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Abstract

We introduce a non-parametric approach for infinite
video texture synthesis using a representation learned via
contrastive learning. We take inspiration from Video Tex-
tures [43], which showed that plausible new videos could be
generated from a single one by stitching its frames together
in a novel yet consistent order. This classic work, however,
was constrained by its use of hand-designed distance met-
rics, limiting its use to simple, repetitive videos. We draw on
recent techniques from self-supervised learning to learn this
distance metric, allowing us to compare frames in a manner
that scales to more challenging dynamics, and to condition
on other data, such as audio. We learn representations for
video frames and frame-to-frame transition probabilities by
fitting a video-specific model trained using contrastive learn-
ing. To synthesize a texture, we randomly sample frames
with high transition probabilities to generate diverse tem-
porally smooth videos with novel sequences and transitions.
The model naturally extends to an audio-conditioned setting
without requiring any finetuning. Our model outperforms
baselines on human perceptual scores, can handle a diverse
range of input videos, and can combine semantic and audio-
visual cues in order to synthesize videos that synchronize
well with an audio signal.

1. Introduction
We revisit Video Textures [43], a classic non-parametric

video synthesis method which converts a single input video
into an infinitely long and continuously varying video se-
quence. Video textures have been used to create dynamic
backdrops for special effects and games, 3D portraits, dy-
namic scenes on web pages, and the interactive control of
video-based animation [41, 42]. In these models, a new
plausible video texture is generated by stitching together
snippets of an existing video. Classic video texture meth-
ods have been very successful on simple videos with a high
degree of regularity, such as a swinging pendulum. How-
ever, their reliance on Euclidean pixel distance as a similarity

Input Video Conditioning Audio

Audio-Conditioned Contrastive Video Texture

Figure 1: Strumming to the Beat. Click on each image
to play the video/audio. We introduce Contrastive Video
Textures, a learning-based approach for video texture syn-
thesis. Given an input video and a conditioning audio, we
extend our Contrastive model to synthesize a video texture
that matches the conditioning audio.

metric between frames makes them brittle to irregularities
and chaotic movements, such as dances or performance of a
musical instrument. They are also sensitive to subtle changes
in brightness and often produce jarring transitions.

Representation-learning methods have made significant
advances in the past decade and offer a potential solution
to the limitations of classic video texture approaches. A
natural approach may be to use Generative Adversarial
Networks (GANs) [15] and/or Variational Autoencoders
(VAEs) [27] which have achieved great success in gen-
erating images “from scratch”. Yet while video genera-
tion [30, 32, 46, 48, 50, 51] has shown some success, videos
produced using such methods are unable to match the real-
ism of actual videos. Current generative video methods fail
to capture the typical temporal dynamics of real video and
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Figure 2: Video Texture Synthesis. Prior video prediction [55] and generation [46, 48] methods fail to generate long and
diverse video textures at a high resolution. Vid2Vid [30, 32] methods require semantic maps as input and aren’t suitable for
video texture synthesis. Classic video textures [43] (middle) can generate infinite sequences by resampling frames, but uses
fixed representations which are not robust to varying domains. Our method (right) learns a representation and non-parametric
method for infinite video texture synthesis based on resampling frames from an input video.

as a result fail on our task of synthesizing long and diverse
video sequences conditioned on a single source video. In
this work, we investigate contrastive learning [2, 3, 1] ap-
proaches to graph-based sequence generation, conditional
and unconditional, and demonstrate the ability of learned
visual texture representations to render compelling video
textures.

We propose Contrastive Video Textures, a non-parametric
learning-based approach for video texture synthesis that over-
comes the aforementioned limitations. As in [43], we syn-
thesize textures by resampling frames from the input video.
However, as opposed to using pixel similarity, we learn
feature representations and a distance metric to compare
frames by training a deep model on a single input video.
The network is trained using contrastive learning to fit an
example-specific bi-gram model (i.e. a Markov chain). This
allows us to learn features that are spatially and temporally
best suited to the input video.

