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Abstract

Single image depth estimation is an ill-posed problem.
That is, it is not mathematically possible to uniquely es-
timate the 3rd dimension (or depth) from a single 2D im-
age. Hence, additional constraints need to be incorporated
in order to regulate the solution space. In this paper, we
explore the idea of constraining the model by taking advan-
tage of the similarity between the RGB image and the corre-
sponding depth map at the geometric edges of the 3D scene
for more accurate depth estimation. We propose a general
light-weight adaptive geometric attention module that uses
the cross-correlation between the encoder and the decoder
as a measure of this similarity. More precisely, we use the
cosine similarity between the local embedded features in the
encoder and the decoder at each spatial point. The pro-
posed module along with the encoder-decoder network is
trained in an end-to-end fashion and achieves superior and
competitive performance in comparison with other state-of-
the-art methods. In addition, adding our module to the base
encoder-decoder model adds only an additional 0.03% (or
0.0003) parameters. Therefore, this module can be added
to any base encoder-decoder network without changing its
structure to address any task at hand.

1. Introduction

Depth estimation is an important step in understanding
the geometry of a 3D scene. In addition, many downstream
applications, such as 3D modeling, robotics, autonomous
driving, etc., rely on accurate depth estimation. The min-
imal sensory setup for depth estimation is to use a single
monocular image. However, recovering the scene’s depth
from a single image is an ill-posed problem that requires
additional priors, often referred to as monocular depth cues,
like perspective, occlusion, object size, texture, etc. These
cues can be exploited through learning-based methods with
prior knowledge to disambiguate different 3D interpreta-
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Figure 1. Comparison of edges and gradients in an RGB image
and the corresponding depth map. Top-left: RGB image. Top-
right: the corresponding depth map of the RGB image. Bottom-
left: Laplacian of the RGB image. Bottom-right: Laplacian of the
depth map.

tions.

Existing deep learning methods can usually estimate ac-
curate 2D depth maps. However, they lack local details and
are often highly distorted when the maps are projected into
3D. This is due to the usage of down-sampling in the pre-
trained fully convolutional encoders, mostly designed for
classification purpose. While feature resolution and granu-
larity may not be important in performing tasks like image
classification, they are crucial for dense prediction, where
the architecture of the model should ideally be able to de-
liver features at or close to the resolution of the input image.

Various techniques have been proposed to mitigate the
above-mentioned issues. One way is using dilated con-
volutions [55] to rapidly increase the receptive field with-
out down-sampling. Another way is using skip connec-
tions from multiple stages of the encoder to the decoder
[40]. By the same token, the problem has been addressed in
[44] by connecting multi-resolution representations in par-
allel throughout the network. While all these techniques
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can solve the issue to some extent, they are subject to the
problem of washed out information in deeper convolutional
networks [19]. To mitigate the effect of these convolutions,
some researchers have suggested to replace the building
blocks entirely or in some places in networks by attention-
based blocks [29, 34] or transformers [52, 39] which are
themselves, based on attention mechanisms.

Even given that we can find a way to produce a high res-
olution depth map with many details by using skip connec-
tions, we still run into an additional problem. We explain
this using the example shown in Fig. 1 that compares an
RGB image and the corresponding depth map. The cabinet
on the left and the table surface are almost texture-less in the
RGB image and have gradient only at geometric edge loca-
tions in the depth map. On the other hand, the wall with the
brick texture mainly shows a gradient-less area in the depth
map but a lot of gradient in the RGB image. Looking at the
high-pass filtered RGB image and the depth map suggests
that most of the information needed to extract a depth map
from a scene is near the geometric edges, i.e., edges in the
RGB image which come from the geometric structure of the
3D scene. However, to extract the geometric edges, we need
to first remove the edges in the RGB image which mainly
come from texture and color changes.

For this reason we wish to give the convolutional neural
network the ability to deduce the local geometric structure
of the RGB image using guidance from the corresponding
depth map. However, the depth map is not available at eval-
uation time. Instead, we explore the idea of constraining
the model by taking advantage of the similarity of the RGB
features and the corresponding depth map features at geo-
metric edges of the 3D scene for more accurate depth es-
timation. We hence propose a light-weight attention mod-
ule that uses the cross-correlation between the encoder and
the decoder. The functionality of this module can be inter-
preted as a guiding tool for an efficient feature extraction in
the encoder and it can be used to merge the same size fea-
ture maps from the encoder to the decoder efficiently in any
encoder-decoder structure with minimum added weight and
computation burden to the base encoder-decoder network to
address any task at hand.

