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Abstract

Deep learning and convolutional neural networks allow
achieving impressive performance in computer vision tasks,
such as object detection and semantic segmentation (SS).
However, recent studies have shown evident weaknesses of
such models against adversarial perturbations. In a real-
world scenario instead, like autonomous driving, more at-
tention should be devoted to real-world adversarial exam-
ples (RWAEs), which are physical objects (e.g., billboards
and printable patches) optimized to be adversarial to the
entire perception pipeline. This paper presents an in-depth
evaluation of the robustness of popular SS models by test-
ing the effects of both digital and real-world adversarial
patches. These patches are crafted with powerful attacks
enriched with a novel loss function. Firstly, an investiga-
tion on the Cityscapes dataset is conducted by extending the
Expectation Over Transformation (EOT) paradigm to cope
with SS. Then, a novel attack optimization, called scene-
specific attack, is proposed. Such an attack leverages the
CARLA driving simulator to improve the transferability of
the proposed EOT-based attack to a real 3D environment.
Finally, a printed physical billboard containing an adver-
sarial patch was tested in an outdoor driving scenario to
assess the feasibility of the studied attacks in the real world.
Exhaustive experiments revealed that the proposed attack
formulations outperform previous work to craft both digi-
tal and real-world adversarial patches for SS. At the same
time, the experimental results showed how these attacks are
notably less effective in the real world, hence questioning
the practical relevance of adversarial attacks to SS models
for autonomous/assisted driving.

1. Introduction
The rise of deep learning unlocked unprecedented per-

formance in several scientific areas [25]. Convolutional
neural networks [17] (CNNs) yielded super-human perfor-
mance for many different computer vision tasks, such as im-
age recognition [10], object detection [28] [27], and image
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Figure 1: Proposed adversarial patches on Cityscapes [6]
(b) and CARLA Simulator [7] (e); (c/f) show the corre-
sponding SS predicted by BiSeNet [41]; (a/d) show the cor-
responding predictions obtained using random patches in-
stead of adversarial ones.

segmentation [21]. Image segmentation, and semantic seg-
mentation (SS) in particular, is used in autonomous driving
perception pipelines [31], mainly for object detection [21].

Despite their high performance, CNNs are prone to ad-
versarial attacks [32]. Most of the literature on adversar-
ial attacks focuses on directly manipulating the pixels of
the whole image, hence making the assumption that the at-
tacker has control over the digital representation of the en-
vironment obtained by the on-board cameras. This kind of
unsafe inputs are called digital adversarial examples.

Although such digital attacks do not transfer well into the
real world, they continue to be used to evaluate the robust-
ness of models in safety-critical systems [13, 4, 20]. Real-
world adversarial examples (RWAEs), on the other hand,
are physical objects that can be placed in the field of view
of a camera, such that the resulting image acts as an ad-
versarial example for the neural network under attack [18].
Thus, RWAEs can induce errors in neural networks without
requiring the attacker to access the digital representation of
the image, thereby making them a more realistic and dan-
gerous threat to safety-critical systems.

This work focuses on RWAEs, as they represent a poten-
tial threat to tasks in autonomous driving today. Although
the effects of RWAEs have been studied extensively in the
literature for classification and object detection, those on SS

12280



remain relatively unexplored. However, SS is an integral
part of autonomous driving pipelines [31]. Thus, this pa-
per examines various state-of-the-art models for real-time
SS aiming at benchmarking their robustness to RWAEs in
autonomous driving scenarios.

Of the several types of RWAEs proposed in the litera-
ture [33], the form of attack used in this paper is adversarial
patches [5]. This is because attacks that perturb the whole
image are not practically feasible in the real world. Con-
versely, such patches can be easily printed and attached to
any visible 2D surface in the driving environment, such as
billboards and road signs, thus making them a simple, yet
effective attack strategy.

The paper starts by recognizing the shortcomings of
the standard cross-entropy loss for optimizing adversarial
patches for SS. Thus, an extension to the cross-entropy loss
is proposed and integrated in all the performed attacks. This
extension forces the optimization to focus on pixels that are
not yet misclassified, thus obtaining patches that are more
powerful compared to those generated with the standard
cross-entropy-based setting [22].

Following this rationale, the robustness of real-time SS
models to RWAEs attacks is benchmarked. The paper starts
by first examining the case of driving images, crafting ad-
versarial patches on the Cityscapes dataset [6], a popular
benchmark of high-resolution images of urban driving. Ro-
bust real-world patches are crafted by following the Ex-
pectation Over Transformation (EOT) [2] paradigm, which
has been extended in this work to attack SS models. Fur-
thermore, a comparison against non-robust patches (without
EOT) is presented to question their effectiveness on driving
scenes.

