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Abstract

Self-supervised methods have shown promising results
in denoising and dehazing tasks, where the collection of the
paired dataset is challenging and expensive. However, we
find that these methods fail to remove the rain streaks when
applied for image deraining tasks. The method’s poor per-
formance is due to the explicit assumptions: (i) the distribu-
tion of noise or haze is uniform and (ii) the value of a noisy
or hazy pixel is independent of its neighbors. The rainy pix-
els are non-uniformly distributed, and it is not necessarily
dependant on its neighboring pixels. Hence, we conclude
that the self-supervised method needs to have some prior
knowledge about rain distribution to perform the deraining
task. To provide this knowledge, we hypothesize a network
trained with minimal supervision to estimate the likelihood
of rainy pixels. This leads us to our proposed method called
FLUID: Few Shot Self-Supervised Image Deraining.

We perform extensive experiments and comparisons
with existing image deraining and few-shot image-to-image
translation methods on Rain 100L and DDN-SIRR datasets
containing real and synthetic rainy images. In addition, we
use the Rainy Cityscapes dataset to show that our method
trained in a few-shot setting can improve semantic segmen-
tation and object detection in rainy conditions. Our ap-
proach obtains a mIoU gain of 51.20 over the current best-
performing deraining method. [Project Page]

1. Introduction
Deep learning models require large-scale datasets to

learn a computer vision task. Applications such as au-
tonomous navigation systems use many paired images to
generalize across different adverse weather conditions. The
collection of such a dataset is an expensive and tedious task.
Self-supervised methods [16] were introduced, which gave
marginal performance behind the supervised methods on
various downstream tasks while avoiding the dependency
on large-scale labeled datasets.
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Input Image N2S [47] Yasarla et al. [50] FLUID
Figure 1. Image deraining results by the self-supervised method:
N2S [47] (col. 2), semi-supervised method: Yasarla et al. [50]
(col. 3), and our method: FLUID (col. 4). We can observe
N2S [47] fail to remove rainy streaks due to poor prior knowledge
about rain distribution, whereas, Yasarla et al. [50] suffer from im-
age artifacts due to its sensitivity to the training sample choice. For
a fair comparison, we train all the baselines methods in a few-shot
unsupervised setting.

Recently, self-supervised methods have shown good re-
sults for image denoising [1, 19, 47] and image dehaz-
ing [21]. However, these methods explicitly mention that
the following assumptions are made to perform denois-
ing or dehazing tasks: (a) noise or haze is uniformly dis-
tributed across an image, and (b) a noisy or hazy pixel
value is independent of its neighboring pixels. Apply-
ing such self-supervised techniques for image deraining
gives poor results (Figure 1: col. 2) because a rainy
pixel might/might not depends on nearby pixels, and rain
pixels are non-uniformly distributed in the image, unlike
haze and noise. This concludes that self-supervised tech-
niques require prior knowledge about rain distribution to
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perform image deraining tasks. To provide this knowledge
to the self-supervised network, we hypothesize a network
trained with minimal supervision to estimate the likelihood
of rainy pixels. This leads us to the proposed method: Few-
Shot Self- Supervised Image Deraining (FLUID). Figure 1
shows the FLUID deraining results in comparison with self-
supervised and semi-supervised methods on real and syn-
thetic images.

The FLUID framework consists of three stages. In
the first stage, we train a Probability Estimation Network
(PEN) trained in a few-shot setting that predicts the pixel-
wise rain likelihood in an image. The trained PEN net-
work helps to provide prior knowledge about rain distri-
bution. In PEN, we predict pixel-wise rain likelihood in-
stead of learning non-rainy pixels. The network can learn
to predict rainy pixels independent of textural information
present in training images. Recent semi-supervised de-
raining method [46, 50] performs poorly when trained in
a few-shot unsupervised setting. This is because the ob-
jective function minimizes the loss between the rainy and
clean image pair, enabling to learn the textural image in-
formation. This claim becomes evident in Figure 1: col.
3 where we compare our method’s performance with the
semi-supervised method [50]. This brings us to the con-
clusion that semi-supervised methods are sensitive to the
choice of training samples which is evident from the color
shift caused by the choice of the training image.