The proposed module along with the encoder-decoder
network is trained in an end-to-end fashion on both the in-
door NYUDV?2 dataset [37] and the outdoor KITTI dataset
[12] and achieves superior and competitive performance in
comparison with state-of-the-art.

2. Related Works

The ability of CNNs to work as a regressor has made
them a good candidate for depth estimation. However, com-
pared to estimation of the exact depth of a single point, it is
easier to estimate its depth range [2, 10] and formulate the
depth estimation as a pixel-wise classification task instead.

Our work benefits from both methods.

Depth estimation with (geometric) constraints. Deep
learning methods have been proven to be effective in depth
map estimation. However, they lack local details in 2D and
they are often highly distorted when the maps are projected
into 3D. In this case, One can also improve depth estima-
tion using some kind of (geometric) constraint. While [17]
tried to solve these issues by fusing multi-scale features,
[54] exploited the virtual normals of virtual surfaces to es-
timate the depth map in 3D scene robustly. By the same to-
ken, [30] proposed a two-streamed CNN that predicts both
depth and depth gradients and then fusing the outputs to-
gether into a detailed depth map. Another example of two-
streamed CNN is GeoNet [38], which jointly predicts depth
and surface normal maps from a single image. Similar to
[7, 54, 38] which exploit geometric constraints, [27] as-
sumed local planar for every local patch to guide depth pre-
diction more effectively.

Intuitively, neighboring pixels with similar appearances

should have similar depth estimation and major depth
changes usually lie in the vertical direction in outdoor
scenes. This constraint was utilized in [11] for single im-
age depth estimation.
Depth estimation in relation to segmentation. Depth es-
timation and semantic segmentation symbiosis represents
one of the closest relationship in deep learning tasks. Some
works have tried to exploit one to help improve the perfor-
mance of the other or both at the same time [31, 46, 13,
7, 21, 16, 25, 46]. However, the performance is not the
only incentive for this symbiosis. For example, [24] exploits
semantic guidance to solve the dynamic object problem in
monocular depth estimation.

Improving depth estimation using semantic segmenta-
tion can be interpreted as attending to the objects and their
borders instead of all pixels just like in [43, 21]. While
pixel-wise visual attention maps have shown their effective-
ness [23, 43] suggested an object-level attention model for
autonomous driving.

Depth estimation based on attention and transformers.
Attention mechanisms have been used in depth estimation
works previously. Most of the works are based on [48, 22]
which in turn borrowed the idea from natural language pro-
cessing (NLP) [42]. The suggested dot products and matrix
multiplications usually try to find correlation between dif-
ferent spatial parts of tensor features [41, 22, 42, 53, 5].
The problem with these operations is they are computa-
tionally expensive where optimization is made more diffi-
cult due to lots of multiplication operations involved. Sim-
ilar to [33, 50, 2], the authors in [51] employed a contin-
uous CRF to fuse multi-scale information derived from a
CNN. Different from the past works, they imposed struc-
tural constraints on an estimated attention map to estimate
depth. Attention fusion was also used in [15]. In [1] the
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authors, inspired by neural machine translation, introduced
a CNN scheme which exploits forward and backward atten-
tion mechanisms. [22] used a self-attention context module
to explore the inference of similar disparity values at non-
contiguous regions of the image. Exactly the same mecha-
nism was also adopted in [36].

While attention and geometric constraint are beneficial
for depth estimation, combination of both can be exploited
to improve depth estimation [20, 45]. [14] tried to use atten-
tion mechanism to improve monocular depth estimation as
well. Different from our work, their spatial attention mech-
anism is separated from their global context module while
ours combines the two stages in one light-weight and local
module with different operations, i.e., sensitivity-enhanced
geometric similarity in embedded Euclidean space.

Attention can be easily exploited in loss function since
the ground truth depth is available when training the net-
work. Having this in mind, [21] has tried to benefit from an
attention-driven Loss that adjusts the backpropagation flow
accordingly.