Another set of experiments targeted a virtual 3D sce-
nario, for which a stronger adversarial attack is presented
and tested. The proposed scene-specific attack, defined in
Section 3.4, is a more practical tool for crafting adversar-
ial patches in a realistic autonomous driving scenario. It
assumes that the attacker is interested in targeting an au-
tonomous driving scene at a particular corner of a specific
town, where information about the position of the attack-
able 2D surface (in our case, a billboard) is available. To
satisfy such requirements we developed and tested this at-
tack using the CARLA simulator, which provides all the
needed geometric information. These experiments include
a comparison with the EOT-based and non-robust patches,
performed by importing them into the CARLA world and
placing them on billboards to simulate a realistic study.

Figure 1 provides some examples of the effect of our
patches on Cityscapes and CARLA.

The last set of experiments were conducted on a real-
world driving scenario, which required collecting a dataset
within the city, optimizing a patch on it, physically printing
said patch on a billboard, and finally evaluating SS models

on images containing the printed patch.
To the best of our knowledge, this work represents the

first exhaustive evaluation of the robustness of SS models
against RWAEs for autonomous driving systems. The re-
sults of the experiments state important observations that
should be taken into consideration while evaluating the
trustworthiness of SS models in autonomous driving. First,
they demonstrate that non-robust patches are not good can-
didates for assessing the practical robustness of an SS model
to adversarial examples. Indeed, while they proved to be ef-
fective in attacking images related to driving scenes (from
Cityscapes), they do not induce any real-world adversarial
effect when crafted and tested in a virtual 3D world (based
on CARLA). Conversely, robust patches, crafted with EOT
or the proposed scene-specific approach, resulted to be less
effective than non-robust ones on Cityscapes images, but
were capable to accomplish the attack in both virtual 3D
world and the real world. Nevertheless, their effectiveness
in the latter two cases still resulted to be quite limited, hence
questioning the practical relevance of RWAEs.

In summary, the paper makes the following contribu-
tions:

• It proposes an extension to the pixel-wise cross-
entropy loss to enable crafting strong patches for the
semantic segmentation setting.

• It proposes a novel technique for crafting adversarial
patches for autonomous driving scenarios that utilize
geometric information of the 3D world.

• It finally reports an extensive evaluation of RWAE-
based attacks on a set of real-time semantic segmen-
tation models using data from the Cityscapes dataset,
CARLA, and the real world.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a brief overview of related work existing in
the literature, Section 3 formalizes the proposed loss func-
tion, pipeline, and attack strategy, Section 4 reports the ex-
perimental results, and Section 5 states the conclusions and
proposes ideas for future work.

2. Related Work
Szegedy et al. [34] showed that small well-crafted per-

turbations when added to the input image were sufficient to
fool strong classification networks. [4, 20, 38, 15, 14, 1, 22,
30] have studied such attacks for the specific use case of
fooling SS models. However, these attacks directly manip-
ulate the pixels of the image. Although such digital pertur-
bations provide a convenient way to provide benchmarks in
research, they do no extend well to real-world applications.

A more realistic threat model led to the introduction of
RWAEs by Kurakin et. al. [18]. The attacker here is as-
sumed to be able to craft adversarial pictures in the physical
world, without the ability to manipulate the digital repre-
sentation of inputs to the neural network. However, this
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work did not account for factors that affect images of ob-
jects in the real-world (e.g., varying viewpoints from which
input images could be captured, changes in lighting con-
ditions and so on). Athalye et. al. [2] address this issue
by introducing the EOT algorithm. EOT accounts for such
factors in the optimisation by modeling them as a distribu-
tion of transformation functions applied to the adversarial
input. These transformations can be in the form of rotation,
scaling, noise, brightening and so on. Then, the idea is to
optimize the loss function in expectation across the range of
selected transformation functions.

The EOT formulation led to the development of adver-
sarial patches, introduced by Brown et al. [5] to fool image
classifiers. They are robust, localized, image-agnostic per-
turbations, crafted with the EOT paradigm, capable of fool-
ing neural networks when placed within the input scene or
added digitally on images.