In the next stage, we use the trained PEN to predict the
pixel-wise rain probability that helps identify and mask the
rainy regions in the images. We then fill the masked area
using image inpainting. The inpainted output acts as a prior
to a Self-Supervised Network (SSN). In the last stage, we
pass the inpainted output to the SSN. With sufficient prior
knowledge about the rain distribution, the SSN can further
derain the image and remove image artifacts and blurriness
introduced by image inpainting. The efficacy of our pro-
posed model is evaluated on Rain 100L and DDN-SIRR
having real and synthetic rainy images. We show extensive
qualitative and quantitative comparison with image derain-
ing methods and few-shot image-to-image translation meth-
ods. Further, the FLUID framework was also employed in
improving downstream tasks: semantic segmentation and
object detection.

In summary, our key contributions are as follows:

• This is the first data-driven image deraining method in
a few-shot setting to the best of our knowledge.

• Train a Probability Estimation Network that estimates
the pixel-wise likelihood of rain. The output of trained
PEN provides prior knowledge about rain distribution
to a Self-Supervised Network.

• Perform extensive experiments on multiple datasets
containing natural and synthetic images to show our

method’s deraining ability. Our ablation study estab-
lishes that our method’s performance is consistent ir-
respective of the choice of the training samples.

• Demonstrates that using derained images from the
FLUID framework significantly improves semantic
segmentation and object detection compared to exist-
ing deraining approaches.

2. Related Works
Single Image Deraining: Single image deraining [49] is
the task of generating rain-free images that have been exten-
sively researched over the past few decades. There are also
video-based deraining techniques [23, 40, 54], but single
image deraining is more challenging due to temporal infor-
mation’s unavailability. We can divide all the single derain-
ing methods into two categories: model-based and deep-
learning based methods.

Model-based methods or non-deep learning methods uti-
lize dictionary learning [4, 29], prior-based [56], sparsity-
based model [7, 45], and mixture-model based [26] to get
the derained images. However, the methods mentioned
above struggle to generalize over variations in rainy streaks.
Recently, deep-learning models have shown state-of-the-art
performance in various computer vision tasks due to effi-
cient feature learning. Leveraging the advantage of deep
learning models, Yang et al. [48] proposed a deep network
that can detect and remove rain. Later, new approaches
were proposed, which were based on Convolutional Neu-
ral Network (CNN) [25, 51], generative models [52], and
physics-driven models [24].

However, the methods mentioned earlier tend to fail
when tested on real rainy images. Wei et al. [46] proposed
an efficient semi-supervised approach that used synthetic
rainy pair images and unlabeled real rainy images. This
approach, without proper initialization, will lead to sub-
optimal results [50]. Yasarla et al. [50] presented an im-
proved semi-supervised method that used the Gaussian pro-
cess to leverage the information from unlabeled real rainy
images while training. However, these methods perform
poorly in few-shot unsupervised settings as they are sen-
sitive to the training image pairs.

Few-Shot Image-to-Image Translation: Few-shot
learning for image classification [10, 32] is a widely
studied problem. Recently, Liu et al. [28] proposed a
method to generate images of unseen classes with only a
few samples provided at the testing phase. Later, other
few-shot generation methods were proposed for face
reenactment [12], interactive video stylization [43], and
font style transfer [22]. However, we find that when trained
in a few-shot unsupervised setting, the few-shot methods
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Figure 2. Overview of FLUID framework: The FLUID framework consists of three stages. A) Rain Probability Estimation: We train
a Probability Estimation Network (PEN) that predicts the pixel-wise rain probability of an image. The trained PEN network helps in
the generation of prior knowledge for the Self-Supervised Network (SSN). B) Prior Generation: We pass unpaired rainy images INL

to estimate pixel-wise rain probability in this stage. The predicted pixel-wise rain probability map values are thresholded Th by giving
0 to rainy pixel and 1 to non-rainy. Then, we perform element-wise multiplication between the INL and its corresponding thresholded
probability map PNL. As a result, the rainy regions are masked out. We then fill the masked area through image inpainting IN . The
inpainted output Iρ acts as a prior for SSN. C) Self-Supervised Learning: Finally, the generated prior Iρ trains the SSN that refines the
results further by minimizing the image artifacts introduced by image inpainting and the tiny rain streaks that are undetected by PEN.

struggle to minimize the artifacts by adverse weather
conditions.

