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Abstract

We present RLSS: a reinforcement learning algorithm for
sequential scene generation. This is based on employing the
proximal policy optimization (PPO) algorithm for genera-
tive problems. In particular, we consider how to effectively
reduce the action space by including a greedy search algo-
rithm in the learning process. Our experiments demonstrate
that our method converges for a relatively large number of
actions and learns to generate scenes with predefined de-
sign objectives. This approach is placing objects iteratively
in the virtual scene. In each step, the network chooses which
objects to place and selects positions which result in max-
imal reward. A high reward is assigned if the last action
resulted in desired properties whereas the violation of con-
straints is penalized. We demonstrate the capability of our
method to generate plausible and diverse scenes efficiently
by solving indoor planning problems and generating Angry
Birds levels.

1. Introduction

Generative modeling has seen drastic improvements in
recent years. Especially for images, state-of-the-art gen-
erative adversarial networks (GANs) produce fantastic re-
sults [11, 15, 16]. Even though generative models such as
GANs or variational autoencoders (VAEs) [19] are consid-
ered to be unsupervised methods, a large amount of data is
still required. While multiple attempts have been made in
reproducing the success of image-based generative models
in other domains, such as scenes, meshes, and point clouds,
the results are far behind. A major obstacle is the lack of
data, as there are no high quality data sets of scenes that
contain many models. Many data sets are small, e.g. [35],
or contain too many low quality models. For example, the
SUNCG data set [32] contains multiple low quality models
generated by amateur modelers that violate commonly ac-
cepted hard constraints (in addition, the data set is currently

unavailable due to a legal dispute).
In order to make progress on generative modeling for

scene generation, we propose to build a learning framework
that does not require a large amount of training data. In
this context, reinforcement learning is an ideal choice as
the need for training data is replaced by reward function
design. As reinforcement learning is traditionally applied
to maximize expected cumulative reward, it is not generally
used to generate a large variety of scenes. In this work we
propose a reinforcement learning algorithm to be able to
generate a large variety of scenes. We call our approach
RLSS. It operates sequentially and places scene objects one-
by-one.

Specifically, our major contributions are as follows.

• We present RLSS: (to our knowledge) the first rein-
forcement learning based scene generation algorithm.
The distinguishing characteristic is that RLSS can gen-
erate a large variety of scenes for the same input
(i.e. scene boundary) taking into account domain con-
straints.

• We propose an efficient approach for scene synthesis
problem which enables to solve this task by separat-
ing the problem requirements into two different cate-
gories: hard constraints that are included in the envi-
ronment and predefined design objectives, which the
network learns how to achieve, given different initial
scene boundaries, during the training process.

• Our reward designing approach makes it easy to adapt
this method for many scene synthesis problems with-
out spending too much time on reward calculation for
actions.

• We demonstrate the advantages of our method to gen-
erate plausible and diverse scenes efficiently by solv-
ing indoor planning problems and generating Angry
Birds levels.
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2. Related Work

Employing reinforcement learning in the context of gen-
erative problems has been addressed in the community.

SPIRAL [10] is a reinforcement learning based adver-
sarial agent which learns to synthesize visual programs for
graphic engines in order to generate images. It has been
shown that their method works well for image reconstruc-
tions on MNIST [21] and OMNIGLOT [20] data sets but
fails to synthesize new examples. Model-based reinforce-
ment learning [14] was applied to image reconstruction
for stroke-based paintings. The fundamental difference be-
tween these methods and our method is that in contrast to
rewarding the agents based on the discriminators’ outputs,
in our case this is done by simulating the environment and
checking relevant constraints.

Formalizing reinforcement learning as a probabilistic in-
ference technique has been explored in [4, 1, 22]. Con-
necting reinforcement learning with posterior regularization
[9] to incorporate the domain constraints to deep genera-
tive models has been considered in [13]. Compared to this
approach, our method is based on directly employing rein-
forcement learning as a generative model.

Deep generative models [11, 19] have been extensively
used by scientific community to synthesize scenes in indoor
planning [38, 24, 37, 29, 41]. These models are mostly
image-based and therefore use pixel-level reasoning to dis-
tinguish objects and extract spatial features from an im-
age. Which can be poorly adapted when handling various
domain-based constraints in scene synthesis problems. As a
result, one either need to generalize the problem and accept
more simplified domain constraints [24], or use constraint
violation check at each step along with generative models to
deal with the problem [38, 37]. However, this is associated
with costs: in the first case, we will solve the sub-problem
instead of solving the real problem, in the second case, this
leads to an increase in the synthesis time.