Although extensive prior work exists to construct such
physical attacks for classification [5, 29, 9], object detec-
tion [37, 36, 19, 42], optical flow [26], LiDAR object de-
tection [35], and depth estimation [40], only a few focus on
autonomous driving tasks, since testing the adversarial ro-
bustness is more challenging, as it requires controlling the
3D outdoor environments. Other works [42, 36] have shown
CARLA to be a viable solution in alleviating this issue by
crafting and evaluating adversarial situations in virtual 3D
environments. This paper also heavily relies on CARLA to
evaluate how the optimized adversarial patches translate to
a 3D world.

The work closest to ours is the one by Nakka et. al. [22],
who attempted to fool a variety of SS models via local at-
tacks (i.e., creating pixel perturbation in a specific area of
the image). Despite the attacks being local, the objective of
their study was not to evaluate the robustness to real-world
attacks, which is instead the main focus of this paper. To
the best of our knowledge, such a study is missing in the lit-
erature for the case of SS models, which represent essential
components in an autonomous driving perception pipeline
[31].

Additionally, this paper also improves the loss function
used for generating patches. Section 3.5 presents a more
general formulation of the cross-entropy loss for the SS set-
ting, designed to optimize more powerful and effective ad-
versarial examples, while all the previously mentioned pa-
pers use the standard pixel-wise cross-entropy loss.

3. Attack Formulation
This section presents the design of adversarial patches

for semantic segmentation (SS), starting with a short re-
cap of the basic notions behind SS. The patch optimization
scheme for both the EOT-based and the scene-specific at-
tacks is then presented. Finally, the proposed loss function
is introduced.

Figure 2: Outline of the proposed approach for crafting both
the EOT-based and the scene-specific patches.

3.1. Background on SS

An image with heightH and widthW can be represented
as x ∈ [0, 1]H×W×C , where C is the number of channels.
An SS model returns f(x) ∈ [0, 1]H×W×Nc , where Nc is
the number of classes. This output represents the predicted
class-probability scores associated to each image pixel. In
particular, f ji (x) ∈ [0, 1] denotes the predicted probability
score for the i-th pixel of the image corresponding to the
class j. Consequently, the predicted semantic segmentation
SS(x) ∈ NH×W is computed by extracting those classes
with the highest probability score in each pixel: SS(x) =
argmaxj∈{1,...,Nc}f

j
i (x) ,∀i ∈ {1, ...,H ×W}.

The ground truth for the SS of x is defined as y ∈
NH×W , and assigns the correct class (in {1, ..., Nc}) to
each pixel. The performance of the SS models is evalu-
ated by computing the cross-entropy loss LCE(fi(x), yi) =
−log(fyii (x)). Thus, for each pixel i, the model’s predic-
tion fi is compared against the ground truth class yi.

3.2. Patch-based attack pipeline

Both the EOT-based and the scene-specific attacks share
a similar pipeline, which is explained in the following para-
graph and illustrated in Figure 2.

An adversarial patch of height H̃ and width W̃ is de-
noted as δ ∈ [0, 1]H̃×W̃×C , where H̃ < H and W̃ < W .
This patch is then added to the original image x to obtain a
patched image x̃. Thus, the output of the SS model on this
patched image would now be f(x̃).

The attacks considered are both untargeted. This means
that the objective is to maximize a certain loss function L,
without forcing the classification of pixels towards any spe-
cific class.

Inspired by the EOT method [2], the idea is to find an
optimal patch δ∗ (starting from a random patch) that max-
imizes the loss L for all the patched images in expectation
according to the distribution of transformations used to ap-
ply the patch δ on the image set X.

Formally, we need to define:
• A set of appearance-changing transformations Γa,

for instance changes in illumination (brightness, con-
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trast) and noise (uniform or gaussian). These transfor-
mations are directly applied to the patch, so obtaining
a transformed patch ζa(δ), where ζa ∈ Γa. They are
used to make the patch robust to illumination changes
and acquisition noise.

• A patch placement function η that defines which por-
tion of the original image x is occupied by the patch.
This is the only part of the pipeline that differs between
the two proposed attacks, and is discussed further in
the following subsections.

• A patch application function g(x, ζa(δ), η) that re-
places a certain area of x with ζa(δ) according to η
and returns the patched image x̃.

These functions are sufficient to define both the EOT-
based attack, which uses randomized spatial transforma-
tions to place the patch onto the image, and the scene-
specific attack, which uses a precise projective transforma-
tion to enhance the accuracy of the patch placement.

3.3. EOT-based patch attack

The classic EOT-based attack, as in previous work
[5] [39], uses a set of combinations of spatial transforma-
tions Γ, including translation and scaling, from which the
patch placement function η is selected.