Self-Supervised Learning: Self-supervised learning [16]
refers to the learning of visual features from the unla-
beled dataset. This framework trains a network to solve
the pretext task using the pseudo-labels generated from a
dataset without human supervision. Doerschet et al. [8]
proposed the first self-supervised learning method that used
a pretext task of predicting image patches’ relative posi-
tion, which improves object detection tasks. Later self-
supervised approaches used the pretext tasks such as solv-
ing jigsaw puzzles [33], image rotation estimation [18],
super-resolution [20], colorization [53], and inpainting [34].

Recent self-supervised denoising methods such as
Noise2Void [19], Noise2Self [1], and Noise2Same [47]
does not depend on prior noise information for denoising.
Although, the availability of noise information further im-
proved the performance. The success of self-supervised
models in denoising motivated us to use such frameworks
for image deraining.

3. FLUID: Few-Shot Self-Supervised Image
Deraining

3.1. Overview

We begin the formulation of the framework by a set of
rainy images: IL = {ILi : i = 1, 2, . . . , n} and the cor-
responding clean images: I = {Ii : i = 1, 2, . . . , n}.
The value of n in our framework is 1, 3, and 5. The un-
paired rainy image set without the clean image is denoted
by: INL = {INLi : i = 1, 2, . . . ,m}, where m � n.
Firstly, we train a Probability Estimation Network (PEN)
on IL and I to get the pixel-wise rain probability of an im-
age. We then use the trained PEN network to get pixel-wise

Rainy Image PEN output INL � PNL Generated Prior SSN Output Ground Truth

INL PNL

Figure 3. Visualization of output at various stages: Left to
Right: col. 1: input rainy image, col. 2: PEN output, col. 3:
masking of rain by taking the dot product between rainy image
and PEN output, col. 4: output obtained from image inpainting,
col. 5: refined output from Self-Supervised Network.

rain probability estimation of INL denoted by PNL. Next,
we perform element-wise multiplication between the INL

and corresponding PNL. As a result, the rainy regions are
masked out and filled through image inpainting. After that,
we use the inpainted output as the prior denoted by Iρ. The
generated labels Iρ suffer from image artifacts and blurri-
ness due to image inpainting and have tiny rain streaks that
are undetected by PEN. Finally, we train a SSN to minimize
such image artifacts introduced by image inpainting and fur-
ther derain the image. Figure 2 illustrates the overview of
our method, and Figure 3 shows the output at various stages
on the images of the Rain 100L dataset. We now discuss the
individual stage of the FLUID framework in detail.

3.2. Probability Estimation Network

Consider a rainy image ILi having pixel value at x to be
ILi(x) and the probability of the pixel being rainy is Pr(x).
Now, we need to learn a function fP that estimates the con-
ditional probability of the pixel at location x to be rainy
given ILi(x) which is formulated as:

fP (x) = Pr(x/I
L
i(x)) (1)

We learn the function fP (x) by training a UNet [38] to es-
timate pixel-wise rain probability. We train the UNet on
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Figure 4. Self-Supervised Network (SSN): We train SSN on a
combination of three losses that are lmse, ltv , and lvgg . We use
lmse to get the average content of priors Iρ. ltv is then used to
minimize the small rainy streaks. We use lvgg to improve the high-
frequency information in the output image Î . The dotted line rep-
resents the flow of input to a loss function, and the solid line shows
the flow of input and output to the SSN.

binary cross-entropy loss which is given by:

lPEN =
1

N

N∑
x=1

PLi(x).log(fP (x)) + (1− PLi(x)).log(1− fP (x))

(2)
PLi(x) represents the given ground truth rain probability of
ILi(x) at location x and N is the total number of pixel. In
PEN, we predict pixel-wise rain likelihood instead of learn-
ing non-rainy pixels since rainy streaks are mostly texture-
less. Hence, the trained PEN will predict rainy pixels inde-
pendent of textural information present in training images.
Data augmentation plays a significant role in improving the
rain detection capabilities of PEN across various rain pat-
terns shown in Supp. Sec. 1. Figure 3: col. 2 shows the rain
streaks predicted by PEN.