3. Proposed Method

In this section we discuss the structure of our model and
the optimization as well as an in-depth discussion about our
proposed module. As discussed in Sec. 2, depth estima-
tion can be defined as a regression problem or a classifica-
tion problem. We choose to adopt the model along with its
cost functions from [54] as our base model which uses both
classification and regression at the same time. We then in-
troduce our proposed attention module into the base model
for performance improvement. The addition of our module
imposes a minimal change to the base model in the sense of
computational cost and only adding few additional parame-
ters to the network model.

Like any other regression and/or classification problems,
there are two aspects of the method which contribute to the
quality of the estimation, namely, the model and its struc-
ture, and the cost function and the optimization method. In
the following, we elaborate on both aspects.

3.1. Model

We would like to guide the encoder to shape the RGB
features using the depth map for better depth estimation at
each spatial point. However, at prediction time the depth
map is not available. Instead, we use the local cross-
correlation of the embedded encoder and decoder features
as the local similarity measure at each spatial point. The
eventual criteria for this guidance is the sensitivity enhanced
absolute value of the cosine similarity between the local em-
bedded features at every spatial point of the encoder and the
decoder. By enhancing the sensitivity, we try to make any
non-zero correlation between the encoder and the decoder
features at each spatial point more effective. The similarity
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Figure 2. An overall structure of the model.
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Figure 3. The internal structure of AGA module in its most general
settings. S, C and A stand for spatial, channel-wise and attention,
respectively. Fj and F}, are low-level and high-level features from
the encoder and the previous stage of the decoder, respectively.
The attention maps SA; and SA; are discussed in Sec. 3.1 and
are equivalent to (1).

measure is absolute and normalized version of dot product
(dot product is the conventional attention technique) which
means more constraints are imposed on the network to reg-
ulate the solution space better.

We adopt the model and cost functions from [54] as our
base model. We then add the proposed adaptive geometric
attention (AGA) module to the base model as well as adding
an {5 term to the cost function, as shown in Fig. 3. The
overall structure of the model is depicted in Fig. 2.

The model mainly consists of two parts, an encoder
which extracts features from the input RGB image at dif-
ferent spatial resolutions, and a decoder which reconstructs
the depth map from the features extracted by the encoder.
In addition, the encoder and the decoder are connected
to each other using an Astrous Spatial Pyramid Pooling
(ASPP) module [4] to increase the receptive field of the
entire model. All upsampling operations in the model are
based on the bilinear resizing method. The whole encoder-
decoder structure in the base model [54], itself had been
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borrowed from [32]. The decoder in [32, 54] comprises
of several adaptive merging blocks (AMB) to fuse features
from different levels of the encoder and the decoder, and di-
lated residual blocks (DRB) modules to increase the recep-
tive field of the encoder and transform the encoder features.
AMB blocks, in [32, 54], merge the encoder’s features into
the decoder’s features adaptively which can be considered
a channel-wise attention mechanism. The operations in the
AMB are nothing but concatenation of both the encoder and
the decoder features, followed by the squeeze and excita-
tion operations using the squeeze and excitation networks
(SE Networks) [18].

Instead of the AMB block we use our own improved
AGA module as shown in Figs. 2 and 3 in its most gen-
eral form. Our AGA block benefits from both spatial and
channel-wise attention integrated into one module. The first
row of operations in Fig. 3 is in fact from the AMB module.
The novel part of the module is the spatial attention opera-
tions which are mixed with the channel-wise operation in
an additive and multiplicative fashion. For the spatial at-
tention, the module uses the local cross-correlation of the
encoder and the decoder features at each spatial points to
shape the encoder features spatially.

At first, our AGA module uses 1 x 1 convolutions as a
bottleneck to go from hyper space (feature space) to embed-
ded Euclidean space for both the encoder and the decoder
features. Then the module uses cross-correlation of the em-
bedded features from the encoder and the decoder. More
precisely, the module uses absolute value of cosine similar-
ity of the embedded features of the encoder and the decoder
at each spatial point as a measure of structural similarity be-
tween the depth map features and the RGB features. Since
this similarity measure is absolute and normalized, the mod-
ule can put more constraints on the solution space. As a
result, it can shape the RGB features in a better way, both
spatially and channel-wise, using the decoder as the repre-
sentation of the depth features for better depth estimation.
See Fig. 7 for visual effect of the spatial attention. The
operations in the second row and the third row of Fig. 3
which calculate the spatial attention (attention maps SA;
and S As) are equivalent to

SA; = |cossim (Ey;, Epy)|, i =1,2 (1

where £ ; and E}, ; denote the embedded features of low
level features, i.e., I} or the encoder features, and high level
features, i.e., F}, or the decoder features, respectively. The
operations in Fig. 3 are depicted in this way to facilitate
the comprehension of their extension to the non-local AGA
module in Fig. 8 which will be discussed in Sec. 4.5.

