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Abstract

The choice of a loss function is an important factor when
training neural networks for image restoration problems,
such as single image super resolution. The loss function
should encourage natural and perceptually pleasing results.
A popular choice for a loss is a pre-trained network, such
as VGG, which is used as a feature extractor for computing
the difference between restored and reference images. How-
ever, such an approach has multiple drawbacks: it is com-
putationally expensive, requires regularization and hyper-
parameter tuning, and involves a large network trained on
an unrelated task. Furthermore, it has been observed that
there is no single loss function that works best across all
applications and across different datasets. In this work, we
instead propose to train a set of loss functions that are ap-
plication specific in nature. Our loss function comprises a
series of discriminators that are trained to detect and penal-
ize the presence of application-specific artifacts. We show
that a single natural image and corresponding distortions
are sufficient to train our feature extractor that outperforms
state-of-the-art loss functions in applications like single im-
age super resolution, denoising, and JPEG artifact removal.
Finally, we conclude that an effective loss function does not
have to be a good predictor of perceived image quality, but
instead needs to be specialized in identifying the distortions
for a given restoration method.

1. Introduction

The success of deep learning over the past several years
has led to extensive use of Convolutional Neural Networks
(CNNs) on a wide range of image restoration tasks, such as
single-image super resolution or denoising. One of the crit-
ical choices effecting CNNs performance is the loss func-
tion. A popular mean-squared error (MSE or L2) loss often
results in blurry, splotchy [34] or unnatural looking images
as the reconstructed image tends to be an average of poten-
tial solutions, which may not lie on the natural image man-
ifold [3]. Generative Adversarial Networks (GANs) [10]
can ensure that resulting images lie on such a manifold, but
when used alone, may result in images that are substantially

different from the input [3]. Furthermore, GANs are chal-
lenging to train due to the instability of their optimization
problem.

A new category of loss functions, which has recently
gained noticeable popularity, employs neural networks as
feature extractors. Most commonly, the loss is computed as
the L2 distance between the activations of the hidden lay-
ers of a trained image classification network (e.g. a VGG
network [24]). Such losses have been successful in training
learning-based image restoration models. However, a major
drawback of these loss functions is that they use large image
classification networks as feature extractors. This not only
makes the training process memory intensive, but also fo-
cuses on image regions which are more salient for the task
of image classification. Recently, Zhang et al. [33] tried to
overcome this shortcoming by introducing a Learned Per-
ceptual Image Patch Similarity (LPIPS) metric. They cali-
brated existing pre-trained classification networks on a new
dataset of human perceptual similarity judgments. How-
ever, this approach still requires an extensive dataset for
training the feature extractor. Furthermore, LPIPS/VGG
features need to be complemented with an L2 loss term to
offer acceptable performance, which involves the need to
carefully tune weights of both loss terms.

In this work, we explore the question of what makes a
good loss function for an image restoration task, such as sin-
gle image super resolution, denoising and JPEG artifact re-
moval. It has been observed that there is no single loss func-
tion that works best across different applications [4, 5, 13].
This motivates the need to a novel set of loss functions that
do not aim to be universal, but instead are task-specific. In
this work, we propose our task-specific Multi-Scale Dis-
criminative Feature (MDF) loss function, which is trained
on a single natural image. Despite very lightweight train-
ing, our loss outperforms popular feature-wise (perceptual)
losses, which have been trained on very large datasets. This
is possible, because our loss does not learn the distribution
of natural images but instead is trained to penalize the task
specific distortions at different image scales. The latter task
is more relevant for a loss function and much easier, thereby
can be learned with as little as a single training image. Fur-
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thermore, we show that our loss function performs better as
a regularization term in an adversarial setting than the VGG
loss. An extensive comparison in terms of objective metrics
and subjective image quality study shows that our loss func-
tion outperforms the state-of-the-art losses for varied image
restoration tasks across different datasets.