Another major direction to generate indoor scenes is re-
lated with using Markov chain Monte Carlo (MCMC) meth-
ods [28, 25, 40, 17]. In these methods problem specific ob-
jective functions are optimized based on some rule based
criteria. The main drawback of using MCMC sampling in
these methods is generation time, which requires thousands
of iterations to synthesize one plausible scene.
We also would like to mention the reinforcement learning
has been used in several contexts different from generative
problems [23, 27, 42, 36, 12].

3. Method

In this section, we provide an overview of RLSS: our re-
inforcement learning based sequential scene generation al-
gorithm. We provide required background information and
discuss relevant components in detail.

3.1. Overview

We developed RLSS based on the proximal policy opti-
mization (PPO) [31] method for scene generation problems.
The scene we would like to generate is represented as an
environment in which objects are added iteratively one-by-
one. The neural network is trained on a 2D representation
of the scene. If the visual content we are generating has
three dimensions, then its most informative 2D view is used
during the training. The set of all actions which can be ap-
plied in the environment is denoted with A. The reward
which the agent obtains after taking an action a ∈ A is
denoted by r. This formulation of the scene allows us to
use reinforcement learning algorithms. However, the use of
standard reinforcement learning is limited to optimization
problems, where the agent needs to collect as much reward
as possible in a virtual environment. In each step the agent
chooses an action among the set of possible actions which
at the end will result in the highest reward. Therefore, in
the standard reinforcement learning setup, the main target
of the agent is to maximize the cumulative reward. In our
setting we additionally consider increasing variety, which is
achieved by introducing randomness in the action selection
process.

We introduce the following two problem-specific key
definitions which will help us to effectively explain our
method.

• Hard constraints are a set of constraints that should
always be satisfied when synthesizing a scene. Usu-
ally, this type of constraints come from the problem
domain and violating these constraints makes it im-
possible to continue the generation process. In our
method, these constraints are included in the environ-
ment.

• Design objectives comprise a set of requirements
which shape the general appearance of the generated
scene. Each successfully generated scene should have
these features. This can be understood as a broad def-
inition of a scene we would like to synthesize. Only
such scenes which fulfill predefined design objectives
could be considered as valid examples for good scenes.

Different from the most of the scene synthesis algorithms
our method learns how to generate successful scene based
on predefined criteria (design objectives) and domain
knowledge is applied to place objects in the scene. This
method has particular advantages where relationship or
rules exist for placing objects. For example, in physics
based games or in indoor planning.

3.2. Scene Abstraction

A scene consists of the initial scene boundary and set of
objects, each defined with its center’s position P (x, y, z),
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bounding box (box with minimal volume which can fully
contain this object) and orientation α relative to local coor-
dinate axis.

Structures (groups). First, we find independent struc-
tures in the problem domain. Each structure consists of one
or more objects and together these objects play some func-
tion in the current problem domain. These structures can be
derived from acceptable scene examples. We define the set
of all structures we use in the problem as S . Each structure
st ∈ S has a complexity (the number of different objects in
this structure) defined as C(st).

Placements. Many structures have similar arrangements
in the scene. For example, table and chair, dresser and
ottoman, sofa and coffee table can be placed in a similar
way. For a given set of objects we define set of possi-
ble placements P to place these objects in the scene. Ob-
jects in the placements are defined by their top left coor-
dinate of the bounding box and orientation. These place-
ments are extracted from acceptable scene examples. Ob-
jects are placed in the scene according to one of the place-
ments which makes generated scenes more realistic.

3.3. Basic Network and State Representation

Reinforcement learning (RL) learns how to control an
agent in an environment, to maximize cumulative reward.
Given an observation ot at time t, the agent performs an ac-
tion at according to its policy π and receives a reward rt for
the current action. The policy is a mapping between state st,
the environment’s current condition to the action. The en-
vironment can be described as a Markov Decision Process,
i.e., the current state of the environment fully characterizes
the process. The total reward from time step t is defined as

Rt =

∞∑
i=0

γirt+i(si, ai) ,

γ ∈ (0, 1] in this regard is a discount factor which indicates
how important are the future rewards at the current point.