The parameters for each transformation are randomized
within a pre-defined range. Section 4 provides a more de-
tailed explanation of the set of transformations used. The
optimal patch is then defined as

δ∗ = argmax
δ

Ex∈X,ζa∈Γa,η∈Γ L(f(x̃), y) (1)

In practice, the optimal patch is computed via an iterative
optimization process. At each iteration t, the pixels values
of the patch are modified in the direction of the gradient of
the loss function computed with respect to the patch:

δt+1 = clip[0,1]

δt + ε ·
∑
x∈X

∑
ζa∈Γa
η∈Γ

∇δtL(f(x̃), y)

 ,

(2)
where ε represents the step size.
L consists of a weighted sum of multiple loss functions.

The adversarial patch effect is obtained through the opti-
mization of the adversarial loss Ladv (discussed further in
subsection 3.5). Additionally, to ensure that the patch trans-
fers well to the real world, two losses are added to account
for the physical realizability of the patch (see [3] for de-
tails): smoothness loss LS and non-printability score LN .

3.4. Scene-specific patch attack

To provide a more realistic approach for autonomous
driving environments, this work proposes an alternative at-
tack methodology that exploits the geometrical information
provided by the CARLA Simulator [7].

Here, the key assumption is the availability of an attack-
able 2D surface, e.g., a billboard, with a fixed location in
close proximity to the road. The CARLA simulator features
the possibility to extract camera extrinsic and intrinsic ma-
trices (details in [3]), and the pose of the attackable surface.
The billboard-to-image transformations can be computed
using a 3D roto-translation composition, which allows the
patch to be warped accordingly, thus obtaining higher pre-
cision in applying the patch to the attack surface.

This attack uses the same optimization pipeline as be-
fore, with one major difference: instead of placing the patch
randomly, as in the previous attack, correct projective trans-
formations are used to determine the placement of the patch
on the attackable surface. Hence, η is no longer random-
ized, but is computed for each image in the dataset.

This method allows crafting precise attacks that are op-
timised for the region of the town that the attacker is inter-
ested in. The attacker would need to collect several images,
from different viewpoints, of the desired attackable surface,
along with the corresponding intrinsic and extrinsic matri-
ces. This approach to image collection also implies that
EOT is no longer needed for patch placement, thereby sim-
plifying the optimization process.

The downside of this approach is that a digital represen-
tation of the target scene is required to accurately capture
the required matrices. Although CARLA provides the pos-
sibility to import cities via OpenStreetMaps (https://
www.openstreetmap.org/), it requires some amount
of manual effort to properly model 3D meshes to include
objects in this simulated world. These objects need to be
properly designed to ensure that the patches optimised in
simulation transfer well to the real-world. Although this pa-
per does not investigate CARLA-to-real-world transfer is-
sues, future work will address this problem to improve the
proposed methodology and adapt it for real-world attacks.
Section 4 provides a comparison of this method against the
EOT-based attack.

3.5. Proposed loss function

Cross-entropy (CE) is a popular choice as adversar-
ial loss. Pixel-wise CE has been shown to work well
when crafting an untargeted digital attack (i.e., by di-
rectly adding a perturbation r to the pixels of a digital im-
age) [22] [4]. This is formulated as: Ladv(f(x + r), y) =

1
|N | ·

∑
i∈N LCE(fi(x+r), yi), whereN = {1, ...,H×W}

denotes the whole set of pixels in x̃. However, modifica-
tions can be introduced to this formulation to allow crafting
stronger attacks for fooling SS models.

Following previous notation, let Ñ = {1, ..., H̃×W̃} ⊆
N denote only the pixels that correspond to the patch δ.
Then, Υ defines a subset of image pixels that do not belong
to the patch and are still predicted correctly by the model
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with respect to the trusted ground truth label y:
Υ = {i ∈ N \ Ñ | SSi(x̃) = yi}. (3)

Using Υ, the previous pixel-wise CE loss computed on
N \ Ñ can be split into two distinct terms:
Lx̃M =

∑
i∈Υ

LCE(fi(x̃), yi), Lx̃
M

=
∑
i/∈Υ

LCE(fi(x̃), yi) .

(4)
Lx̃M describes the cumulative CE for those pixels that

have been misclassified with respect to the ground truth y,
while Lx̃

M
refers to all the others.