To synthesize the video texture, we use the video-specific
model to compute probabilities of transitioning between
frames of the same video. We represent the video as a graph
where the individual frames are nodes and the edges repre-
sent transition probabilities predicted by our video-specific
model. We generate output videos (or textures) by randomly
traversing edges with high transition probabilities. Our pro-
posed method is able to synthesize realistic, smooth, and
diverse output textures on a variety of dance and music
videos as shown in the Supp. and at this website for easy
viewing. Fig. 2 illustrates the distinction between video
generation/prediction, video textures, and our contrastive
model.

Learning the feature representations allows us to easily
extend our model to an audio-conditioned video synthesis

task as seen in Fig. 1. Given a source video with associated
audio and a new conditioning audio not in the source, we
synthesize a new video that matches the conditioning audio.
A demonstration of this task where the guitarist is “strum-
ming to the beats” of a new song is included in the Supp.
We modify the inference algorithm to include an additional
constraint that the predicted frame’s audio should match
the conditioning audio. We trade off between temporal co-
herence (frames predicted by the constrastive video texture
model) and audio similarity (frames predicted by the audio
matching algorithm) to generate videos that are temporally
smooth and also align well with the conditioning audio.

We assess the quality of the synthesized textures by con-
ducting human perceptual evaluations comparing our method
to a number of baselines. In the case of unconditional video
texture synthesis, we compare to the classic video texture
algorithm [43] and variations to this which we describe in
Sec. 5. For the audio-conditioning setting, we compare to
four different baselines: classic video textures with audio-
conditioning, visual rhythm and beat [5], Audio Nearest-
Neighbours, and a random baseline. Our studies confirm
that our method is perceptually better than all of these previ-
ous methods.

2. Related Work
Texture Synthesis. All texture synthesis methods aim to
produce textures which are sufficiently different from the
source yet appear to be produced by the same underlying
stochastic process. Texture synthesis methods can be broadly
classified into two categories: non-parametric and paramet-
ric. Non-parametric methods focus on modeling the condi-
tional distribution of the input images and sample informa-
tion directly from the input. The sampling could be done
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Figure 3: Contrastive Video Textures. We extract overlapping segments from the video and fit a bi-gram model trained using
NCE loss (Eq. 2) which learns representations for query/target pairs such that given a query segment Vi, �(Vi) is similar to
positive segment  (Vi+1) and dissimilar to negative segments  (Vj) where j 2 [1, ...N ] and j 6= i, i + 1. Video Texture
Synthesis. During inference, we start with a random segment Vt shown by , compute �(Vt) and  (Vj) 8 j 2 [1, ...N ]
and calculate the edge weights as similarity between �(Vt) and  (Vj). We denote higher weight edges in green and lower
weighted edges in red and the thickness correlates with the probability. We randomly traverse (purple arrow) along one of the
higher weighted edges to reach . and are appended to the output and the process is repeated (orange arrow) with as
the query.

pixel-wise [9, 54] or patch-wise [8, 29] for image texture
synthesis. Wei et al. [53] provides an extensive review of
example-based texture synthesis methods. Parametric ap-
proaches, on the other hand, focus on explicitly modeling
the underlying texture synthesis process. Heeger et al. [18]
and Portilla et al. [39] were the first to propose parametric
image texture synthesis by matching statistics of image fea-
tures between source and target images. This later inspired
Gatys et al. [13], which used features learned using a convo-
lutional neural network for image texture synthesis. Inspired
by these works, [43] proposed a non-paramteric approach for
synthesizing a video texture with by finding novel, plausible
transitions in an input video. Following work [41, 42, 7]
explored interesting extensions of the same. All these video
texture synthesis works use Euclidean pixel distance as a
similarity measure. This causes the texture synthesis to fail
on more complex scenes. On the other hand, our learned
contrastive feature representations and similarity metric gen-
eralizes well to dance/music domains and also allows for
conditioning on heterogeneous data such as audio.