3.3. Prior Generation

We now use the trained PEN to generate the priors Iρ

for SSN. We pass the unpaired rainy images INL through
trained PEN to generate pixel-wise rain probability. The
output probability map inferred from PEN is thresholded th
to 0 for rainy pixels and 1 for rainy pixels, which results
in PNL. We then perform element-wise multiplication be-
tween INL and PNL that masks the rainy regions. Figure 3:
col. 3 shows the masked image. Now, we fill the masked
areas by image inpainting fIN that gives the prior for SSN
shown in Figure 3: col. 4. The entire process can be for-
mulated as:

Iρ = fIN (PNL � INL) (3)

We used a statistical inpainting method by Damelin et al. [6]
for the image inpainting task. We did not use pre-trained
inpainting network for inpainting as they can give biased
results based on the training dataset.

3.4. Self-Supervised Learning

The generated prior have blurry regions introduced by
image inpainting and have tiny rainy streaks undetected by

PEN. Now, we use SSN to improve the quality of prior and
further derained the image to get the final derained image
Î . Firstly, we pass Iρ and INL through the SSN as an
input. Next, we calculate mean square loss lmse between
Iρ and Î to retrieve the average prior content. Now, we
use total variation loss [2] denoted by ltv on Î to minimize
the tiny streaks which are undetected by the PEN. ltv and
lmse smoothens the output image which reduces the high
frequency detail. Hence, we use VGG loss [20] denoted by
lvgg that adds high-frequency details into Î . We calculate
the lvgg using features map denoted by φvgg obtained from
ReLU activation layers of the pretrained VGG16 [42] net-
work. Figure 4 illustrates the flow of input and output to the
SSN along with various training losses. The final objective
is given by:

lSSN ((PNLi ; INLi ), Îi) = lmse + λ1ltv + λ2lvgg (4)

lSSN ((PNLi ; INLi ), Îi) =
1

N

N∑
x=1

||Iρi(x) − Îi(x)||2+

λ1

N

N∑
x=1

||Îi(x)||tv +
λ2

M

M∑
x=1

||φvgg(INLi(x))− φvgg(Îi(x))||2

(5)

Iρi(x) and Îi(x) represent the value of prior and its corre-
sponding SSN output at pixel x, respectively. M denotes
φvgg dimension. λ1 and λ2 are the hyperparameter empir-
ically estimated during the network’s training. Figure 3:
col. 5 shows the SSN output.

4. Experimentation
4.1. Experimental Settings

4.1.1 Dataset and Evaluation

Rain 100L: Yang et al. [48] synthesized the dataset using
the rain streak rendering method by Garg et al. [11] on the
clean images of BSD200 [30]. It consists of 200 pairs of
training images and 100 pairs of test images. We divide the
training image pairs into two parts for our experiments: 5
image pairs for training and 195 image pairs for validation.
DDN-SIRR: This dataset consists of synthetic rainy and
rain-free image pairs and unpaired natural rainy images cre-
ated by Wei et al. [46]. The rain-free images were taken
from the UCID [41] dataset. We use the synthetic dataset
in our few-shot experiments by randomly choosing five im-
age pairs for training and 400 image pairs for validation and
testing. Further, we test the trained model on a set of 100
real rainy images having dense and sparse rain streak.
Rainy Cityscapes: Halder et al. [13] proposed a physics-
based rain rendering method to inject rain into the clean
images realistically.Using this method, Halder et al. [13]
creates a rainy cityscapes dataset consisting of rain and
rain-free images of Cityscapes [5]. We use this dataset to
show improvement in semantic segmentation. We randomly
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Input Rainy Image ID-CGAN [52] Wei et al. [46] Yasarla et al. [50] Ours Rainy2Clean Ground Truth
Figure 5. Qualitative deraining results in few-shot setting: Row 1-3: Qualitative results on Rain 100L dataset. Row 4-6: Qualitative
results on DDN-SIRR dataset.