2. Related work
In recent years, the search of an optimal perceptual loss

function has gained much attention. Below, we differentiate
between hand-crafted losses, which rely on existing metrics,
feature-wise losses, where image statistics are extracted us-
ing deep learning models, and distribution losses, where the
loss pushes the solution to the manifold of natural images.
Hand-crafted losses: Zhao et. al [34] have studied visual
quality of images produced by the image super-resolution,
denoising and demosaicing algorithms using L2, L1, SSIM
[29] and MS-SSIM [30] as loss functions. Images, pro-
duced by the algorithms trained with the combination of
L1 and MS-SSIM losses attained the best quality as mea-
sured by objective quality metrics. That result was closely
followed by the L1 loss used on its own. Ding et al. [5]
compared a number of image quality metrics used as a loss
function in image reconstruction methods. They found that
many of the popular quality metrics do not have properties
that could warrant good reconstruction results.
Feature-wise losses: Similarity between the reference and
the generated image can be computed in the feature space of
deep CNNs. This class of losses are often called perceptual
losses as they are meant to optimize the perceptual quality
rather than the pixel differences. However, since these loss
functions do not explicitly model perceptual processing, we
use a more descriptive name of feature-wise losses.

Authors in [14] used the L2 norm between the features of
the reference and test images extracted from the VGG [24]
network as a loss function to train style-transfer and super-
resolution algorithms. Here the VGG network was trained
on ImageNet dataset [21]. Authors in [33] (LPIPS) have
noted that features learned while training the network for
image quality assessment task might better capture percep-
tual similarity between the target and generated image. The
work used the features of several networks (untrained VGG,
VGG trained on the ImageNet dataset, and on image qual-
ity dataset) to predict image quality. The authors observed
that hidden representations of all tested deep models encode
features important for perceptual similarity. However, deep
features at various levels vary in their capacity to model per-
ceived quality. The work of [25] proposed a methodology
for selecting deep features of pre-trained CNNs that have
the strongest relationship with the perceptual similarity.

However, training image restoration algorithms reliant
only on the features extracted from the deep network as a
loss is unstable [3]. Due to pooling in the hidden layers, the

network implementing the function is often not bijective,
meaning that different inputs to the function may result in
identical latent representations [3]. Therefore, feature-wise
losses are often used in conjunction with a regularization
term, such as L2 or L1 norms, and require careful tuning
of the weights of each loss component. Delbracio et. al
[4] proposed a modification to penalize the VGG features
of the reference and the predicted image based on the 1D-
Wassertein distance [27, 20]. However, this method again
relies on L1 normalization for training to achieve acceptable
results.
Distribution loss (GAN): Many image restoration algo-
rithms are inherently ill-posed. For example images pro-
duced by super-resolution or denoising algorithms can have
acceptable perceptual quality while not precisely matching
the ground-truth. These algorithms can be optimized to pro-
duce images that lie on the natural image manifold, con-
strained by the similarity to the ground truth distribution.
To ensure that the first requirement is met, many works
have relied on GANs [10]. In such a setting, the image-
generation algorithm has two loss terms: the discriminator,
trained to differentiate between the generated and natural
images, and a term constraining the generator network to
produce images close to the ground truth. In [31, 12] au-
thors used L1 norm to regularize the training. Similarly
the works of [7, 15] used the feature-wise VGG-based loss
to constraint the generator. Some other works combined
both hand-crafted and feature-wise losses [22, 28]. Others
have introduced regularization based on the feature loss of
the discriminator [26, 13]. To avoid regularization in train-
ing for SISR the work of [2] proposed to use the consis-
tency enforcing module. The module can wrap any SISR
architecture, making it satisfy the consistency constraint – a
down-sampled version of the image reconstructed with the
network must be close to the low-resolution input.

Inability of the losses to generalize over different im-
age restoration applications and over varied datasets raises
the need of a task-specific loss function. In the following
section, we introduce our proposed loss function which is
trained to identify and thereby successfully remove the dis-
tortions for a given image restoration task in hand.