Policy based methods are based on adjusting policy in
order to maximize the expected reward. We use PPO [31]
with actor-critic network with shared parameters between
the policy π(at|st; θ) and value function V (st; θv). The
policy is updated with clipped policy gradient objective

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
,

where Ât advantage function estimator and rt(θ) =
(π(at|st; θ))/(π(at|st; θold)) probability ratio. The final
objective term includes value updates and entropy bonus to
encourage exploration [31]

Lt(θ) = Êt

[
LCLIP
t (θ)− c1L

V F
t (θ) + c2S[π(at|st; θ)](st)

]
.

The value function (LV F
t (θ)) is updated with squared-error

loss between the value function output and the total reward
from time step t.

State consists of: 2D representation of the scene which
includes scene boundary and objects; object existence per
category indicates whether the scene has at least one object
from this category, takes value from {0, 1}; object avail-
ability per category which is equal to 1 if number of objects
is less than maximal allowed 0 otherwise; scene condition;
step indicator.

3.4. Action Space Separation

One main concern which needs to be taken into account
when using RL is dealing with a large action space. For
the scene synthesis problems action space A formed from
the Cartesian product of two sets O and P , A = O × P =
{(o, p)|o ∈ O and p ∈ P}. Where O denotes the set of
all objects and P denotes the set of all positions to place
these objects in the scene. As a result of this, action space
could grow rapidly even for a smaller number of objects
and positions. Thus creating problems for RL algorithms
to learn efficient policies. In our approach we limit action
space with objects only, A = O. The positions for placing
these objects are determined by a greedy algorithm, based
on the current state and the object being added to the scene.
More concretely, pi = argmaxj∈P r(s, a, j), pi - position
for the current object, r(s, a, j) - reward function.

3.5. Reward Designing

At each step the scene generated with our algorithm is
checked with respect to the following conditions: success-
ful scene conditions (CheckSuccessfulCondition()),
failure conditions (CheckFailureCondition()), con-
straints on the number of objects of the same type
(CheckObjectCountCondition()). Each episode ends
with a successful or failed scene generation. If after some
steps the generated scene has met the failure condition, then
the corresponding reward is −1. In contrast, once all of the
predefined design objectives are obtained, which means a
successful scene generated, then we assign the maximum
reward. For both of these cases the scene generation ends
and it will start again from the beginning. Otherwise, the
reward is calculated depending on the type of design objec-
tives which are achieved taking the last action.

In each step, only one type of object tp ∈ O chosen by
the RL algorithm can be placed within the scene. The ob-
jects which were already placed in the scene can be formally
written as a union of substructures located in the different
positions of this scene. A substructure is a part of some
structure st ∈ S . We first find the maximum complexity
of substructures existing in the scene (Search()), which
the current object can be grouped with, while not violat-
ing hard constraints. If there are more than one substruc-
tures with maximum complexity, then the choice is arbitrar-
ily done between them. Then the current object is grouped
with this substructure. The resulting substructure is part of
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some structure st
′ ∈ S . The reward for the placing of this

object depends on the complexity of the substructure we
can get from this placement. The higher the resulting com-
plexity, the higher is the reward. This encourages the RL
algorithm to find optimal policies to get a higher cumula-
tive reward. From the other side, we use only l different
positive rewards not depending on the type of the struc-
ture, one for each complexity: r1 ≤ r2 ≤ · · · ≤ rl, which
serves to increase the variety of generated scenes. Where,
l = max

st ∈ S
C(st) is maximum complexity among all struc-

tures. Constraints on the number of elements of the same
type are applied by assigning negative rewards. Success-
ful and failed generation conditions depend on the problem
domain. All the rewards in our method are taken from the
[−1, 1] interval. The generation process is summarized in
Algorithm 1. PlaceObject() function in this scope uses
one of the placement functions depending on the state, cur-
rent object and complexity.

Predefined design objectives. Structures in the scenes ex-
hibit different relationships between objects. As we quan-
tify these relationships with numbers (rewards), we can
numerically assess the current condition of the generated
scene. In this paper, the sum of all rewards taken so far∑t

i=1 ri represents the current condition of the scene. From
positive examples we can get minimal value Rm for a scene
to be considered successfully generated. Also, we can en-
force other requirements along with minimal value, depend-
ing on the problem. These conditions follow form prede-
fined design objectives.