Video Generation and Video Prediction. The success of
(GANs) [15] and Variational Autoencoders (VAEs) [27] in
image generation [24, 38, 59] inspired several video genera-
tion methods, both unconditional [4, 21, 40, 46, 48] and
conditional [3, 12, 32, 33, 49, 51, 57, 58]. While con-

ditional video synthesis of future frame prediction given
past frames [6, 23, 45, 55, 56] works well, these methods
are far from generating realistic infinitely-long and diverse
video. They oftentimes produce outputs which are low-
resolution, especially in the unconditional case. This is
because videos are higher dimensional and modeling spatio-
temporal changes and transition dynamics is more complex.
As such, these methods are expected to fail when applied to
our task of video texture synthesis which involves rendering
a video as an infinitely varying stream of images. This re-
quires capturing the temporal dynamics of the video which
current video generation methods fail to do. Similar to re-
cent works which condition the video generation on an input
signal such as text [31], or speech [10, 26, 36], or a single
image [44], we condition video texture synthesis on an audio
signal. Our work is inspired by test-time training methods
such as SinGAN [44], Deep Image Prior [47], and Patch
VAE-GAN [16] in that we train an example-specific model
on a single input, though on a video instead of an image and
without an adversarial loss. Our method only takes a few
hours to train on a single video and doesn’t require hours of
training on a large dataset.

Contrastive Learning. Recent contrastive learning ap-
proaches [2, 3, 1, 17, 19] have achieved success in classic
vision tasks proving the usefulness of the learned represen-
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tations. Mishra et al. [35] train a network to determine the
temporal ordering of frames in a video and Wei et al. [52]’s
self-supervised model learns to tell if a video is playing for-
wards/backwards. Here, we use contrastive learning to fit a
video-specific bi-gram model. Our network maximizes sim-
ilarity between learned representations for the current and
next frame. Unlike [37], our goal is not to generate frames
from latent representations, but rather to use the learned
distance metric to resample from the input video.

3. Contrastive Video Textures
An overview of our method is provided in Fig. 3. We

propose a non-parametric learning-based approach for video
texture synthesis. At a high-level, we fit an example-specific
bi-gram model (i.e. a Markov chain) and use it to re-sample
input frames, producing a diverse and temporally coherent
video. In the following, we first define the bi-gram model,
and then describe how to train and sample from it.

Given an input video, we extract N overlapping segments
denoted by Vi where i 2 [1, ...N ], with a sliding window of
length W and stride s. Consider these segments to be the
states of a Markov chain, where the probability of transition
is computed by a deep similarity function parameterized by
encoders � and  :

P (Vi+1|Vi) / exp(sim(�(Vi), (Vi+1))/⌧) (1)

We use two separate encoder heads � and  for the
query and target, respectively, to break the symmetry be-
tween the two embeddings. This ensures sim(Vi, Vi+1) 6=
sim(Vi+1, Vi), which allows the model to learn the arrow of
time. Fitting the transition probabilities amounts to fitting
the parameters of � and  , which here will take form of
a 3D convolutional network. The model is trained using
temperature-scaled and normalized NCE Loss [34]:

L(V,�) =
NX

i=1

� logP (Vi+1|Vi)

=
NX

i=1

�log
exp(S(Vi, Vi+1)/⌧)PN

j=1 [j /2{i,i+1}] exp(S(Vi, Vj)/⌧)

where, S(Vi, Vj) = sim(�(Vi), (Vj)) (2)

where ⌧ denotes a temperature term that modulates the sharp-
ness of the softmax distribution. As the complexity increases
with number of negatives in the denominator, for efficiency,
we use negative sampling [34] to approximate the denomi-
nator in Eq 2. Fitting the encoder in this manner amounts
to learning a video representation by contrastive learning,
where the positive is the segment that follows, and negatives
are sampled from the set of all other segments. The encoder
thus learns features useful for predicting the dynamics of
phenomena specific to the input video.