3. Multi-Scale Discriminative Feature Loss
Feature-wise (perceptual) loss functions, such as a pre-

trained VGG-Net is commonly used as a feature extractor
when training image restoration models. Additionally, ad-
versarial loss is often used as a regularizer to push the so-
lution to the natural image manifold using a discriminator
network that is trained to differentiate between distorted and
the natural images [15]. However, a fundamental weakness
of these methods is that they aim at learning the distribution
of natural images using large training datasets, which is less
relevant for a loss function. In this paper, we introduce our
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Figure 1: Graphical illustration of the two phases of our loss. Phase 1 denotes the adversarial training of the discriminators.
The generated image is produced by the scale-specific generator Gk, which takes as input the upscaled output of the previous
level ỹk−1 ↑ρ added with the task specific distortions zk. For SISR, no distortions are added (zk = 0). The levels are
sequentially trained from the coarsest scale to the finest. In Phase 2, the discriminators are frozen and used as feature
extractors over whose outputs an L2 distance is measured between the ground-truth training image xi and the restoration
output x̃i. The distance is measured between the two images at every scale k and intermediate layers of the discriminator
||ϕk

l (xi)− ϕk
l (x̃i)||22.

Multi-Scale Discriminative Feature (MDF) loss, which,
instead is trained to penalize the task specific distortions that
are introduced iteratively to the generator at various stages
of training, making the trained discriminator specialized in
identifying the distortions for a given restoration method.
Unlike VGG and LPIPS networks, which were trained for
image classification and the prediction of image quality, re-
spectively, our feature extractor networks are trained for the
task that is directly relevant to restoration task in hand. Fur-
thermore, this task is much easier than learning the entire
distribution of natural images and thereby can be achieved
with as little as a single training image.

The foundations of our loss function are based on the
following propositions:
Proposition 1: Networks employed as feature extractors for
the loss should be trained to be sensitive to the restoration
error of the input image. This makes the feature space more
suitable for penalizing the distortions during training for
that specific task.
Proposition 2: Learning natural-image manifold, which is
the task often attributed to discriminators, is a much harder
task and is less relevant for the feature-wise loss function.
The loss function should be able to detect relevant distor-
tions regardless of image content, i.e. be content invariant.

To validate both propositions, we design a new feature-
wise loss. The feature-space comprises the intermediate
activations of the set of discriminator networks trained as
a single-image GAN [23] specialized in removing task-
specific distortions from a seed image. We denote the seed
image by y to differentiate it from the training images, de-
noted by {xi}Ni=1, which are used for learning the restora-

tion task. The proposed loss function is trained in a multi-
scale manner so that it is sensitive to the relevant distortions
at multiple scales. The seed image can have a different size
from the training images, can depict a different type of a
scene, or can be a synthetic image. Below we revisit the
training procedure for our multi-scale discriminators and
operation of MDF loss on image restoration tasks.

3.1. Phase 1: Training the discriminators

We use the architecture of SinGAN [23] to train the
multi-scale discriminators on a single seed image in a task
specific manner. A set of generators {Gk}Kk=1 and a set of
discriminators {Dk}Kk=1 are instantiated for a pre-defined
set of K scales. Conventionally, scale 1 is the coarsest level
and scale K is the finest (the original image). In our experi-
ments, we chose K = 8, resulting in 8 sets of discriminators
in the MDF loss. The seed image at scale k, yk, is obtained
by downsampling (using Lanczos filter) the original image
by a factor of ρ(K−k), where ρ = 2.

For each scale of training, the generator takes as input
the upscaled output of the lower scale after adding the task
specific artifacts to it : ỹk = Gk(ỹk−1 ↑ρ + zk). Here
zk is the distortion added to the upsampled output of the
lower scale ỹk−1 ↑ρ. For the first scale of training, the
input to the generator is the original image downsampled
by a factor of ρ(K−1) and then distorted by the task-specific
error. We have experimented with the generator that was
taken directly from SISR network but we did not observe a
substantial improvement in performance. Phase 1 of Fig. 1
provides a graphical illustration of the training scheme.

In contrast to the protocol used for training a single im-
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age GAN [23], we use application-specific distortion zk

while training. For image denoising, zk is Gaussian Noise
of a magnitude randomly sampled from a uniform distribu-
tion of [0,55] on a pixel scale of (0,255). For JPEG arti-
fact removal, the upscaled output from the previous scale is
compressed with a JPEG quality chosen randomly between
7 and 10, before being fed to the finer scale. However, for
the task of Single-Image Super Resolution (SISR), no dis-
tortion is added (zk = 0) and the upscaled output from the
previous scale is directly fed to the next level.