Note that both Lx̃M and Lx̃
M

do not consider pixels of
the patch, which have been discarded to focus the optimiza-
tion on attacking portions of the image away from the patch.
By computing these separate contribution to the total loss,
we avoid that the contribution of the non-misclassified pix-
els gets obscured by the other term, which is a problem we
found during preliminary tests. Hence, the adversarial loss
function gradient is redefined as follows:

∇δL(f(x̃), y) = γ · ∇δL
x̃
M

||∇δLx̃M ||2
+ (1− γ) ·

∇δLx̃M
||∇δLx̃M )||2

,

(5)
where γ ∈ [0, 1] is a parameter that determines whether the
optimization should focus on decreasing the number of cor-
rectly classified pixels or improving the adversarial strength
for the currently misclassified pixels. The rationale of γ is
to provide an empirical balancing between the importance
of LM and LM at each iteration t depending on the number
of pixels not yet misclassified.

Moreover, an adaptive value of γ = |Υ|
|N\Ñ | has been pro-

posed to provide an automatic tuning of γ at each iteration.
The idea is to initially focus on boosting the number of mis-
classified points. Over time, as this number increases, the
focus of the loss function gradually shifts toward improv-
ing the adversarial strength of the patch on these wrongly
classified pixels.

Section 4 provides an extensive analysis of the proposed
loss function by comparing multiple values of γ with the
standard pixel wise CE measured both on N \ Ñ and N
(which is used by [22]), suggesting that our formulation is
indeed more general and effective for this kind of attack.

4. Experimental results
This section describes the experimental setup and the re-

sults achieved with the proposed attacks. First, the proposed
loss function is evaluated for different values of γ com-
paring its effectiveness against the standard pixel-wise CE,
showing that it is a better alternative for this kind of prob-
lems. Following this, the results of patches crafted with and
without EOT are presented on the Cityscapes dataset.

Subsequently, the results obtained with the scene-
specific attack on three CARLA-generated datasets are pre-
sented. These results are compared against the EOT-based

attack to show the improved effectiveness of this formula-
tion. Finally, some preliminary results of real-world adver-
sarial patches are presented. A more detailed analysis of
all models tested against these attacks can be found in the
supplementary material [3].

4.1. Experimental setup

The experiments were performed on a set of 8 NVIDIA-
A100 GPUs, while the CARLA simulator was run on a sys-
tem powered by an Intel Core i7 with 12GB RAM and a
GeForce GTX 1080 Ti GPU.

All experiments were performed in PyTorch [24]. The
optimizer of choice was Adam [16], with learning rate set
to 0.5 empirically. The effect of the adversarial patches on
the SS models was evaluated using the mean Intersection-
over-Union (mIoU) and mean Accuracy (mAcc) [21].

The code is available at this link: https://github.
com/retis-ai/SemSegAdvPatch.

Datasets The experiments in the case of driving images
were carried out using the Cityscapes dataset [6], a popular
benchmark for urban scene SS. The dataset consists of 2975
and 500 high resolution images (1024 × 2048) for training
and validation, respectively. The experiments reported in
this paper were conducted on 250 images randomly sam-
pled from the training set. Conversely, the entire validation
set was used to evaluate the effectiveness of the patches.

The CARLA simulator was used to provide a 3D vir-
tual scenario. This set of experiments was performed in
Town01, one of the built-in maps provided with the simu-
lator, with ‘CloudyNoon’ as the preset weather. To mimic
the settings of the Cityscapes dataset, RGB images of size
1024× 2048, along with their corresponding SS tags, were
collected by placing a camera on-board the ego vehicle.

The SS models trained on Cityscapes had to be fine-
tuned to ensure good performance on CARLA images. 600
images for fine-tuning, 100 for validation, and 100 for test-
ing were collected by spawning the ego vehicle at random
positions in Town01. Additional details about the fine-
tuning can be found in the supplementary material [3].

To study the effectiveness of the patches in CARLA,
the map of Town01 was manually edited to include three
billboards. Thus, without-EOT, EOT-based, and the scene-
specific attacks were carried out at three different locations
within Town01. The datasets for the attacks were collected
by spawning the ego vehicle at random locations within the
proximity of each billboard to emulate varying viewpoints
from which the patch might be captured in the real-world.
For each of the three billboards, 150 training images, 100
validation, and 100 test images were gathered. Details about
the position and orientation of the billboard and the cam-
era were stored to compute the roto-translations used in the
scene-specific attack.
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model mIoU / mAcc
cityscapes CARLA (val - scene1 - scene2 -scene3)

ICNet 0.78 / 0.85 0.70 / 0.84 - 0.53 / 0.70 - 0.64 / 0.74 - 0.62 / 0.74
BiSeNet 0.69 / 0.78 0.47 / 0.69 - 0.47 / 0.69 - 0.61 / 0.74 - 0.47 / 0.73
DDRNet 0.78 / 0.85 0.72 / 0.88 - 0.54 / 0.74 - 0.62 / 0.76 - 0.64 / 0.78
PSPNet 0.79 / 0.85 nd

Table 1: mIoU and mAcc of the tested models on
Cityscapes (pre-trained) and our CARLA dataset (fine-
tuned).