Algorithm 1 Reward Assigment
Input: current state, current action, reward vector

sorted in descending order
Output: reward for current action

1: procedure AssignReward(state, action, r[ ])
2: if CheckFailureCondition(state) then
3: return −1
4: if CheckObjectCountCondition(state) then
5: return −0.1
6: l← length(r)
7: for i← 1 to l do
8: c← l − i+ 1 ▷ Complexity
9: s← Search(state, action, c)

10: if s.not empty() then
11: p← random(1, length(s))
12: PlaceObject(state, action, p)
13: if CheckSuccessfulCondition(state)

then
14: return 1 + r[i]
15: else
16: return r[i]

17: return −0.1

3.6. Network Training

The main objective of our method is to generate a wide
variety of scenes which satisfy hard constraints and at the
same time have predefined properties. In each step we add
an object to the scene, until we found that the final condition
is reached, successful or failed scene generated. We denote
this process as an episode, and the scene as an environment.

Action sampling. The objective in standard RL is to max-
imize E[Rt] expected cumulative reward. In our setting
we additionally would like to increase variety of generated
scenes.
We normalize π(ai|s; θ) policy output (unnormalized) for a
scene s, using the softmax function with temperature τ :

P τ (ai|s; θ) =
eπ(ai|s;θ)/τ∑N
z=1 e

π(az|s;θ)/τ
.

Here, P τ (ai|s; θ) specifies the probability of taking action
ai given state s. In order to balance between exploration
and exploitation, τ is steadily decreased from 1 completely
randomly to 0 greedy action sampling. And then we keep
greedy action sampling until convergence during the train-
ing process.

During the inference time we sample actions with some
τ value. As τ close to 1 the results show more variety but the
percent of scenes which have predefined properties will be
small. Conversely, for the values of τ close to 0 the results
have less variety and predefined properties achieved in more
scenes. We use Jensen-Shannon divergence to quantify sim-
ilarity between resulting distribution and uniform distribu-
tion. Uniform distribution is chosen as a perfect case for
variety, the more the resulting distribution is close to the
uniform distribution the more the results show diversity. In
this paper we choose τ from the following condition:

τoptimal = argmax
0<τ≤1

min(V (τ),W (τ)) ,

V (τ) = 1− JSD(P τ ,U) .

Here, V (τ), W (τ) mean variety and percentage of success-
ful scenes for fixed value of τ respectively. JSD(P τ ,U) is
Jensen-Shannon divergence between resulting distribution
and uniform distribution (the base 2 logarithm is used when
calculating JSD, 0 ≤ JSD(P τ ,U) ≤ 1). Actions can be
sampled by uniform distribution for several starting steps in
the episode when it does not affect the accuracy.

We use the PPO algorithm for several purposes: this al-
gorithm uses both policy and value based updates, and it has
been shown that this method is much faster than other re-
inforcement learning implementations like A2C [26], A2C
with trust region [39] and TRPO [30]. We also imple-
mented our method with A3C [26]. In both cases the agent
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Figure 1. Network architecture for our RLSS method. State in-
cludes top-down representation of the indoor scene, per category
object existence and availability in the scene, scene condition and
step indicator.

learned efficient policies, but PPO required much less itera-
tions than A3C to converge.

4. Experiments and Results
In order to evaluate our RLSS method, we address two

problems: indoor planning as well as the generation of An-
gry Birds game levels. The initial setting is the same for all
cases considered except for the number of operations.

4.1. Implementation Details

Framework. We implement our method within the
ChainerRL framework [8]. In order to use it, the problem
we would like to solve must be formulated as an environ-
ment. We create our own environment within the Open AI
Gym [3] framework and add required functionalities to it.