Input Rainy Image Ground Truth FLUID (Ours) CycleGAN [55] MUNIT [14] FUNIT [28] COCO-FUNIT [39]
Figure 6. Qualitative comparison with image-to-image translation methods. More qualitative results in supplementary material.

choose five training image pairs, 300 validation image pairs,
and 200 image pairs for the test.
Evaluation Metrics: We use Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) to
evaluate the performance of deraining methods for the syn-
thetic datasets as the ground-truth is available. For natu-
ral rainy images, we use Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) [31].

4.1.2 Training Details

We train the PEN on twenty thousand epochs with batch
size 1. The initial learning rate is 1e − 4, which is reduced
to 1e − 5 after ten thousand epochs. We train the SSN for
500 epochs with a learning rate of 1e − 3 and a batch size

of 16. While training both the networks, the input is given
by randomly cropping 128×128 image patch, which is ran-
domly rotated between (−180◦, 180◦). The values of λ1
and λ2 in Eq 5 were empirically found best to be 1e−3 and
0.04. We use the value of Th to be 0.95.

4.1.3 Baselines

Since there is no previous few-shot image deraining
work, we baseline FLUID performance with a) few-
shot/unsupervised/supervised image-to-image translation
methods and b) semi/fully supervised deraining methods.
We train all the methods in a few-shot unsupervised set-
ting for a fair comparison, i.e., only a few rainy/clean image
pairs were given, rest were unpaired during training.
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Dataset RESCAN [25] ID-CGAN [52] Wei et al. [46] Yasarla et al. [50] Ours Rainy2Clean
(ECCV’18) (TCSVT’19) (CVPR’19) (CVPR’20) (Upper-Bound)

Rain 100L [1Shot]
Val 16.51 / 0.5676 17.64 / 0.6619 21.49 / 0.7117 22.81 / 0.7298 24.31 / 0.8156 -
Test 16.37 / 0.5510 17.01 / 0.6391 20.94 / 0.7021 22.26 / 0.7229 23.87 / 0.7724 27.52 / 0.9180
Rain 100L [3Shot]

Val 17.32 / 0.5800 17.93 / 0.6707 22.62 / 0.7269 23.01 / 0.7604 25.79 / 0.8317 -
Test 16.91 / 0.5772 17.48 / 0.6544 22.17 / 0.7195 22.42 / 0.7596 25.54 / 0.8260 27.52 / 0.9180
Rain 100L [5 Shot]
Val 18.07 / 0.6035 19.37 / 0.6965 23.91 / 0.7811 23.97 / 0.7832 26.97 / 0.8643 -
Test 17.44 / 0.5993 18.66 / 0.6821 23.77 / 0.7751 23.59 / 0.7703 26.87 / 0.8615 27.52 / 0.9180
DDN-SIRR [1 Shot]
Val 14.38 / 0.4631 16.11 / 0.5530 18.73 / 0.6013 19.51 / 0.6313 21.92/ 0.6808 -
Test 11.35 / 0.3173 15.30 / 0.5127 17.26 / 0.5849 19.65 / 0.6512 21.83 / 0.6781 24.13 / 0.7802
DDN-SIRR [3 Shot]
Val 16.70 / 0.5427 18.69 / 0.5962 19.51 / 0.6257 20.74 / 0.6537 22.23 / 0.6918 -
Test 16.58 / 0.5639 18.13 / 0.6159 19.34 / 0.6381 20.09 / 0.6485 21.97 / 0.6749 24.13 / 0.7802
DDN-SIRR [5 Shot]
Val 17.72 / 0.5843 19.07 / 0.6287 20.88 / 0.6517 21.08 / 0.6709 22.27 / 0.6992 -
Test 17.34 / 0.5702 18.82 / 0.6119 20.16 / 0.6449 20.84 / 0.6667 22.07 / 0.6841 24.13 / 0.7802

Table 1. Quantitative comparison (PSNR/SSIM): Results in blue background shows the performance of our method. Orange and

green background shows the results of supervised and semi-supervised methods in few-shot setting. Gray background shows the results
when we train the network with all the training samples.