Lastly, to study the effects of adversarial patches in the
real world, an additional dataset of 1000 images, hereafter
referred to as Patches-scapes, was collected by mounting an
action camera on the dashboard of a vehicle using a setup
similar that of the Cityscapes dataset, and then driving the
vehicle within the streets of our city.

Models The attacks studied in this paper were evaluated
using DDRNet [12], BiSeNet [41], and ICNet [43], which
represent the state-of-the-art in real-time SS, making them
preferable for the use case of autonomous driving. Ad-
ditionally, PSPNet [44] was included in the study for the
EOT-based attack on the CityScapes dataset, but not for the
scene-specific attack on CARLA, since we are interested in
real-time performance.

All the models were loaded with the pre-trained weights
provided by the authors (further specifications are provided
in the supplementary material [3]). Table 1 summarizes the
performance of these models on both the Cityscapes and
CARLA validation sets.

4.2. EOT-based patches on Cityscapes

The Cityscapes dataset is used to optimize two types of
patches on the same training images, one with EOT and the
other without EOT (non-robust). Three different patch sizes
are studied: 150× 300, 200× 400, and 300× 600 pixels.

The non-robust patches (without EOT) were optimized
by placing them at the center of the image at each training
iteration (i.e., η(·) = fixed position) and applying no ap-
pearance transformations (i.e., Γa = ∅).

Conversely, the robust optimizations with EOT apply
multiple digital transformations. Γa includes only Gaus-
sian noise with standard deviation 5% of the image range.
Γ includes random scaling (80%−120% of the initial patch
size) and random translation defined as follows: if (cx, cy)
is the center of the image, the position of the patch is ran-
domized within the range (cx ± r̃ · W̃/2 , cy ± r̃ · H̃/2),
where r̃ ∈ [0, 1] is a uniform random value. The transla-
tion range was kept limited, rather than considering the full
image space, to ensure a greater stability and faster conver-
gence. The patches were optimized over 200 epochs.

Loss functions analysis Figure 3 reports the mIoU ob-
tained by training patches with the pixel-wise CE com-
puted on N (used by [22]) and N \ Ñ compared to

the extended CE loss proposed in this paper, with γ ∈
{0.5, 0.6, 0.7, 0.8, 0.95, 1.0, |Υ|

|N\Ñ |}. Among the models
evaluated in the paper, ICNet [43] appears to be most ro-
bust on the Cityscapes dataset. Thus, the loss functions are
studied by optimizing a 200 × 400 patch with and without
EOT on ICNet.

For all the tested values of γ, our formulation converges
to a higher attack effect (i.e., smaller mIoU) with lesser
number of epochs than the one based on the pixel-wise CE.
Experiments without EOT show that all the compared im-
plementations converge after only 10 epochs. In the EOT
case, the advantages are even more evident: our proposed
formulation converges at almost 25 epochs, while the CE
cases still reduce slowly at 200 epochs (nearly 6 hours of
optimization time).

The same study was performed for the scene-specific at-
tack in the CARLA virtual world, and produced similar re-
sults, reported in the supplementary material [3].

Adversarial patch effects. Table 2 reports how varying
the patch size affects each of the SS models. We used the
adaptive γ (i.e., γ = |Υ|

|N\Ñ | ) that has shown the best overall
effect among multiple experimental tests.

Figure 4 illustrates the effects of the optimized patches
on the BiSeNet model. As expected, the non-robust patches
(without EOT) obtain better attack performance with re-
spect to the ones optimized with EOT. This is because the
optimization process is simpler when not considering the
randomized transformations. However, it is important to
note that these patches would not be transferrable to the
real world, and are not robust even to simple transforma-
tions [11, 23].