Video Texture Synthesis. To synthesize the texture, we
represent the video as a graph, with nodes as segments and
edges indicating the transition probabilities computed by our
Contrastive model as shown in Fig. 3. We randomly select
a query segment Vt among the segments of the video and
set the output sequence to all the W frames in Vt. Next, our
model computes �(Vt) and  (Vj) for all target segments
in the video and updates the edges of the graph with the
transition probabilities, given by sim(�(Vt), (Vj)).

Given that we fit the model on a single video, it is impor-
tant that we ensure there is enough entropy in the transition
distribution in order to ensure diversity in samples synthe-
sized during inference. Always selecting the target segment
with the highest transition probability would regurgitate the
original sequence, as the model was trained to predict Vj+1

as the positive segment given Vj as the query. Thus, given
the current segment Vj , while we could transition to the very
next segment Vj+1, we want to encourage the model to tran-
sition to other segments similar to Vj+1. While we assume
that our input video sequence exhibits sufficient hierarchical,
periodic structure to ensure repetition and multi-modality,
we can also directly adjust the conditional entropy of the
model through the softmax temperature term ⌧ . A lower
temperature would flatten the transition probabilities (i.e. in-
crease the entropy) and reduce the difference in probabilities
of the positive segment and segments similar to it. To avoid
abrupt and noisy transitions, we set all transition probabili-
ties below a certain threshold to zero. The threshold is set to
be t% of the maximum transition probability connecting Vj

to any other node Vt. We compute t heuristically and include
details in Supp.

Next, we randomly select a positive segment to transition
to from the edges with non-zero probabilities. This intro-
duces variance in the generated textures and also ensures
that the transitions are smooth and coherent. We then append
the last s number of frames in the positive segment to the
output. This predicted positive segment Vt+1 is again fed
into the network as the query and this is repeated to generate
the whole output in an autoregressive fashion.

Video Encoding. We use the SlowFast [11] action recogni-
tion model pretrained on Kinetics-400 [25] for encoding the
video segments. We include more details in Supp.

Interpolation. For smoother transitions, we also condition-
ally interpolate between frames of the synthesized texture
when there are transitions to different parts of the video. We
use a pre-trained interpolation network of Jiang et al. [22].
In Sec. 5.1, we include results both with and without inter-
polation to show that interpolation helps with smoothing.

4. Audio-Conditioned Video Textures
We show that it is easy to extend our Contrastive Video

Textures algorithm to synthesize videos that match a condi-
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Method Preference %
Classic 3.33 ± 2.42 %
Classic Deep 6.66 ± 3.37 %
Classic+ 10.95 ± 4.22 %
Classic++ 9.52 ± 3.97 %
Any Classic 30.48 ± 6.22 %
Contrastive 69.52 ± 6.22 %

Table 1: Perceptual Studies for Unconditional Video Tex-
tures. We show MTurk evaluators textures synthesized by
all 5 methods and ask them to pick the most realistic one. We
also report the chance evaluators chose any of the variation
of the classic model.

tioning audio signal. Given an input video with correspond-
ing audio As and an external conditioning audio Ac, we
synthesize a new video that is synchronized with the con-
ditioning audio. We extract N overlapping segments from
the input and conditioning audio, as before. We compute the
similarity of the input audio segments As to the conditioning
audio segment Ac by projecting them into a common em-
bedding space. We construct a transition probability matrix
Ta in the audio space as,

Ta(i, j) = sim('(Ac
i ),'(A

s
j))

Note that, unlike video segments in Eq. 1, the audio seg-
ments come from two separate audio signals. Hence, there’s
no need to have two separate subnetworks as there’s no sym-
metry and we use the same audio encoder ' for both. We
compute the transition probabilities Tv for the target video
segments given the previous predicted segment using the
Contrastive video textures model (Eq. 2). The joint transi-
tion probabilities for a segment are formulated as a trade-off
between the audio-conditioning signal and the temporal co-
herence constraint as,

T = ↵Tv + (1� ↵)Ta (3)

Audio Encoding. We embed the audio segments using the
VGGish model [20] pretrained on AudioSet [14].

We describe implementation details of our method and
hyperparameter choices in Supp.

