose regressor enables
to reach reliable enough localization accuracy for selected
practical applications.

4.3. Evaluation of localization under uncertainty

Rather than the raw CNN results, we are interested in
the performance of the method outlined in 3.3, where poses
and uncertainties are fused into an EKF. We use the imple-
mentation provided by the ROS robot localization package
with default parameters. We demonstrate superiority of our
learned uncertainty over a fixed baseline using three exper-
iments:

• EKF with fixed covariance values,

• EKF with non-calibrated CoordiNet covariance values,

• EKF with calibrated CoordiNet covariance values, see
section 3.3.

Figure 6. CoordiNet and EKF trajectories: CoordiNet sequences of poses (red line) are shown with the uncertainty estimate of the
current pose (purple ellipsoid). EKF trajectory (blue line) and ground truth (green line) are also displayed. Figure best viewed in color.
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CoordiNet EKF (constant covariance)

Median error : 0.99m Mean error : 2.97m

Max error : 510m Smoothness : 0.94

Median error : 0.97m Mean error : 3.27m

Max error : 423m Smoothness : 0.20

EKF (uncalibrated uncertainty)

Median error : 0.95m Mean error : 2.07m

Max error : 72m Smoothness : 0.22

EKF (calibrated uncertainty)

Median error : 1.00m Mean error : 1.95m

Max error : 32m Smoothness : 0.19

Figure 8. Localization with uncertainty. Top lane from left to
right: CoordiNet predictions, EKF with CoordiNet poses and fixed
covariance. Bottom lane from left to right: EKF with CoordiNet
raw uncertainty, EKF with CoordiNet calibrated uncertainty. Col-
ormap is the same as in figure 5.

We report the results of these experiments on a full run of
the Paris dataset in Figure 8. We evaluate a smoothness
score s of the trajectory (the lower the better) by computing
the norm of the difference between two consecutive unitary
directional vectors:

s =
1

N − 2

N−2∑
t=0

∥∥∥∥ Tt+2 − Tt+1

∥Tt+2 − Tt+1∥
− Tt+1 − Tt

∥Tt+1 − Tt∥

∥∥∥∥ .
As expected, coupled with an EKF the final trajectory gets
smoother and the maximum error on the run is reduced.
By rejecting outliers, the EKF reduces most of the time the
mean error compared to the raw poses. We also show that
it is crucial to estimate good covariance values in order to
obtain the optimal trade-off between accuracy and smooth-
ness: Coordinet + EKF with calibrated covariance performs
the best in this experiment compared to fixed covariance
values and to the baseline version.

We show in figure 6 estimated covariance values as well
as filtered trajectory in different parts of the Paris dataset
map. Notice the shape of the covariance ellipsoid: for in-
stance with the absence of lateral road markings, the covari-
ance grows along the lateral direction.

We also report the result on Oxford Robotcar experiment
in figure 9. Again, the EKF is smoothing the trajectory and
reduces the mean and maximum error on the overall trajec-
tory. For this experiment, we use uncertainty without ad-
ditional data. A careful reader should notice that reported
results of CoordiNet in this table are slightly different than
in table 1. This difference comes from the integration of
Coordinet in our ROS framework. These results outperform
methods with pose graph optimization reported in [3, 9].
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Median error : 1.42m Mean error : 2.60m

Max error : 163m

Median error : 1.44m Mean error : 2.05m

Max error : 21m

Median error : 3.28m Mean error : 5.64m

Max error : 337m

Median error : 3.25m Mean error : 5.42m

Max error : 257m

Median error : 5.38m Mean error : 12.19m

Max error : 395m Smoothness : 0.26

Smoothness : 1.00

Smoothness : 0.09

Smoothness : 1.08

Smoothness : 0.17

Median error : 4.61m Mean error : 14.70m

Max error : 742m Smoothness : 1.85

Figure 9. EKF on Oxford experiment. Top lane: CoordiNet
trained with 2 runs. Bottom lane: EKF using CoordiNet poses
and uncertainty. Colormap is the same as in figure 5.

4.4. Ablation study

Here, we evaluate all major contributions related to
our method: coord convolution, loss function, pooling,
geodesic rotation loss (geo) and the use of 3 translation
losses instead of 1 (noted split). The proposed loss function
with learned uncertainty is noted heterosc. for heterosce-
datic uncertainty, we refer to usual ”weighted pose loss” as
homosc. Shanghai dataset (presented in 4.2) is used for this
experiment. EfficientNet b3 is used as image encoder

Table 4. Ablation study on Shanghai dataset (errors in me-
ters/degrees).

Loss Coord CWAP Split Rot Median err. Mean err
heterosc. X X X geo. 0.58 / 0.20 1.26 / 0.36
heterosc. X X geo. 0.69 / 0.69 0.90 / 0.87
homosc. X X geo. 0.93 / 0.76 1.24 / 1.03
Lt + Lr X X geo. 1.23 / 0.71 1.68 / 0.94
heterosc. X geo. 0.95 / 0.6 1.18 / 0.87
heterosc. X geo. 0.85 / 0.67 1.19 / 0.88
heterosc. X X L1 0.74 / 0.75 0.94 / 1.25

On this dataset, training with heteroscedatic uncertainty
improve results by 16%, coord convolutions by 16%,
confidence-weighted average pooling by 27%, geodesic ro-
tation loss by 30% on mean rotation error and splitting the
translation has a positive effect too.

5. CONCLUSIONS
In this paper, we proposed CoordiNet, a new deep neural

network approach that pushes direct camera pose regression
model accuracy one step further. Moreover, thanks to un-
certainty quantification and large training sets, we demon-
strated that our proposal can be integrated in real-time vehi-
cle localization systems for an accurate pose estimation in
large and busy urban environments. This method could be
improved in multiple ways: for instance by using sequences
of images and more sophisticated uncertainty representa-
tion. Another challenge is to extrapolate to poses outside of
the training distribution.
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