Network architecture and data representation. The net-
work architecture we use is illustrated in Fig. 1. MLP refers
to fully connected layers, Conv specifies convolutional lay-
ers. Three convolutional layers are used for pre-processed
input image and a fully connected layer for each of other
two inputs, all of the layers are followed by ReLU nonlin-
earity [2]. Then three outputs are concatenated to one fea-
ture vector. This is then continued by MLPs into two final
outputs one for each of V (st; θv) value and π(st; θ) pol-
icy. Each MLP consisted of two fully connected layers, first
of which is followed by ReLU. The representation of the
scene is consists of only the last frame. As a pre-processing,
at first, we convert the scene to heightmaps [38, 7], a top-
down depth rendered view of the scene, then downsize the
image to 128 × 128 size. Object existence and availability
are vectors consisting of {0, 1} per object category, scene
condition is normalized dividing by Rm and is also repre-
sented as a vector. These three are concatenated and fed to
MLP. Step indicator is represented as a one-hot encoding.

Parameters. We use a discount factor of γ = 0.99, the
agents update of the network parameters after every 2048
actions, minibatch size is equal to 64 and number of epochs
is equal to 10. As for the optimization, we use Adam opti-
mizer [18] with a learning rate lr = 3 · 10−4. In order to
stabilize the learning process we use a reward scaling with

a factor of rs = 10−2. In our experiments, the value loss
coefficient is set to c1 = 1 and the entropy regularization
weight is equal to c2 = 0.01.

Training. We have used non-parallel implementation
with only a single actor-learner. The neural network train-
ing took around 13 hours for 4 million steps. In the last
million steps we applied only greedy action sampling.

4.2. Indoor Planning

In this problem, different room models are given, i.e. the
geometry of the room including walls, doors, floors, and
ceilings. Three different types of rooms are considered: liv-
ing rooms, bedrooms, and offices. Our task is to propose a
generative method for placing objects, i.e. furniture, within
the room.

Our approach is to group objects based on their func-
tionalities, and place the current object to one of its appro-
priate group by analyzing existing not completed groups in
the room. This helps us to generate rooms which are more
similar to human planned ones. For example, some groups
we use for synthesizing bedrooms are: (1) bed, nightstand,
floor lamp, and ottoman; (2) desk and chair; (3) dressing
table and ottoman. In order to find groups of objects that
appear together in the room, we use human planned room
models. We also analyze the arrangements, how the group
objects come together with usual placing relative to a room
architecture and instantiate objects according to this. Our
representation to train the network combines a top-down
view of the generated scene including positions of the door
and the windows.

We consider several hard constraints for this problem.
First, two different objects should not share a common area
(collision avoidance). Next, it should be possible for a hu-
man to move in the room conveniently. Finally, no object
should block another object in the room, i.e. all objects
should be accessible for a human. We assign rewards for
each complexity of structures and an additional reward for
some important objects for this type of the room, e.g., plac-
ing a bed in the bedroom. The additional reward is assigned
only once when the important object(s) is first time placed
in the room during the current episode.

Comparison. To compare our work with the state-of-
the-art, we consider recent convolutional neural network
based approaches [38, 24, 37, 29] and an optimization based
method [40]. We compare these methods on 60 randomly
taken generated examples for each type of the room (bed-
rooms, living rooms, and offices) using several constraints
including object-with-object and object-with-room bound-
ary collisions, object accessibility and door blocking prob-
lems; see Table. 1. Our method handles these constraints
much more accurately compared to other methods. How-
ever, given the wide variety and complexity of the room
boundaries, our method also allows for a small percentage
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of constraint violations, especially with object accessibil-
ity related problems. For a fair comparison we applied our
structure based rules on [40] and implemented their code as
it was not available. It should be noted that [40] rearranges
the selected set of objects in the room, which severely lim-
its the variety. We also consider another baseline to eval-
uate the importance of learning. We apply Greedy Search
to place objects in the scene with our rule based Assign-
Reward() function with and without rewards. In the first
case objects are sampled uniformly, in the second case ob-
jects are sampled by rewards which are calculated for each
object. Results show Table. 2, that our RLSS outperforms
the baseline method by large margins. Scene complexity in
this table specifies the maximal complexity of the structures
present in the scene averaged over tests. In general, non-
learning based baselines generate scenes for smaller rooms,
but failed for large rooms, also reward calculation for each
object results to an increase in synthesis time.

We find that handling different room boundaries is one
of the fundamental limitations in indoor planning. Methods
based on generating scenes for the rectangular room bound-
aries [24, 17, 28] or for rooms which should be encircled
with walls [37] might work well for special case but might
not generalize well for other cases. Moreover, using the
same rendering for the synthesized results is important to
compare results fairly. For these purposes, we compare our
method with [29]. Visual comparison of the synthesized
scenes with two different methods can be found in Fig. 3.