Method PSNR / SSIM

Fu
ll

Su
pv

. ID [17] (TIP’12) 23.13 / 0.70
CNN [9] (ICCV’13) 23.70 / 0.81
DSC [29] (ICCV’15) 24.16 / 0.87
LP [26] (CVPR’16) 25.91 / 0.89

5
Sh

ot

DerainDrop [35] (CVPR’18) 15.69 / 0.53
RESCAN [25] (ECCV’18) 17.44 / 0.59
SPANet [44] (CVPR’19) 18.46 / 0.65
ID-CGAN [52] (TCSVT’19) 18.66 / 0.68
FLUID (Ours) 26.87 / 0.86

Table 2. Result comparison of deraining method with FLUID on
Rain 100L dataset. The methods above the dotted line are trained
on full training dataset and the below are trained in 5-shot unsu-
pervised setting. Supv. denotes supervision.

We compare our framework performance with i) super-
vised: Pix2Pix [15], ii) unsupervised: UNIT [27], Cy-
cleGAN [55], and MUNIT [14], and iii) few-shot: FU-
NIT [28] and COCO-FUNIT [39] image-to-image trans-
lation methods. Next, we baseline FLUID with semi-
supervised deraining methods proposed by Wei et al. [46]
and Yasarla et al. [50]. We also train supervised de-
raining methods ID [17], CNN [9], DSC [29], LP [26],
DerainDrop [35], SPANet [44], RESCAN [25], and ID-
CGAN [52] as our baselines. We create an upper-bound
baseline Rainy2Clean by training the SSN network with
full supervision. Rainy2Clean shows deraining results
when we have access to the entire dataset.

4.2. Results

From the results shown in Table 3, we observe that
the proposed FLUID framework outperforms the image-

Method PSNR / SSIM
UNIT [27] (NIPS’17) 7.80 / 0.053
Pix2Pix [15] (ICCV’17) 10.73 / 0.14
COCO-FUNIT [39] (ECCV’20) 14.80 / 0.35
FUNIT [28] (ICCV’19) 15.79 / 0.40
MUNIT [14] (ECCV’19) 15.79 / 0.40
CycleGAN [55] (CVPR’17) 16.64 / 0.49
FLUID (Ours) 23.87 / 0.77

Table 3. Quantitative comparison of FLUID with image-to-image
translation methods in 1-shot unsupervised setting.

to-image translation methods: Pix2Pix [15], UNIT [27],
CycleGAN [55], MUNIT [14], FUNIT [28] and COCO-
FUNIT [39]. Qualitative results in Figure 6 show that our
method can minimize the rain streaks, whereas the base-
lined methods suffer from image artifacts. Table 2 shows
the performance comparison of our method with the su-
pervised methods: ID [17], CNN [9], DSC [29], LP [26],
DerainDrop [35], SPANet [44], RESCAN [25], and ID-
CGAN [52] trained on Rain 100L dataset. We can observe
in Table 2 (row: 1-4, 9), our method trained only on 5-
shot setting achieves better PSNR compared to initial de-
raining methods: ID [17], CNN [9], DSC [29], and LP [26]
which were trained on the entire dataset. We also observe
in Table 2 (row: 5-9), our model significantly outperforms
recent deraining methods: DerainDrop [35], SPANet [44],
RESCAN [25], and ID-CGAN [52] in 5-shot setting. Quan-
titatively, we get 8.21/0.18 PSNR/SSIM gain over the best-
supervised method.