The corresponding discriminator at scale k takes as in-
put the generated image ỹk and produces a map of [0, 1]
activations ũk = Dk(ỹk) with the same dimensionality as
ỹk. Alternatively, the discriminator can be supplied with
the downscaled seed image yk, resulting in the activation
map uk. The discriminator is trained to distinguish patches
of the seed image from patches of the generated image and,
therefore, the activations of uk are pushed towards 1 and
those of ũk are pushed towards 0. The number of such acti-
vations in the map depends on the number of convolutional
layers in the discriminator and their kernel size. In our case,
each activation corresponds to an 11×11 patch in the in-
put. Training is done sequentially across scales. The coars-
est scale is trained for 3000 iterations, then the weights are
frozen and the next scale is trained, and so on. The training
loss for the k-th GAN is comprised of an adversarial term
and a reconstruction term:

max
Gk

min
Dk

Ladv(G
k, Dk) + αLrec(G

k) (1)

The reconstruction loss Lrec employed is the MSE loss be-
tween the generated ỹk and the ground truth image yk to
ensure faithful generation of the output image. The recon-
struction loss weight α is set at 100. Selection of the loss
function and the hyper-parameters are based on [23].

It must be noted that addition of the above distortions
(Gaussian Noise and JPEG compression artifacts) to the
seed image at various scales makes the discriminator sen-
sitive to such artifacts but agnostic to the image content.
The main benefit of our discriminative loss function is that
it does not require thousands of images to be trained on,
instead a single natural image and knowledge of the distor-
tions are sufficient to provide state-of-the-art results.

3.2. Phase 2: Training for image restoration

In this phase, the trained discriminators are used as the
loss function for an image restoration task. For all restora-
tion tasks we use latent embeddings after every ReLU layer
of the trained discriminators as features. We denote the em-
beddings by ϕk

l (x) meaning the output of the l-th layer of
the discriminator for the k-th scale. The output of the whole
discriminator is then ϕk

L(x), where L is the total number of
layers. If xi is the ground-truth for the i-th training image

Table 1: Comparison of the properties of our proposed loss
against other competing losses.

Loss function Training
overhead

Memory
overhead Multi-scale Inference

GPU (ms)
Backpropogation

time (ms) Regularization

L2 None None No 1.2 1.0 –
L1 None None No 1.2 1.0 –

SSIM [29] None None No 12 1.6 –
MS-SSIM [30] None None Yes 24 6.5 –

VGG [14] 1.3M images 58.9MB No 27 21.8 Required
LPIPS [33] 161k images 1 9.1MB No 31 17.5 Required

MS-SSIM +L1 [34] None None Yes 25 8.2 –
Ours One image 4.2MB No2 11 4.0 –

and x̃ is its reconstruction, then our MDF loss is:

L =

K∑
k=1

L∑
l=1

||ϕk
l (x)− ϕk

l (x̃)||22 (2)

A subtle but crucial aspect of our loss is that the discrim-
inators are not applied to the scales on which they were
trained. If the seed image has dimensions Hy × Wy , the
training input (both seed and synthetic) to the discrimina-
tor Dk will have dimensions Hy/ρ

(K−k) × Wy/ρ
(K−k).

However, the input to the discriminator during phase 2 of
training will not be scaled and it will be Hi ×Wi, the size
of the xi.

4. Comparison of loss functions
In this section, we evaluate the efficacy of our MDF loss

on a variety of image restoration tasks that rely on CNN ar-
chitectures and also as a regularization term in an adversar-
ial training (Sec. 4.4). We compare our loss with the most
widely used loss functions, listed in Table 1, including the
perceptual loss [9, 14]. In all cases, we train the models on
the training portion of the DIV2K dataset [1] and use for
testing DIV2K (the validation set), Berkeley Segmentation
Data (BSD 500) [17] and real world mobile phone captured
images from the DPED dataset [11]. The best model is se-
lected based on the validation loss.

