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Abstract

Multivariate Time Series (MTS) classification is impor-
tant in various applications such as signature verification,
person identification, and motion recognition. In deep
learning these classification tasks are usually learned using
the cross-entropy loss. A related yet different task is predict-
ing trajectories observed as MTS. Important use cases in-
clude handwriting reconstruction, shape analysis, and hu-
man pose estimation. The goal is to align an arbitrary di-
mensional time series with its ground truth as accurately
as possible while reducing the error in the prediction with
a distance loss and the variance with a similarity loss.
Although learning both losses with Multi-Task Learning
(MTL) helps to improve trajectory alignment, learning often
remains difficult as both tasks are contradictory. We pro-
pose a novel neural network architecture for MTL that no-
tably improves the MTS classification and trajectory regres-
sion performance in online handwriting (OnHW) recogni-
tion. We achieve this by jointly learning the cross-entropy
loss in combination with distance and similarity losses. On
an OnHW task of handwritten characters with multivariate
inertial and visual data inputs we are able to achieve cru-
cial improvements (lower error with less variance) of tra-
jectory prediction while still improving the character clas-
sification accuracy in comparison to models trained on the
individual tasks.

1. Introduction
MTS Classification (MTSC) identifies labels based on

MTS as a set of real-valued, sequentially ordered observa-
tions. MTSC appears across many domains, e.g., human ac-
tivity recognition (HAR), handwriting reconstruction, and
medical data analysis. [31, 46, 60, 62] A related yet differ-
ent task is trajectory reconstruction and function alignment.

This is important to applications that involve the modeling
of mathematical functions or for shape analysis, e.g., to op-
timally transform a shape into another shape [19, 53].

An application where both tasks must be solved simul-
taneously is HAR [1, 4]. For example, the control of smart
devices through hand-movement patterns or sport applica-
tions [35] requires a joint learning of the pattern classifi-
cation and the hand trajectory. The data are recorded us-
ing a handheld device with inertial sensors or by outside-in
cameras, e.g., a Kinect system. For our handwriting recog-
nition application, common techniques require to write on
a device where the writing style is influenced, to take im-
ages of the handwritten text, or to use a stylus pen, a touch
pen with a sensible magnetic mesh tip together with a touch
screen surface [2]. Systems for writing on paper are only
prototypical, such as the ones used in [12, 50, 58], or are
smartphones that provide a pen-like interaction from stan-
dard built-in sensors [17]. For our OnHW application, we
used a novel sensor-enhanced pen [33, 46] and recorded the
pen movement with outside-in cameras.

(a) Distance
loss.

(b) Similar-
ity loss.

Figure 1: Ground truth
(red) and reconstructed
(blue) trajectories.

Combined metrics. In com-
puter vision tasks such as land-
mark localization [9] and human
pose estimation [41], DL has
successfully contributed to se-
quence to sequence regression-
based methods [15]. However,
in trajectory prediction we do
not only want to align recon-
structed trajectories with their
ground truth, but also require
them to be smooth over time [59]. A combination of
distance metrics with geometric shape-based and spatio-
temporal metrics achieves such a smoothness [34]. How-
ever, both metrics contradict each other which makes them
difficult to be used together for training (cf. the blue trajec-
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Input Task Loss Output
Inertial Classification Cross-entropy Character class

or Distance or/and
visual Regression Spatio-temporal trajectory (MTS)
MTS Distribution

Table 1: Summary of the challenge addressed in this paper.

tory of the handwriting reconstruction task in Fig. 1. Opti-
mizing a distance loss (here: Euclidean, Fig. 1a) introduces
a relative error and dilatation while a spatio-temporal loss
(here: Pearson Correlation, Fig. 1b) provides a smooth and
similarly shaped trajectory, but with (large) scaling error.

We address the problem of learning both metrics simulta-
neously by MTL. MTL exploits differences and commonal-
ities across two or more single learning tasks to solve them
jointly with possibly improved performance in each single
task. As the usefulness of different tasks is not known a pri-
ori, combining loss functions is one of the main challenges.
The goal in MTL is to find appropriate weighting strategies
such that the total loss is minimized optimally [13, 20, 40].
MTL research made significant progress over the last years
regarding training techniques [44, 61], but is still challeng-
ing to apply for such contradictory tasks.

In this paper we propose different MTL architectures
that combine two heterogeneous but subtly correlated tasks:
MTSC and trajectory regression on two different datasets
from an OnHW recognition application [46]. Table 1 sum-
marizes the challenge we address. We use MTL [40] and
show that the order of weight increase is crucial for smooth
trajectory regression. Our results show an improved charac-
ter classification and optimal trajectory regression by com-
bining the cross-entropy loss with distance and similarity
losses, i.e., spatio-temporal metrics.