5. Experiments
We curate a dataset of 70 videos from different domains

such as dance and musical instruments including piano, gui-
tar, suitar, tabla, flute, ukelele, and harmonium. A subset
of these videos were randomly sampled from the PianoYT
dataset [28] and the rest were downloaded from YouTube.
We used 40 (of 70) videos to tune our hyperparameters and
tested on the remaining 30 with no additional tuning. Our
dataset consists of both short videos which are 2-3 minutes

Method Real vs. Fake
Classic++ 11.4 ± 4.30%
Classic+ 15.7 ± 4.92 %

Contrastive 25.7 ± 4.30%

Table 2: Unconditional: Real vs. Fake study. We show
evaluators a pair of videos (generated and real video) without
labels, ask them to pick the real one. Our method fools
evaluators more times than Classic.

long and long videos ranging from 30-60 mins1. We conduct
perceptual evaluations on Amazon MTurk to qualitatively
compare the results from our method to different baselines
for both the unconditional and conditional settings. We also
include results of ablating the interpolation module. Addi-
tionally, we introduce and report results on a new metric,
diversity score, which measures the diversity of the textures.

5.1. Unconditional Video Texture Synthesis

To show the effectiveness of our method, we compare our
results to the Classic video textures algorithm [43] and its
three variations. The algorithm and its variants are described
in Sec. 1 of Supplementary. Classic+, like Contrastive,
appends multiple frames to the output sequence instead of
a single frame, Classic++ adds a stride while filtering the
distance matrix and Classic Deep uses ImageNet pretrained
ResNet features instead of raw pixel values. For fairness, we
added the interpolation module described in Sec. 3 to all the
baselines.

Table 1 reports the results from a perceptual study on
Amazon MTurk where evaluators were shown textures gen-
erated by all five methods and asked to choose the one they
found most realistic. Our Contrastive model surpasses all
baselines by a large margin and was chosen 69.52% of the
time. Since the classic models are similar, we also report all
variations of classic combined. They are chosen 30.48% of
the time.

We include qualitative video results for Contrastive, Clas-
sic, Classic+, Classic++, and Classic Deep in Fig. 4. The
red bar at the bottom of each video indicates the part of
the input video being played. Video in Fig. 4b produced
by our Contrastive method is the most realistic and consis-
tent with seamless transitions. The red bar transitioning to
new positions indicates that our textures are dynamic and
diverse (vary over time). Classic in Fig. 4c loops over the
same set of frames in and around the target, thus appearing
stuck. Classic+ and Classic++ shown in Fig. 4d and Fig. 4e
have slightly improved quality compared to it but lack diver-
sity and produce jarring transitions. Classic Deep texture in

1We will release the videos, trained models, and a reference implemen-
tation of our method.
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(a) Input Video (b) Contrastive Video Texture (c) Classic Video Texture

(d) Classic+ Video Texture (e) Classic++ Video Texture (f) Classic Deep Video Texture

Figure 4: Unconditional Contrastive Video Textures. Click on each figure to play the video. The figure shows the input
video and textures synthesized using our Contrastive method and the baselines Classic, Classic+, Classic++, and Classic Deep.
The red bar at the bottom of each video indicates the part of the input video being played. Classic, Classic+, and Classic++
textures loop over the same frame at the start of the video as shown by the red bar, are choppy, and not diverse. Classic Deep
texture has jarring transitions. Our Contrastive method finds smooth and seamless transitions in the video to produce a texture
that’s diverse yet dynamically consistent.

Method Real vs Fake
Random Clip 15.33 ± 5.76%
Audio NN 20.4 ± 6.63%

Contrastive 26.74 ± 6.14%

Table 3: Conditional: Real vs. Fake study. We show
evaluators a pair of videos (generated and real video) without
labels and ask them to pick the real one. Our method fooled
evaluators more often than the baselines.

Fig. 4f is choppy due to multiple poor transitions chosen by
the model.