Note that both VGG and LPIPS losses must be combined
with the L2 loss to produce acceptable results. For fair
comparison, we conducted a hyper-parameter search over
the scalar λ controlling the weight of the feature-wise loss
function. We searched over the values in {λ : λ = 10k, k =
−3, .., 3} for super-resolution and the values of 0.01 and 1
for other applications, due to computational cost. The re-
sults of these experiments can be found in the Supplemen-
tary Material (SM). In our experiments across all restoration
applications, we found the best results are produced when
λ = 1 for VGG and λ = 0.1 for LPIPS loss. Note that un-
like VGG and LPIPS, our MDF loss function does not re-
quire addition of L2 regularization while training. It is also
worth noting that our MDF loss function is less computa-
tionally expensive and has a much lower memory overhead
compared to VGG and LPIPS (refer to Table 1).

1This is training on top of a pre-trained network using 1.3M images
2Only training of discriminators is performed in a multi-scale fashion.
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Ground Truth L2 L1 SSIM MS-SSIM VGG LPIPS MS-SSIM + L1 Ours

Figure 2: SISR results for EDSR [16] trained using different loss functions. Top row shows a sample image from BSD [17],
second row from the DIV2K validation [1] and the bottom row from DPED dataset [11]. The results for our loss are sharper
and have fewer artifacts across all datasets. Best viewed when zoomed. Additional results are provided in the SM.

Ground Truth L2 L1 SSIM MS-SSIM VGG LPIPS MS-SSIM + L1 Ours

Figure 3: Results for denoising using DnCNN model [32] trained using different losses. Top row shows a sample image from
BSD [17] and second row from the DIV2K validation [1]. Our loss improves noise reduction, especially in the uniform areas
of an image. Best viewed when zoomed. Additional results are provided in the SM.

Single-image super resolution Here, we evaluate our
proposed loss for the task of SISR, which aims at esti-
mating a High-Resolution (HR) image from a given Low-
Resolution (LR) image. For SISR, we use two state-of-the-
art architectures, namely Enhanced Deep Super-Resolution
(EDSR) [16] and SR-ResNet [15]. The LR image is gen-
erated by downsampling the original HR image by a factor
of 4 using bicubic filter. For training, we randomly extract
96× 96 patches from the dataset and perform data augmen-
tation with 90◦, 180◦ and 270◦ rotations, and horizontal and
vertical flips. Each model is trained for 500 epochs with an
initial learning rate of 0.001 with gradual rate scheduling.

Image denoising We train the DnCNN architecture pro-
posed by Zhang et al. [32]. The training set is generated
by adding Gaussian noise with the standard deviation ran-
domly selected from the uniform distribution of [0,55]. We
use SGD with a weight decay of 0.0001 with Nestrov mo-
mentum optimizer for training. Each model is trained for 50
epochs with an exponential learning rate scheduling from

0.1 to 10−4 with the momentum parameter set to 0.9.

JPEG artifact removal For this application, we use the
same DnCNN [32] as for the denoising. During training we
feed in images compressed with the JPEG codec with the
quality factor of 10 as in [6, 8]. We perform data augmen-
tation with 90◦ image rotation, vertical and horizontal flips.
The model is trained with Adam optimizer and the learning
rate set to 1e − 4. The test images are compressed with a
quality factor of 10 and a more challenging factor of 7.

4.1. Qualitative results

In Figs. 2 and 3 we provide qualitative results for SISR
and image denoising respectively. The examples for other
applications can be found in the supplementary PDF. Fur-
thermore, we include an extensive set of results at the origi-
nal resolution in a separate HTML report. The visual results
consistently indicate that our task-specific loss can produce
sharper, less noisy images with fewer artifacts. The differ-
ences are the most noticeable in the flat areas of the images.
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Figure 4: Violin plots illustrating the distribution of the PSNR [dB] ↑ and LPIPS ↓ values across different losses across all applications
for two datasets. Note that the y-axis is reversed for LPIPS so that the quality improves towards the top of each plot. The error bars show
the 95% confidence intervals for the mean (magenta) and the 5th percentile (black). The latter CIs were computed by bootstrapping. The
red asterisks indicate that one-tailed t-test on the means gives statistically significant difference at α = 0.05. It is worth noting that our
loss produced fewer images with low quality values.