4.3. Scene-specific patches on CARLA

The scene-specific attack was performed on the same set
of models as defined earlier. Each of these models were first
fine-tuned on images generated via CARLA. The perfor-
mance of these fine-tuned models on the CARLA datasets
is summarized in Table 1. Please note that the mIoU score is
computed as an average of the per-class IoU scores, which,
for CARLA, might get to 0 for some classes due to the pres-
ence of a few pixels belonging to non-common objects.

As described in Section 3.4, the patch is optimized to
be adversarial for a specific urban scene by reprojecting it
on the attackable 2D surface, which, in this work, is a bill-
board placed in three different spots in the Town01 map of
CARLA. This section reports the effect of the scene-specific
attack compared against the non-robust (without-EOT) and
the EOT-based attacks. The optimized patch is composed
of 150 × 300 pixels, imposing a real-world dimension of
3.75m× 7.5m. Additional experiments on the effect of the
real-world dimension of the patch and the number of pixels
used are presented in the supplementary material [3]. For all
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Figure 3: Comparison of adversarial patch optimizations (200×400) on ICNet and Cityscapes using different loss functions:
two versions of the standard pixel-wise cross-entropy and our formulation with multiple values of γ. LCE on N is the
original version used by [22], while LCE on N \ Ñ is an improved version based on the rationale presented in Section 3.

Model mIoU — mAcc (rand / with EOT / without EOT)
150x300 200x400 300x600

ICNet 0.70 / 0.58 / 0.54 0.81 / 0.69 / 0.65 0.67 / 0.50 / 0.45 0.79 / 0.61 / 0.55 0.60 / 0.38 / 0.28 0.72 / 0.42 / 0.34
BiSeNet 0.63 / 0.45 / 0.39 0.74 / 0.61 / 0.55 0.61 / 0.29 / 0.21 0.71 / 0.43 / 0.34 0.54 / 0.19 / 0.05 0.65 / 0.31 / 0.15
DDRNet 0.73 / 0.65 /0.55 0.82 / 0.76 / 0.64 0.71 / 0.59 / 0.42 0.80 / 0.69 / 0.50 0.65 / 0.45 / 0.09 0.73 / 0.53 / 0.19
PSPNet 0.76 / 0.42 / 0.33 0.82 / 0.57 / 0.45 0.73 / 0.23 / 0.00 0.79 / 0.30 / 0.05 0.67 / 0.01 / 0.00 0.73 / 0.06 / 0.05

Table 2: Adversarial patch results on the Cityscapes dataset. Each cell reports the final mIoU obtained with a random patch
(no optimization), with EOT, and without EOT.

(a) (b) (c) (d) (e)
Figure 4: Semantic segmentations obtained from BiSeNet with no patch (b), a random patch (c), an EOT-based patch (d),
and non-robust patch (without EOT) (e) added into a original image (a) of the Cityscapes validation set.

the following experiments, Γa includes contrast and bright-
ness changes (both 10% of the image range), and Gaussian
noise (standard deviation 10% of the image range).

Since the objective of this work is to craft RWAEs,
the performance of the attacks is evaluated by measuring
the mIoU and mAcc scores on additional scene-specific
datasets. These additional datasets are produced by collect-
ing the same images of the validation set of each scene-
specific dataset, but with a single major modification: the
billboard object is modified in the Unreal Editor [8] by ap-
plying the optimized patch as a decal object, which is a way
to stick an image on a surface in the virtual environment.
This method should provide a simulated real-world applica-
tion of the patches, since they are no more applied directly
on the image, but the image itself includes the patched bill-
board.

Table 3 summarizes the results obtained on these three
additional scene-specific datasets, with a random patch, a
non-robust patch, an EOT-based patch, and a scene-specific
patch. Figure 5 shows a comparison of all the discussed
attacks on DDRNet.

For almost all the combinations of scene and network,
the scene-specific attack outperforms the EOT-based attack,

confirming that the scene-specific attack, for this kind of
problems, is a better alternative to the EOT formulation for
the placement of the patch within the image. The only case
where the the two attacks show comparable performance is
for scene 3, where the billboard is almost perpendicular to
the camera plane, allowing the EOT method to cover realis-
tic patch placing functions.

It is also worth noting that SS models are rather robust to
adversarial patch attacks in general. Although it is possible
to craft adversarial patches that cause a section of the image
to be wrongly segmented, it tends to be more difficult than
fooling models for tasks such as classification. Additional
details are reported in the supplementary material [3].