Not only the channel-wise attention and the spatial atten-
tion are different in the above-mentioned implementation
details, but also the purposes of the two are different. The
channel-wise attention provides the encoder feature with
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Figure 4. Illustration of the differences between the spatial atten-
tion and the channel-wise attention discussed in Sec. 3.1.

one scalar multiplicative weight for the entire of each sin-
gle channel of size H x W. So for the entire encoder’s
H x W x C feature it provides a vector of size 1 x C'. The
vector is scaled before added to the decoder’s feature. Spa-
tial attention, instead, is an ' x W attention map that each
feature vector at each spatial point of the encoder feature
will be multiplied by the corresponding spatial value of the
attention map. See Fig. 4.

The AGA module uses the sensitivity-enhanced absolute
value of the above-mentioned cosine similarity. The ab-
solute value enforces the correlation between two feature
vectors at each spatial point of the encoder and the decoder
features independent of the direction. That is, what we wish
is to compare the presence of any spatial cross-correlation
between the depth map features and the RGB features. If
there is a correlation between the depth map features and
the RGB features, then they carry information about each
other regardless of the sign of the correlation. The AGA
module in the most general form has been depicted in Fig.
3. To go from hyperspace, C, to the embedded space, Cj, at
each spatial point, we utilize a 1 x 1 convolution with bottle-
necking Cy < C. In this way, we are able to avoid permu-
tations of the information in different channels since the 2D
convolution operation is fully connected in channel direc-
tion of the input and summation is permutation indifferent.
This bottleneck will give us the structure of the features in
that spatial point in the embedded space. This operation is
local. Being local and bottle-necked, it is light. The out-
put of this operation is an H x W spatial attention map. As
shown in Fig. 3, the AGA module’s outputisan H x W x C
tensor of features

Four = [f1(SA1) + f2(SA2) x CAl x F; + F),. (2)

where S, C and A stand for spatial, channel-wise and at-
tention, respectively. F; and Fj are low-level and high-
level features from the encoder and the previous stage of
the decoder, respectively. The first spatial attention map,
S Ay, is additive while the second one, S Az, is multiplied
by the channel-wise attention weights. Element-wise sum-
mation and multiplication of tensors of sizes H x W x 1
and1 x 1 x C'and H x W x C are possible since these op-
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Figure 5. Comparing x exp (), in red color, and x, in blue color.
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Figure 6. The overall training pipeline. Total loss consists of three
terms {werL, vy and f2. fyweopr and £2 compare the absolute
predicted depth map, Dy,cq, and the ground truth depth map, D y¢.
{yv n compares the virtual normals using the predicted point cloud,
Pyrea, and the ground truth point cloud Pg¢. 7 and A are scaling
constants tuned to give an appropriate effect to each term in the
total cost function. fwcer, {v N are from the base model [54].

erations broadcast the operand tensors. f1(-) and fo(-) are
introduced to enhance the sensitivity to any non-zero corre-
lation between the high-level features and low-level features
in each spatial point. They are chosen either of

. f(SA) =SA
.« f(SA) = SA exp (SA)

The first one means spatial attention without enhancing sen-
sitivity. The second one means spatial attention with en-
hanced sensitivity. See Fig. 5 for comparison between
them. We experienced that enhancing the sensitivity around
1 helps. One explanation is that the gradients in a normal-
ized output are suppressed. To completely turn off the sen-
sitivity to the additive spatial attention and multiplicative
spatial attention, we set f1(SA) = 0and fo(SA) = 1.
Our AGA module merges the attended low-level features
from each level of the encoder to the corresponding de-
coder’s high-level features. The AGA module will learn
the merging parameters, during optimization, to merge the
information for all elements of the H x W x C encoder

tensors weights, i.e., [f1(SA1) + f2(SA2) x CA.

3.2. Loss functions

We utilize a 3-term cost function. The virtual normal
loss and the weighted cross-entropy loss were already used

in the base model [54]. We add a third term /5, based on the
L5 norm of the error.