4.2. Quantitative results

The quantitative results for all four applications are
shown as distributions in Fig. 4 for two test datasets:
DIV2K and BSD. We report the quantitative results in tabu-
lar form and provide additional results for DPED dataset in
the SM. The differences in means (magenta dots in Fig. 4)
are small but statistically significant for most comparisons
(one-tailed t-test with H1 show that the quality score is
higher for our method, red ∗ symbols are shown if the dif-
ference is significant at α = 0.05). The means, however,
are not the best indicator of performance of different losses.
This is because the differences in loss functions are mostly
visible in smooth or flat parts of the images, which occupy
only small percentage of all pixels but have a substantial
impact on the perceived image quality (as demonstrated in
Sec. 4.3). The advantage of our loss is better visible for
the worst-case results, shown in Fig. 4 as the lower 5th per-
centile of values (black asterisks). In majority of the com-

parison, MDF loss produces fewer images with low quality
values, especially in terms of LPIPS.

4.3. Subjective quality assessment

Objective metrics such as PSNR or LPIPS, can be unre-
liable in predicting the perceptual quality of images. They
also do not capture the practical significance of the percep-
tual difference; we do not know whether the improvement
of 0.5 dB is going to be appreciated by an average observer.
For that reason, we ran perceptual experiments on the Ama-
zon Mechanical Turk crowd-sourcing platform.

For best sensitivity of the test, we used full-design
pairwise-comparison protocol [19]. In each trial, partici-
pants were presented with 3 side-by-side images: one refer-
ence and two generated by the image reconstruction meth-
ods, each with different loss function from the BSD dataset.
Participants were asked to select the image that appeared
closer to the reference. For fair comparison, we randomly
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Figure 5: Subjective experiment in JND units (the higher, the
better). Error bars denote 95% confidence intervals. The legend is
same as Fig. 6.

SISR (EDSR) Denoising

SISR (SR-ResNet) JPEG artefact removal

Figure 6: Perception-distortion trade-off for the tested losses.
The axes have been reversed so that the lowest distortion is shown
on left and the highest perceptual quality at the bottom as in [3].

selected 50 images from testset. Thus, every loss function
was compared to every other loss 50 times. Overall, we
collected 1400 comparisons for each restoration method.

In each Human Intelligence Task (HIT) we included
nine pairwise comparison trials and one (for denoising and
JPEG artifact removal) or two (EDSR and SR-ResNet) ad-
ditional pairwise comparisons with an obvious outcome to
screen the results against the participants who misunder-
stood the task. If a participant made a mistake in those
comparisons, we excluded that HIT. Overall we discarded
4.2% and 14.2% comparisons for SISR with EDSR and SR-
ResNet respectively, 7.1% comparisons for denoising and
9.2% comparisons for JPEG artifact removal.

For each application we aggregated collected compar-
isons and performed Just Noticeable Difference (JND)
(Thurstonian) scaling on the results using the method from
[19]. The results express the quality difference in JND units.
One JND unit means that 75% of the population will select
one method over another (from a pair). The results of the
scaling, plotted in Fig. 5, show consistent improvement of
our method over other losses. MS-SSIM + L1 performed
the second best for SISR on the EDSR, with MDF having an

advantage of 0.05 JND. For other applications, MDF shows
a substantial improvement over all competing losses.

To gain further insights, in Fig. 6 we visualize the results
as the perception-distortion trade-off [3], which shows the
distortion (PSNR) on the x-axis and the JND quality values
on the y-axis (reversed scale). The results across all appli-
cations clearly show that the proposed MDF loss results in
both the lowest distortion and the highest perceived quality.
The results for EDSR show drastic difference in the per-
formance as measured by PSNR and subjective experiment.
MDF and L2 – the best and the worst performing losses,
differ only by 0.09 PSNR, but have 2.4 JND difference in
the perceptual quality, corresponding to 94.7% of the popu-
lation selecting the results produced by MDF.