To evaluate the diversity of the generated scenes we con-
sider graph kernels [6]. Fig. 2 shows similar scenes to the
given example scene amongst 1000 generated scenes, for
each type of the room. Scene similarity in this example is
evaluated based on proximity and common function of ob-
jects (relationship) in the scene. Numerical assessment of
the diversity of generated scenes based on Kullback Leibler
(KL) divergence of object category distribution and uniform
distribution is given in the Table 1.

Moreover, we evaluated the performance of our RLSS
method and related work as illustrated in Table 1. As il-
lustrated there, our RLSS method is very competitive when
with respect to its performance. Also, our approach is not
data-driven, it does not require training data and is capable
of handling different room boundaries.

4.3. Level Generation

As an additional benchmark from another context, we
apply our RLSS method in order to generate levels for the
physics-based game Angry Birds aiming for a wide variety
of stable game levels. Blocks used in the game might dif-
fer by their size, shape, and material. Some blocks can be
placed in the game environment in a horizontal as well as
in a vertical position. All blocks can be classified as regular
and irregular blocks. We build stable structures from regu-

(a) Bedrooms

(b) Living rooms

(c) Offices
Figure 2. Illustration of the diversity of scenes generated with our
RLSS method. The leftmost image in each column represents an
example image, other images are the nearest neighbors amongst
1000 generated scenes. Scene similarity is measured using graph
kernels [6].

lar blocks and add irregular blocks into these. All regular
blocks have a box shape.

The game area where we build stable blocks comprises a
800× 800 pixel rectangle. Possible actions in this problem
are to place a certain block in the scene. The last block is
placed onto the top of the highest block in the given posi-
tion. As a hard constraint we take stability.

Comparison. During testing, we maintain stable struc-
tures in the memory and build levels out of these. We com-
pare our method with the MSG v2.0 winning generator for
the 2017 and 2018 Angry Birds AI (level generation) com-
petition [34]. MSG v2.0 is based on generating the game
content procedurally. This generator also generates levels
from stable structures [33]. We find that MSG v2.0 takes on
average about 22 seconds to generate a single level, while
our method performs this task in only about 0.5 seconds.
A visual comparison of the generated levels is given in the
Fig. 4. Levels rendered with Science Birds [5], an open-
source, Unity-based clone of the Angry Birds game. KL
divergence of object category distribution and uniform dis-
tribution for MSG v2.0 and our method is approximately
equal to 0.23 and 0.21, respectively. The comparison re-
sults with the non-learning baselines introduced above are
presented in the Table. 2.

4.4. Quantitative Evaluations

To quantitatively evaluate results generated by our
method we conducted a 2 alternative forced choice com-
parison on Amazon Mechanical Turk. Participants were
asked to choose the most plausible scene out of two syn-
thesized scenes placed side-by-side, one generated with our
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Method Generation Time Room Boundary Acceptable scenes (by hard constraints) KL divergenceBedroom Living Office

Deep Priors [38] ∼ 240 sec. any 60 % 83.3 % 61 % 0.89
GRAINS [24] 0.1027 sec. rectangular only 64 % 80 % 52 % 0.83
Fast&Flexible [29] 1.858 sec. any 88.3 % 86.7 % 83.3 % 0.91
PlanIT [37] ∼ 72 sec. closed room boundaries 80 % 83.3 % 80 % 0.72
Make it Home [40] ∼ 22 sec. — 81 % 81 % — —
Ours ∼ 1 sec. any 97.5 % 98 % 96 % 0.81

Table 1. Classification and performance comparison of different indoor scene generation methods. Better results or options are indicated
with bold text in each column. — means no available results.

(a) Different bedroom scenes generated with Fast & Flexible (left) and our RLSS method (right).

(b) Different living room scenes generated with Fast & Flexible (left) and our RLSS method (right).

(c) Different office scenes generated with Fast & Flexible(left) and our RLSS method (right).
Figure 3. Qualitative comparison of scenes generated with Fast & Flexible [29] and our method.