Virtual Normal Loss (VNL). The surface normal is an im-
portant local feature for 3D reconstruction and depth esti-
mation. However, calculating surface normals in a small
area is prone to noise. To remove the effect of noise, [54]
suggests to calculate the normals of virtual surfaces built by
triangles which their constructing points have been chosen
far from each other in 3D scene at random. If n]’;md and
n/, are the predicted normal and ground truth normal at the
point 7 respectively, then the computed Virtual Normal loss
is:

1 [ ,
v =% (Sl ill)
i=1

where IV is total number of valid sampled triangles. See
[54] for details. Similar results can be achieved if one uses
the virtual slope in 3D scene instead of virtual normals. See
ablation study in [54]. ¢y helps with relative pixel-wise
depth values of the predicted depth map and its structure in
regression fashion.

Pixel-wise Absolute Depth Supervision. In addition to
VNL, we have two terms which enforce pixel-wise absolute
depth supervision. Similar to [10, 54], we have used quan-
tized real-valued depth. We formulated the depth prediction
as a classification problem instead of regression by employ-
ing the cross entropy loss. More precisely, we borrowed
the weighted cross-entropy loss (WCEL) from [2, 54], with
the weight being the information gain. See [2] for details.
Combination of these two above-mentioned terms has been
already utilized in our based model [54]. In addition to these
two terms, we decided to use the Lo norm of the difference
between the ground truth and the predicted depth map, to
decrease the root mean square error (RMSE) of the pre-
dicted depth map. We combine WCEL and VNL and Ly
loss together to gain an overall supervision in the training
phase. The total loss is

C="ClwerL + Myn + v €]

where the weights A and ~ define the contribution of each
term. We have set A to 6 and v to 25 based on extensive
empirical studies. The overall training pipeline is illustrated
in Fig. 6.

4. Experiments and Results

We perform our experiments on the NYUDV2 dataset
[37] and the KITTI dataset [12] to evaluate the performance
of our proposed algorithm in comparison with state-of-the-
art methods. We also perform ablation studies to better un-
derstand the contribution of the different settings of our at-
tention module.
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4.1. Datasets

NYUDV2. The NYUDV2 dataset consists of 464 different
indoor scenes, which are divided into 249 scenes for train-
ing and 215 for testing. Similar to [10], we use the training
scenes after synchronization using the tool provided by [37]
to train our model for our main results and ablation study
on NYUDV2. We refer to this dataset as large NYUDV2.
Moreover, we use a subset of the Raw NYUDV?2 dataset.
which is split to 249/215 train/test split scenes for our abla-
tion study. We refer to the subset as small NYUDV2.
KITTI. The KITTI dataset contains over 93K outdoor im-
ages and depth maps with an approximate resolution of
1240x374. All images are captured on driving cars by
stereo cameras and a Lidar. We test on 697 images from
29 scenes split by Eigen et al. [8]. We remove all the im-
ages from the scenes in which one of them is in the test
scenes and use the remaining RGB images and correspond-
ing ground truth for training.

4.2. Implementation details

Similar to [54], the ResNeXt-101(32 x 4d) [49] encoder
pre-trained on ImageNet [6] is used as the encoder in our
model. The base model is exactly as decribed in [54] but
we replace all AMB modules with our AGA modules. See
Fig. 2. In our main results (Sec. 4.4), we use the AGA
module as described in Sec. 3.1 with the additional ¢ loss
term. All 1 x 1 bottle-necks in the AGA modules are %
times of their input channel size.

In all of our experiments our base learning rate is 0.003
used along with a learning rate scheduling going from 1 to
0 linearly for all training procedures on the large NYUDV2
and KITTI and the same learning rate scheduling with
power 0.9, is chosen on the small NYUDV2. Stochastic
gradient descent is applied as the optimization method with
a batch size of 16 on the large NYUDV?2 and the KITTII and
a batch size of 8 on the small NYUDV?2. The weight decay
and momentum are set to 0.0005 and 0.9 respectively. The
model is trained for 99300 iterations on large NYUDV2 and
KITTI and 5000 iterations on small NYUDV?2.