4.4. Comparison with adversarial loss

Our MDF loss can be also used as a reconstruction term
when training a GAN architecture for image restoration.
For this experiment, we chose the task of SISR and used
state-of-the-art GAN based method — ESRGAN [28]. The
model trained with the MDF loss function alongside the ad-
versarial loss achieves a PSNR of 25.37 dB as compared to
the weighted combination of VGG and MSE loss function’s
25.06 dB. Both the models are trained using the DIV2K
dataset and inference is run on the BSD dataset. Since,
models trained with adversarial loss are known to produce
lower PSNR values, we further conducted a subjective study
to predict the perceptual quality of the images. We ran a
pairwise comparison study on 50 randomly selected images
from the testing dataset with each pairwise comparison per-
formed four times. MDF has an advantage over VGG loss
function and was selected in 58% of the comparisons.

5. Ablation analysis
The ablation studies test the importance of task-specific

MDF, the choice of seed image, the number of images used
to train the discriminator and the number of discriminator
scales. The latter two studies are described in the SM.

Task-specific distortions Here we test whether the loss
trained on one task can serve as a feature extractor for an-
other. We train DnCNN for JPEG artifact removal using
MDF with introduced either noise or JPEG distortions (dif-
ferent vectors zk). The task-specific discriminator gained
moderate performance increase in terms of PSNR (25.75 dB
for MDF JPEG and 25.61 dB for MFD noise) but resulted
in images of much better visual quality, as shown in Fig. 8.

Seed image We study the effect of using different natural
and synthetic images for training our MDF loss function.
Fig. 7 shows 5 seed images including 2 natural and 3 syn-
thetic ones that were used to train the discriminators. Pyra-
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Figure 7: Ablation study on changing the image used for training our MDF loss function. It can be seen that natural images
provide visually better results as compared to synthetic images. Best viewed when zoomed.

Ground Truth MDF noiseMDF JPEG

Figure 8: Example results for JPEG artifact removal when
trained on task-specific MDF JPEG and MDF noise. Task-
specific MDF results in improved visual quality.

mid Permutation image has been created by a random per-
mutation of pixel order on each level of the Laplacian pyra-
mid. Such permutation distorts image second-order statis-
tics, but preserves the composition of the spatial spectrum.
Pink Noise image contains 1/f2 noise that is typical for natu-
ral images. Contrast Rings image contains concentric rings
whose contrast is reduced towards the centre to cover the
range of edges of all orientations and contrast magnitudes.
The results of SISR (EDSR), shown in the bottom part of
Fig. 7, indicate that the visual quality of the super-resolved
images is best for natural images and is degraded as the
statistics of the training image is distorted. However, from
the results for all the applications, the visual quality of the
restored images is more dependent on the nature of distor-
tions added (zk) than the choice of the seed image.

6. Image quality metrics and loss functions
Provided with the results of our subjective quality ex-

periment from the previous section, we further test whether
a good loss function is also a good image quality metric.
Here, we used each loss function as a quality predictor for
the improved version of the TID2013 dataset [18]. The
dataset is one of the most accurate (due to large number
of comparisons), is scaled in JND units, and contains suffi-
ciently large number of conditions (over 4000 images). In
Fig. 9 we plot the Spearman Rank Order Correlation Co-
efficient (SROCC) with the subjective scores from the im-
proved TID2013 against the JND values from our subjec-
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Figure 9: Per-
formance of loss
functions on the task
of image quality
prediction versus per-
formance as objective
functions. Results
do not show strong
correlation. Markers
are consistent with
Fig. 5

tive experiment. High SROCC value indicate that the loss
is a good predictor of image quality. The scatter plot shows
little correlation; the best quality predictors are not neces-
sarily the best loss functions. This is an important finding
because it puts in question whether loss functions should
be optimized for prediction of image quality. Additional
experiments to investigate the performance of various loss
functions as quality predictors are provided in the SM.

7. Conclusions
In this paper, we have shown several observations that go

against the common assumptions of what make a good loss.
We demonstrated that a small multi-scale discriminator net-
work, trained to detect application-specific distortions, can
serve as a better feature-wise loss than large networks, such
as VGG, which have been trained on large datasets. This
shows that learning a natural image manifold, semantic,
or style features may not be essential for an effective loss
function. Instead, the loss needs to penalize errors specific
for restoration task in hand. Our subjective assessments re-
veal that the restored images generated using models trained
with a task specific loss function are consistently chosen by
human observers to be closer to the reference images.
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