Next, we compare our proposed method with Wei et
al. [46], Yasarla et al. [50], RESCAN [25], ID-CGAN [52],
and Rainy2Clean on the test set of Rain 100L and DDN-
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Method BRISQUE Score ↓
Rainy Image 32.28
Yasarla et al. [50] 31.93
Ours 30.67
Rainy2Clean 27.89

Table 4. Performance evaluation on real rainy images (DDN-
SSIR). (↓) indicates lower the score better the performance.

        (a) Input rainy image                         (b) Yasarla et al                                    (c) Ours                                   (d) Rainy2Clean                                   

Figure 7. Real rainy (DDN-SIRR) results in 5-shot setting. (a)
Input rainy image. (b) Results from semi-supervised method:
Yasarla et al. [50]. (c) Derained output from our proposed method.
(d) Results from the method trained on all training samples:
Rainy2Clean. We observe that our approach shows performance
close to Rainy2Clean. Notably, it works better in removing rainy
streaks, as observed in the bottom row results.

        w / o SSN                         w / SSN         w / o SSN                         w / SSN

Figure 8. Deraining performance with and without self-
supervised network: We observe SSN can minimize the image
artifacts by inpainting and the rain streaks left undetected by PEN.

SIRR dataset in 1-shot, 3-shot, and 5-shot setting. Fig-
ure 5 and Table 1 shows the qualitative and quantitative
results. We observe that our model outperforms the other
deraining methods in the few-shot settings. We find that
semi-supervised methods [46, 50] struggle to remove the
rain and cannot retain the input image statistics. This is
because of the poor latent representation learned by their
supervised networks. The visual results of fully supervised
methods [25, 52] are lower than semi-supervised methods
as they do not have the choice to improve their latent rep-
resentation of their model using real rainy images. Figure 7
and Table 4 show our method’s performance on real rainy
images of the DDN-SIRR dataset trained in the 5-shot set-
ting. We observe in Figure 7, our method acts more effec-
tively in removing the rain streaks than Rainy2Clean.

4.3. Effectiveness of SSN

We investigate the effectiveness of using SSN in our de-
raining framework by defining various methods with differ-

Yasarla et al. [50] Ours Rainy2Clean

Pair 1 19.08 23.87 27.52

Pair 2 20.91 23.62 27.52

Pair 3 16.59 24.07 27.52

Table 5. Quantitative generalization performance: Shows the
consistent quantitative performance (PSNR) of our method on
Rain 100L dataset trained on different training image pair.

Method Loss PSNR
w/o SSN n/a 22.91

M1 lmse 23.17

M2 lmse + ltv 23.38
w/ SSN lmse + ltv + lvgg 23.87

Table 6. Ablative study on SSN: Shows incremental improvement
by adding SSN with lmse, ltv , and lvgg .
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Figure 9. Qualitative generalization performance: We show that
our method gives a consistent deraining performance on the Rain
100L dataset, irrespective of the training image pair while training
in a 1-shot setting. Whereas, Yasarla et al. [50] is sensitive to
training image pair, which we prominently observed in Pair 3.

ent losses (Section 3). w/o SSN: Train without SSN. M1:
Train with SSN on lmse. M2: Train with SSN on lmse and
ltv . w/ SSN: Train with SSN on lmse, ltv , and lvgg . We
trained all the methods on Rain 100L dataset and presented
the results in Table 6. We can see w/ SSN shows the best
performance demonstrating the effectiveness of the combi-
nation of loss used in SSN. In Figure 8, we observe that
w/ SSN can minimize the image artifacts due to image im-

painting and the rain streaks that are undetected by PEN.

4.4. Generalization

We demonstrate our proposed method’s performance
consistency irrespective of the training pair in a 1-shot set-
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Method road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bicycle mIoU

Rainy Images 83.66 59.67 79.04 27.41 42.76 42.07 48.79 53.09 79.95 68.30 74.68 68.08 48.70 69.38 57.92 65.78 34.06 58.06 47.82 58.38

Yasarla et al. [50] 31.99 9.68 42.71 0.12 3.48 1.17 3.93 0.17 38.90 13.19 7.70 12.36 3.17 38.03 5.48 1.92 1.31 7.85 8.76 12.21