We conduct data augmentation on the training samples
using the following methods. On small and large NYUDV2
the RGB image and the corresponding depth map are ran-
domly resized with ratio [1, 0.92, 0.86, 0.8, 0.75, 0.7,
0.67], randomly flipped horizontally, and finally randomly
cropped to 384 x 384. A similar process is applied for
KITTI but resizing with the ratio [1, 1.1, 1.2, 1.3, 1.4, 1.5]
and cropping with 384 x 512. Note that the depth map
should be scaled to the corresponding resizing ratio [8].

It is worth mentioning that the overall model is similar
to what has been used in [54] except the AGA module in
magenta in Fig. 2. The base model in [54] has exactly
90436054 parameters and we are adding only 28672 param-
eters to it which is around 0.03% (or 0.0003) of the total

Err(lower is better) Acc(higher is better)
rel 1g10 rms o1 o9 o3

Eigen [7]  0.158 - 0.641 0.769 0.950 0.988
Chakrab [3]  0.149 - 0.620 0.806 0.958 0.987
Li[30] 0.143 0.063 0.635 0.788 0.958 0.991
Su[41] 0.137 0.058 0498 0.826 0967  0.995
Qi[38] 0.128 0.057 0569 0.834 0.960 0.990
Wang[46]  0.128 - 0.497 0.845 0966 0.990
Wang [47]  0.128 - 0493 0.844 0964 0.991
Laina [26] 0.127 0.055 0.573 0.811 0.953 0.988
Xu[50] 0.121 0.052 0.586 0.811 0.954 0.987
Lee[28] 0.119 0.050 0430 0.870 0974 0.993
Wang [45] 0.115 0.049 0519 0.871 0975 0.993
Fu[10] 0.115 0.051 0509 0.828 0.965 0.992
Hu[17] 0.115 0.050 0.530 0.866 0.975 0.993
Liu[35] 0.113 0.049 0523 0.872 0975 0.993
Lee[27] 0.110 0.047 0392 0.885 0978 0.994
Huynh [20]  0.108 - 0.412 0.882 0980  0.996
Fang [9] 0.101 - 0412 0.868 0.958 0.986
Yang [52] 0.106 0.045 0.365 0.900 0.983 0.996

base [54] 0.108 0.048 0416 0875 0976 0.994
ours 0.097 0.042 0444 0.897 0.982 0.996

Method

Table 1. Results on large NYUDV2 as compared to other state-
of-the-art methods. The best result in each column (measure) is
depicted in bold text. The second best is underlined.

Err(lower is better) Acc(higher is better)

Method
rel rms rmslog o1 o9 o3

Su[41] 0.117 4.251 0.174  0.894 0.971 0.984
Fang [9] 0.098 4.075 0.174 0.889 0.963  0.985
Wang [45] 0.096 4327  0.171 0.893 0.963 0.983
Fu[10] 0.072 2727 0.120 0932 0.984 0.994
Liu[35] 0.070 2912  0.121 0942 0.986 0.992
Lee [27] 0.059 2756  0.096 0.956 0.993 0.998

base [54] 0.072 3.258  0.117  0.938 0.990 0.998
ours 0.070 3.223  0.113 0944 0991 0.998

Table 2. Results on KITTI dataset as compared with state-of-the-
art methods. The best result in each column (measure) is depicted
in bold text. The second best is underlined. Our model consis-
tently beats the base model [54] in all measures and shows com-
parable performance with other state state-of-the-art methods.

parameters of the base model. In addition, all added opera-
tions are light since they are local.

4.3. Evaluation metrics

Similar to [26] we evaluate the performance of our depth
prediction quantitatively based on mean absolute relative er-
ror (rel), mean log 10 error (1g10 ), root mean squared error
(rms), root mean squared log of error (rmslog) and the ac-
curacy under threshold (o; < 1.25% , i = 1,2, 3).

4.4. Comparison with state-of-the-art

A comparison of our results with state-of-the-art meth-
ods is shown in table 1 for large NYUDV?2 and in Table
2 for the KITTI dataset. As shown in Table 1, our sug-
gested method achieves best or comparable results in all
the measures except one among all state-of-the-art meth-
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Figure 7. Qualitative results. From left to right: RGB image, at-
tention map, predicted depth map, ground truth depth map. As
the attention map depicts, the attention is higher at the geometric
boundary of the 3D scene. This attention is strongest at occlusion
boundaries which is an important subset of geometric boundaries.

ods. Examples of our trained model’s outputs, largest atten-
tion map, ground truth depth map and RGB images are de-
picted in Fig. 7. The attention map shows stronger response
around geometric boundary of the 3D scene as expected by
our method. This attention is the strongest at the occlu-
sion boundaries which is an important subset of geometric
boundaries. The clear separation of the objects with em-
phasized geometric boundaries around them suggests that
the AGA module is performing as expected by reducing the
effect of texture edges and focusing on geometric ones. The
performance on the KITTTI datset in comparison with state-
of-the-art shows that the methodology is effective on KITTI
dataset as well. As it is shown in Table 2 our model outper-
forms the base model [54] in all measures and shows com-
parable results in comparison with the state-of-the-art in all
other measures.