Additionally, we conduct real vs. fake studies in Table 2
where the evaluators are shown the ground truth video and
synthesized texture and asked to pick the one they think is
real. Our method is able to fool evaluators 25.7% of the
time whereas the best baseline (Classic+) is able to fool the
evaluators only 15.7% of the time.

Both the qualitative and quantitative comparisons clearly
highlight the issues with the Classic model and emphasize
the need to learn the feature representations and the distance
metric as we do in our Contrastive method. Fig. 5 shows
more qualitative results of Unconditional Contrastive Video
Textures on videos of guitar, dance, and Indian musical in-
struments. Our method works well on all the domains and
produces dynamic yet consistent video textures. The change
in position of the red bar indicates that our method seam-

lessly transitions across different parts of the input video. As
seen in the dance videos, learned representations result in
transitions that are consistent with the arm movements of the
dancer.
Diversity. For a fair comparison, we set the temperature
for both Contrastive and Classic+ methods such that the
resulting videos have approximately the same number of
transitions. We synthesize Classic+ and Contrastive video
textures with 9±2 transitions each for 20 videos. Evaluators
were shown textures from both methods and asked to pick
the one they found more realistic. Contrastive videos were
preferred 76.6% of the time, comparable to the result in
Tab. 1, indicating that our method finds better transitions.
Additionally, we measure diversity score (DS) as the number
of new transitions in every 30 seconds of the synthesized
video, averaged over all videos. A transition is considered
new if it hasn’t occurred in the 30 second time-frame. Our
method achieves a DS of 7.78, indicating that our textures are
diverse and contain, on an average, 7 (of 9) new transitions
every 30 seconds. Classic+ achieves a DS of 2.3 indicating
that the video texture loops over the same part of the input
video.
Interpolation. We verify the effectiveness of the interpo-
lation module through a perceptual study. Evaluators were
shown two videos (with and without interpolation), and
asked to pick the one they found more realistic. They picked
the video with interpolation 89% of the time, thus confirm-
ing that interpolation leads to an improvement in perceptual
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(a) Guitar

(b) Dance

(c) Indian Musical Instruments (Tabla and Sitar)

(d) Harp

Figure 5: Qualitative Results of Unconditional Contrastive
Video Textures. Click on the image to play the video.

quality. We show qualitative comparisons in Supp. (and
here).

5.2. Audio-Conditioned Contrastive Video Textures

For audio-conditioned video synthesis, we randomly
paired the 70 videos with songs from the same domain (e.g.
a input piano video is paired with a conditioning audio of
a piano). Using this strategy, we created 70 input video -
conditioning audio pairs. As described in Sec. 4, we extend
our Contrastive method to synthesize textures given a condi-
tioning audio signal. We compare audio-conditioned video
textures synthesized by our method to four baselines and
report results from a perceptual evaluation.

• Random Clip. In this baseline, we choose a random portion
of the input video to match the conditioning audio.

Contrastive

Classic+Audio

VRB

Random Clip

92.0

84.0

70.0

Which video is more 
in sync with the audio?

Audio NN66.0

Figure 6: Perceptual Studies for Audio-Conditioned Con-
trastive Video Textures. We compare results from our Con-
trastive method against each of the baselines, individually.
Evaluators were shown two videos, one synthesized by our
method and the other by the corresponding baseline and
asked to pick the one where the audio and video were more
in sync.

• Classic+Audio. We add audio-conditioning to the classic
video textures algorithm. For this, we divide the conditioning
audio into segments and find nearest-neighbours in the input
audio. Then we combine these distances with the distance
matrix calculated by video textures using Eq. 3.
• Visual Rhythm and Beat(VRB). We use the approach of
Davis et al. [5] to synchronize the input video with the audio
beats. This method works by changing the pace of the video
to better align the visual and audio beats.
• Audio Nearest Neighbours. We include comparisons to a
nearest neighbor baseline that works by computing the simi-
larity between the conditioning audio signal and segments
of the input audio of the same length, and then choosing the
video clip of the closest match.