Ours 87.34 65.61 82.91 39.80 48.94 46.65 51.60 58.82 83.41 70.53 80.49 69.81 56.24 72.62 63.10 71.04 44.14 59.17 52.63 63.41

Rainy2Clean 96.41 78.01 85.82 64.80 54.86 53.76 55.52 62.88 86.17 79.38 83.90 74.42 59.26 91.29 64.64 77.87 44.92 65.22 57.19 70.33

IoU Gain 55.35 55.93 40.20 39.68 45.46 45.48 47.67 58.65 44.51 57.34 72.79 57.45 53.07 34.59 57.62 69.12 42.83 51.32 43.87 51.20

Table 7. Classwise Semantic Segmentation Results: We show the segmentation results of ERFNet on derained images obtained by
various deraining methods on Rainy Cityscapes. Rainy Images denote the semantic segmentation performance on rainy images. IoU Gain
is the gain in IoU by our method compared with Yasarla et al. [50]. We observe that the derained images obtained from Yasarla et al. [50]
suffer large performance loss due to the generalization issue (discussed in subsection 4.4). IoU Gain in blue background shows Group
3 [3] classes, that are most critical for autonomous navigation system.

 (a) Input Rainy Image            (b) Yasarla et al.                      (c) Ours                       (d) Rainy2Clean               (e) Ground Truth

Figure 10. Semantic Segmentation Results: Visual segmenta-
tion results obtained by ERFNet on images derained from different
methods.

      (a) Yasarla et al.                      (b) Ours                       (c) Rainy2Clean               (d) Ground Truth

Figure 11. Object Detection Results: Detection results obtained
from various deraining methods on Rainy Cityscapes dataset.

ting. We randomly choose three pairs of rainy and rain-
free images shown in Figure 9 from the Rain 100L dataset.
In Figure 9, We find that Yasarla et al. [50] struggles to
remove rain and retain the input image statistics that can
be prominently observed in the Pair 3 result. The reason
behind the decreased performance is Yasarla et al. [50] re-
lies on a large number of paired rain and rain-free images
to learn its hidden representation. The learned hidden rep-
resentation is further refined by using real-world images.
Since the model has only access to a single training pair, it
cannot learn robust hidden representation for deraining. In
contrast, our proposed method shows steady performance
across all the training image pairs. We observe similar be-
havior in Table 5 quantitatively.

5. Applications
In this section, we employ FLUID in improving semantic

segmentation and object detection under rainy conditions.

We use Rainy Cityscapes et al. [13] dataset to perform the
deraining experiments by training all the deraining methods
in a 5-shot unsupervised setting. We then pass the derained
output images through a semantic segmentation network to
show the improvement.

We use ERFNet [37] to perform semantic segmenta-
tion. Next, we compare the performance of FLUID with
Yasarla et al. [50], and Rainy2Clean. Figure 10 and Ta-
ble 7 shows the qualitative and quantitative results, respec-
tively. We observe that the derained images obtained from
Yasarla et al. [50] suffer significant performance loss due to
the generalization issue (discussed in subsection 4.4) faced
by Yasarla et al. [50]. We also observe significant im-
provement in those classes, which are important for an au-
tonomous driving system that belongs to Group 3, accord-
ing to Chen et al. [3]. In Table 7, IoU gain results with
blue background show the improvement in Group 3 classes.
Next, we perform object detection on the derained images
of Rainy Cityscapes from the various deraining methods.
We use Faster R-CNN [36] as our detection model. In Fig-
ure 11, we observe that our method’s detection results show
improvement compared to Yasarla et al. [50].

6. Conclusion
This work identifies self-supervised methods that

struggle to perform image deraining tasks due to poor prior
knowledge of rain distribution. We address this problem by
proposing a network that learns to estimate the likelihood
of rainy pixels with minimal supervision. We also show
that our method improves computer vision tasks: semantic
segmentation and object detection critical for autonomous
applications. This work has opened the doors to further
research of restoring images that are taken in adverse
weather. It would be interesting to examine our method’s
applicability for improving images in other adverse weather
modalities such as snow.
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