4.4. Real-world patches

In order to prove that the proposed pipeline can be
used for a real-world attack, we use the Patches-scapes
dataset (described in Section 4.1) to craft an adversarial
real-world patch using the EOT-based patch attack. This
section presents the results of an attack in Figure 6. Al-
though the presence of the optimized patch does alter a sig-
nificant area of the predicted SS (while the random patch
does not), portions of the image far from its position are not
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Model mIoU — mAcc (rand / without EOT / EOT / scene-specific)
Scene1 Scene2 Scene3

ICNet 0.51 / 0.51 / 0.49 / 0.48 0.60 / 0.60 /0.56 / 0.54 0.64 / 0.64 / 0.61 / 0.61 0.74 / 0.74 / 0.73 / 0.73 0.63 / 0.63 / 0.59 / 0.59 0.76 / 0.76 / 0.73 / 0.74
BiSeNet 0.44 / 0.42 / 0.36 / 0.31 0.63 / 0.61 / 0.55 / 0.49 0.60 / 0.60 / 0.58 / 0.58 0.76 / 0.75 / 0.74 / 0.74 0.47 / 0.46 / 0.46 / 0.45 0.74 / 0.73 / 0.73 / 0.73
DDRNet 0.51 / 0.50 / 0.46 / 0.46 0.70 / 0.69 / 0.69 / 0.69 0.62 / 0.62 / 0.52 / 0.49 0.76 / 0.75 / 0.71 / 0.66 0.65 / 0.65 / 0.58 / 0.59 0.78 / 0.78 / 0.76 / 0.76

Table 3: Adversarial patch results on the three scene CARLA datasets. The Table reports the mIoU and mAcc obtained with
random, non-robust (without EOT), EOT-based and scene-specific patches.

(a) (b) (c) (d) (e)
Figure 5: (a) is an image extracted from the scene-1 test dataset augmented with a scene-specific patch optimized on DDRNet,
while (e) is its corresponding SS; (b), (c), and (d) are predictions obtained by augmenting the same test image with a random,
non-robust and EOT-based patches, respectively.

Figure 6: Real-world predictions on ICNet obtained with a
printed random patch (left) and an optimized patch (right).

affected. Furthermore, the attack performance decreases as
we move the patch away from the camera (details provided
in the supplementary material [3]). The patch is optimized
for 200 epochs on the pre-trained version of ICnet (since
it showed good performance on the Patches-scapes dataset)
and printed as a 1m× 2m poster.

Testing adversarial patches for autonomous driving in
the real world poses a series of difficulties that heavily lim-
ited the tests. First, it is not easy to find a urban corner
with good prediction accuracy, and which is not crowded
with moving vehicles (which might be dangerous). Second,
the patch must be printed in the highest resolution possible
on a large rigid surface, which might get expensive. Fur-
thermore, since weather conditions are not controllable and
change throughout the day, results can diverge from what is
expected.

The scene-specific attack, which requires additional ge-
ometric information, could not be implemented at the time
of writing, but will be considered in future work.

5. Conclusions and future work
This paper presented an extensive study of the adver-

sarial robustness of semantic segmentation models. This
was accomplished by extensively evaluating the effect in-

troduced by adversarial patches, to investigate the limits of
real-world attacks for segmentation neural networks in an
autonomous driving scenario. Carrying out the investiga-
tions with increasingly “real-world” benchmarks, we stud-
ied the effect of non-robust and EOT-based patches on the
Cityscapes dataset, on a virtual 3D scenario, and in a real-
world setting. We also introduced a new method called
scene-specific attack, which improves the EOT formulation
for a more realistic and effective patch placement.

The novel loss function introduced in the paper enabled
to advance the state-of-the-art for adversarial patches opti-
mization methods, as it proved to be a more general and
efficient alternative to the classic cross-entropy function for
this kind of problems.

This exhaustive set of experiments practically opens to a
new point of view for studying SS models in autonomous
driving. Although the proposed attacks were able to reduce
the baseline model accuracy, the SS models proved to be
somehow robust to real-world patch-based attacks. This
was especially noticeable when the tests were performed
in more realistic settings using CARLA and the real world,
where, in most cases, the patch only affected the proximity
of the attacked surface.

Nevertheless, this is a promising result, since it shows
how the prediction provided by these models is not easily
corruptible, especially in real-world scenarios. This is in
contrast with previous work on patch-based adversarial at-
tacks against classification and object detection models.

Future work will further investigate the robustness prop-
erties of these models, introducing defense mechanisms and
trying to enhance the robustness of SS model by adding a
temporal dimension.
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[4] Andreas Bär, Jonas Löhdefink, Nikhil Kapoor, Serin Vargh-
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