RLSS method and another one with other method. For in-
door planning problem each participant performed overall
63 comparison task for each method, 20 for each room type
and 1 for vigilance test. Images in these comparisons repre-
sent top-down view of a scene, rendered such that all objects

are visible and colored with solid colors to help participants
to choose scenes by the object arrangements not by colors
or other not important factors. For each task we considered
answers from 10 participants, who passed all the vigilance
tests. The results of this perceptual study is summarized in
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Method Accuracy
Structure
complexity Synthesis time

IP AB IP AB IP AB
GSearch w/o r 10 % 4 % 1.5 2.7 8 sec. 5 sec.
GSearch w r 25 % 19 % 2.3 2.8 67 sec. 37 sec.
RLSS 62 % 58 % 3.4 3.0 1 sec 0.5 sec.

Table 2. Comparison with Greedy Search with and without re-
wards. IP refers to Indoor Planning, AB specifies Angry Birds
levels. Better results are indicated with bold.

Method Bedroom Living Office
Deep Priors [38] 76.2 ± 6.0 68.1 ± 10.0 81.4 ± 5.6
GRAINS [24] 72.3 ± 8.5 78.6 ± 9.1 80.1 ± 5.2
Fast & Flexible [29] 59.5 ± 10.8 67.6 ± 8.7 73.8 ± 8.5
PlanIT [37] 69.0 ± 9.5 68.1 ± 11.1 70.0 ± 7.5
Make it Home [40] 64.8 ± 9.4 61.4 ± 8.4 —

Table 3. Forced choice perceptual study results. Bold means our
scenes are preferred with 95% confidence (± standard error), reg-
ular text means no preference. — means no available results.
Higher is better.

Method Accuracy KL divergence
Naive PPO 0 % 1.5634
PPO+ASE+RD 28 % 0.6377
RLSS 58 % 0.2144

Table 4. Ablation study results: Accuracy and diversity of gen-
erated scenes, for our method and its variations. For the accu-
racy column, higher is better, while for the KL divergence column,
lower is better.

the Table 3. As it can be seen from the data, that our method
shows the best results for almost all comparisons.

We conducted similar perceptual study to compare gen-
erated Angry Birds levels, with 30 images and 15 partici-
pants. The result of this comparison show that our levels
were preferred with 62.2 ± 6.9 (mean ± standard error)
margins with 95% confidence.

Ablation. We train the neural network without Action
Separation (ASE) & Reward Designing (ASE+RD) and also
without our Action Sampling (ASA) for Angry Birds level
generation problem. The experiments show that Naive PPO
does not learn to achieve the predefined design objectives,
instead it learns to pile up box objects to maximize reward.
PPO with ASE+RD and sampling the next action from the
top 3 with ϵ exploration at the beginning (ϵ = 0.6) does not
demonstrate enough variety and accuracy Table 4.

5. Conclusion
In this paper, we proposed a reinforcement learning al-

gorithm for scene generation called RLSS. To the best of
our knowledge, we are the first to propose such an algo-
rithm that can produce a wide variety of scenes. To this end,
we modify the state-of-the-art PPO reinforcement learning

(a) MSG v2.0

(b) RLSS
Figure 4. Illustration of several Angry Birds game levels generated
with MSG v2.0 (top) and our RLSS method (bottom).

algorithm to sample from a large set of possible scenes.
We also propose a suitable solution for reward function de-
sign, which includes two components. Hard constraints de-
scribe scene attributes that have to be fulfilled and that are
strictly enforced. Predefined design objectives describe de-
sign goals or scene configurations that make a scene more
desirable. Our results show that RLSS can produce a large
variety of scenes with significantly higher quality than the
current state of the art.

5.1. Limitations and Future Work

A limitation of our method is that it currently does not
have a mechanism to combine learning from reward func-
tions and scene examples at the same time. In our future
work, if high quality scene data bases become available,
we would like to investigate combinations of generative ad-
versarial networks and reinforcement learning to tackle this
challenging research problem. Also, extracting structures
and implementing placement functions take additional time.

In addition, we believe that a great research direction is
to extend reinforcement learning to learn scene generation
from given input images. One possible approach is to de-
sign reward functions that include an estimation of the sim-
ilarity of generated scenes and images. While this approach
is even more difficult than learning from scene examples, it
has the advantage that image data sets are much easier to
come by than scene data sets.
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