Fig. 6 shows results from our perceptual studies com-
paring the audio-conditioned video textures synthesized by
our Contrastive model to all of the baselines. The evalu-
ators were shown two videos with the same conditioning
audio, one synthesized by our method and the other by the
corresponding baseline. They were asked to pick the video
that was more in sync with the audio. Our method outper-
forms all baselines by a large margin. As shown in Tab. 3,
we conducted a real vs. fake study comparing the ground
truth videos with the synthesized videos from Contrastive
and the two best baselines (Random Clip and Audio NN).
While Random Clip and Audio NN beat the ground truth
only 15.33% and 20.4% respectively, our method was able
to fool evaluators 26.74% of the time.

Fig. 7 shows qualitative results comparing our method
to the five baselines described above and also include the
videos in Supp. and here. In Fig. 7 (A), the conditioning
audio signal has a gap/break in the audio where no music is
being played. We see the output produced by our Contrastive
model is semantically meaningful and aligns best with the
audio. Random Clip chooses a random segment which has
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Same note repeated twice.

Note is not repeated.

Plays section with no audio.

Random note played.

Repeated Chords

Conditioning Audio

Audio Conditioned Video Texture

Contrastive

Classic+Audio

Random

VR&B

Hands in air. No strumming.

Strumming

Talking

Strumming

No Sound. Gap in Music.

Conditioning Audio

Audio Conditioned Video Texture

(A) (B)

Figure 7: Qualitative comparison of audio-conditioned video textures synthesized by Classic+Audio, Random Clip, Visual
Rhythm and Beat (VRB) and our Contrastive model. (A) The conditioning audio waveform shows a gap in the audio where no
music is being played. Our model is able to pick up on that and the corresponding video that is synthesized has hands in the air
and no strumming. However, both Random Clip and Classic+Audio show strumming, and VRB shows the person talking. (B)
The conditioning audio waveform has the same chord repeated twice. The video synthesized by our model reflects this, and we
observe the same frames (1 and 2) repeated again. Classic+Audio and Random Clip don’t repeat the note and VRB result
contains a region without audio where the person isn’t playing anything.

strumming and thus fails to align with the audio. Similarly
Classic+Audio chooses frames that don’t correlate with the
audio. VRB doesn’t capture semantics as it only speeds up
or slows down the video to better match the audio beats.
Similarly, in Fig. 7(B) we see that our Contrastive method is
able to pick up on repeated chords in the conditioning audio
signal while no other method is able to do that. Through
more examples listed in Supp. and at this website, we show
that the videos synthesized by Contrastive model are more
in sync with the conditioning audio. For example, it identi-
fies gaps in the audio, repeated chords, and change of pace.
We observed experimentally that our method doesn’t work
well for videos where the scene constantly changes (such as
waves) and where subtle asynchronies between audio and
video are easy to spot (such as people speaking) as these
applications are beyond the scope of video textures. We
hope that they can be addressed with hybrid approaches that
combine the benefits of video textures with GANs.

5.3. Comparison to Video Generation Methods

GAN based video generation methods cannot capture the
temporal dynamics of the video and thus fail to synthesize

long and diverse textures. We compare our unconditional
Contrastive method to MoCoGAN [46], an unconditional
video generation method and include results in Supp. (and
here). A 3-second video of a candle flame is given as input
and our method is able to produce a 30-second high resolu-
tion, temporally consistent, and diverse output of a candle
flickering. On the other hand, MoCoGAN’s video contains
artifacts and the flame lasts for only 3 seconds. Similarly,
with the guitar video, our method produces a realistic video
with seamless transitions whereas MoCoGAN’s output is
blurry.

6. Conclusion
We presented Contrastive Video Textures, a learning-

based approach for video textures applied to audio-
conditioned video synthesis. Our method fits an input-
specific bi-gram model to capture the dynamics of a video,
and uses it to generate diverse and temporally coherent tex-
tures. We also introduced audio-conditioned video texture
synthesis as a useful application of video textures. We show
that our model outperforms a number of baselines on percep-
tual studies.
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