4.5. Ablation study

In this section we conduct two sets of experiments.

Effectiveness of the proposed AGA module over the
base model [54] and added /5 loss term. We compare
the effect of different internal settings for our suggested
general AGA module depicted in Fig. 3 as well as the
added /5 term in the total cost function. The settings
which are referred to by first column of Table 3 in this
section are the settings for general coefficients of low-level

Error (lower is better) Acc (higher is better)
rel log10 rms o1 o9 o3

[54] 0.1408 0.0590 0.5951 0.8217 0.9635 0.9907
S2 0.1385 0.0581 0.5856  0.8269 0.9644  0.9915
S3  0.1388 0.0586 0.5980 0.8232 0.9641 0.9912
S4  0.1381 0.0578 0.5702 0.8277 0.9643  0.9919
S5 0.1361 0.0577 0.5832 0.8283 0.9658 0.9916
S6  0.1345 0.0574 0.5904 0.8302 0.9670 0.9921
S7 0.1364 0.0568 0.5567 0.8319 0.9671 0.9929

Set.

Table 3. Ablation study for different settings in our suggested gen-
eral AGA module in Fig. 3 compared to the base model [54].
The settings which are referred to by first column of this table
are the settings for general coefficients of low-level features, i.e.
[f1(SA1) + f2(SA2) x CA], in Eq. (2). The results are the
last iteration of each experiment which are filtered using a mov-
ing average with length 15. In this table the first row represents
CA is the base model [54]. S2 = SA2 x CA. S3 = SAs.
S4 = SAs x CA as well as added /2 in total cost-function. S5 =
SA; x exp(SA1)+SAz x CA. 56 = SA; x exp(SA1)+CA.
ST = SA1 x exp(SA1) + CA as well as added ¢2 in to-
tal cost-function. S, C and A stand for spatial, channel-wise
and attention respectively. All settings have been trained with
{ = bwcer + My, but the ones with added ¢ trained using
{ = Llweer + My + 2. The best value in each column is
bold type and the second best is underlined.

features, i.e., [f1(SA1)+ f2(SAz) x CA], in Eq. (2).
The first row in Table 3 is the base model[54] with its
cost functions, i.e., VNL and WCEL. Other than the base
model and its cost functions in [54] we have added ¢5 to
the total cost functions. So we provide different settings
with and without /5 to study the effect of the term. As
Table 3 suggests, the structure with first spatial attention
with sensitivity enhanced added to the channel attention
works the best for the NYUDV?2 dataset. However, it is
possible that on other data distributions setting S5 might be
an option because we noticed that setting S5 has less spikes
during training in our experiments which is a desirable trait.
The root mean square measure (rms) in Table 3 is lower
for the settings with the added term /¢y in the total cost
function, i.e., S7 (lowest) and S4 (second lowest). This
shows the effectiveness of /5 term in the total cost function.
Note that S6 and S7 are the same in their AGA setting but
the later has the added /5 term in the total cost function.

Effectiveness of the proposed methodology over the con-
ventional attention. Second, we show the novelty of the
AGA module’s implementation, (i.e. sensitivity enhanced
absolute value of cosine similarity of the features in embed-
ded space) as a measure of similarity between the encoder’s
and the decoder’s features at each spatial point in compar-
ison with the traditional attention mechanisms. The sec-
ond set of experiments aims at showing the effectiveness of
the above-mentioned cross-correlation measure between the
low-level features (the encoder features) as representation
of the RGB image and the high-level features (the decoder

950



Error (lower is better) Acc (higher is better)
rel log10 rms o1 o9 o3

DS7 0.102 0.045 0452 0.881 0974 0.994
NS7 0.101 0.045 0450 0882 0976 0.994
S7 0.097 0.042 0.444 0.897 0.982 0.996

Set.

Table 4. Comparison between our AGA module and the conven-
tional attention techniques, dot product and costly matrix multipli-
cation. The S7 is just like the setting of main results of table 1, 2
and table 4. In this table the first row, DS7, is the same setting in
S7 but using dot product as spactial attention mechanism instead
of our similarity measure. N S7 is extension of S7 to non-local op-
eration and compare each local feature vector with all other points
in other spatial points.

features) as the representation of the depth map by compar-
ing it to the conventional attention techniques, i.e., dot prod-
uct and matrix multiplication (non-local operations). We
compare three settings, D.S7, NS7 and S7. The S7 setting
has been described in Table 3 which is the same for Tables 1
and 2 as well. The DS7 setting is the same as S7 but using
dot product as coefficients for spatial attention mechanism
instead of formula (1) and (2). NS7 is the extension of
S'7 to non-local operations. It compares each spatial points
with all points in all other spatial points. The details of im-
plementation of non-local AGA module has been depicted
in Fig. 8. It is important to note that all three models have
exactly the same number of parameters. The only difference
is whether we have used formula (1) and (2) or dot product
and attention is local or non-local.

As Table 4 suggests, our local AGA module works the
best in comparison with the conventional attention mech-
anisms. The reason that non-local AGA is showing infe-
rior performance in comparison with our suggested (local)
AGA module is the introduction of lots of multiplication in
forward pass in non-local AGA module in comparison with
the local counterparts in the overall model. Those multi-
plications create complications in gradients, as a result the
optimization process become less efficient. In addition, ab-
solute value of cosine similarity is normalized and sign in-
different and measures similarity as far as there is a cross-
correlation between the two source of information while dot
product does not consider these two. In other words, the ab-
solute value of cosine similarity is absolute and normalized
version of dot product which means imposing more con-
straint on the network to regulate the solution space better.
We also enhance the sensitivity at any non-zero correlation.
The matrix multiplication create the non-local version of
operations which are computationally costly and not much
effective as well.

5. Discussion and Conclusion

The main idea of this paper was taking advantage of the
similarity of the RGB image and the depth map in the area
of the 3D scene close to geometric edges. In other words,

J Hxw e HxWxC
( N
B Fr— Firy
Fh_‘ cat~ GIObal - 1x1 -~ ReLU~ Ix1 I~ Sigmoid ‘(:)"(:)_’ out
Pooling ™ Conv Conv
HxWHC cA
— HxW xCy IxIxC HxWxC
h HW x Cq \
F— Ix1 -, Normalization_.. Reshape A"“I’I‘Rf“x‘ map Reshape
Conv over channels / Sof \
oftmax
@ Abs= 2t
h— Ix1 Normalization_» Reshape
" Conv 2 over channels
, HW x Co HW x C )
Hx W xCy '\I HW % C
L F} — [Reshape )
®  Summation

® Element-wise multiplication

® Matrix multiplication
Figure 8. The internal structure of the Non-local AGA module as
the natural extension from the setting for the AGA modules for the
main results of the paper.

we want to guide the encoder to shape better RGB features
using the depth map for better depth estimation at each spa-
tial point. The eventual criteria for this guidance is the
sensitivity enhanced absolute value of cosine similarity be-
tween the local embedded features at every spatial point of
the encoder and the decoder. We are able to do so since the
features in the decoder are close to the end of the model and
closer to the cost function in training phase.

The benefits of using absolute value of local cosine sim-
ilarity in embedded space in comparison with the conven-
tional attention techniques, i.e., dot product, is that it is ab-
solute and normalized so it puts stronger constraints on the
network to regulate solution space better. It is also local so it
does not create difficulty in optimization with matrix multi-
plications in non-local versions. It is important to note that
for designing our suggested AGA module which uses the
guidance of the depth map features to shape the RGB fea-
tures, one might be able to assign more time and hardware
resources to find more effective complex operations instead
of f1(SAy) + f2(SAs) x CA in Fig. 3 and (2). However,
fine tuning the structure and parameters of such a module
would be difficult. Hence, we decided to use the divide-
and-conquer strategy, where we divide the guidance to ad-
ditive and multiplicative spatial attention weights, f1(S.A4;)
and f5(S.A2), and channel-wise attention weights CA.
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