The paper is organized as follows. We discuss related
work in Sec. 2. Sec. 3 explains how we combine classifica-
tion and regression loss functions in an MTL setup. Sec. 4
presents our novel OnHW datasets and CNN architectures
before Sec. 5 shows experimental results. Sec. 6 concludes.

2. Related Work
We discuss related work on MTSC (Sec. 2.1), loss functions
for trajectory regression (Sec. 2.2), and MTL (Sec. 2.3).

2.1. Deep Learning based Multivariate Time Series
Classification (MTSC)

MTSC is used in different fields to estimate class labels
based on several (in-)dependent time series. While there
are many shapelet- and Fourier-based methods, we focus on
DL methods as they are most similar to our approach. DL-
based methods often exploit LSTM and CNN layers to ex-
tract features. Examples include the multi-channel CNN for
univariate processing by [62] and the attention-based LSTM
by [29]. [31] introduced a squeeze-and-excitation block to

generate latent features for classification (MLSTM-FCN).
[60] proposed the attentional prototype TapNet that handles
the issue of limited training labels combined with a random
group permutation method. An overview of MTSC meth-
ods can be found in [22]. However, as such approaches fo-
cus on classification only they perform poorly on (smooth)
trajectory regression.

2.2. Trajectory Regression

For the reconstruction of time series we need a metric to
measure the similarity between a predicted time series and
its ground truth. We here briefly review known metrics and
discuss them in the context of reconstructing trajectories.

Commonly used distance-based metrics are the Mean
Squared Error (MSE), the Mean Absolute Error (MAE) (be-
ing more robust to outliers but with potentially large gradi-
ents near the optimum), the Huber loss [30], Andrew’s Sine,
and Tuckey’s Biweight [7], each handling “outliers” differ-
ently [8]. Although practically relevant, these methods do
not consider temporal dimensions or guarantee smoothness.

Geometric shape-based similarity measures are the
Fréchet distance [10], preserving the time series order of
sequence data along curves, the Hausdorff distance [55], a
measure for dissimilarity for comparing point sets, and the
Procrustes analysis [51]. [59] proposed a trajectory sim-
plification by using sub-trajectory similarity information by
the Fréchet and Hausdorff distances. However, optimizing
such metrics is often difficult as they are not differentiable.

Spatio-temporal distance metrics take into account both
the spatial and the temporal dimensions of movement data,
such as time-dependent trajectories. Examples include the
Cosine Similarity and Pearson Correlation [47]. However,
these metrics are inappropriate for shape reconstruction be-
ing invariant to scaling and translation.

Time Warping approaches such as Dynamic Time Warp-
ing (DTW) [11, 14] can compare time series of variable
size and are robust to shifts or dilatation across time. Ap-
proaches typically solve a minimal-cost alignment problem
solved with dynamic programming [15] using the MSE or
the Mahalanobis distance [24]. For audio-to-audio align-
ment [24] proposed to learn Hamming and Mahalanobis
metrics. [17] used dynamic programming to compare
reconstructed trajectories, but only for result evaluation.
However, such methods may lead to pathological results as
warping the x-axis can produce unintuitive alignments.

Distribution-based methods exploit the distributional
discrepancy of samples. One important example is the
Kullback-Leibler (KL) divergence [3]. Optimal Transport
compares probability distributions in a geometrically faith-
ful way, but is limited because of its computational bur-
den (e.g., the Wasserstein distance [23]). [28] reconstructed
sketches using RNNs that are, however, represented as time-
independent vector images and not trajectories. As the KL
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Figure 2: Method overview: MTS input, exemplary CNN trunk and heads, and class and trajectory prediction. The top
row shows the architecture for the IMU (inertial measurement unit) dataset, the bottom row shows the architecture for the
visual dataset. Classification (cross-entropy) and regression (distance, spatio-temporal and distribution-based) loss functions
are combined with different MTL weighting strategies. ++: concatenation. The right part of the pipeline is equal for both
datasets and CNNs, but the input is separate (inertial features or visual features). Different types of data are not combined.

divergence is asymmetric and does not satisfy the triangle
equality, we will focus on the Wasserstein metric.

Various approaches for handwriting regression have
been proposed, such as the application of adversarial do-
main adaptation for training generative RNNs on handwrit-
ing generation with MNIST [26], or sequence order infer-
ence by combining the L2 norm and the Pearson Correlation
[34]. However, they are training on relative distance pairs.

2.3. Multi-Task Learning (MTL)

MTL achieves a provable information gain over single
task learning if the jointly learned tasks are somehow re-
lated [16]. A naive approach combines multiple losses us-
ing a weighted sum of losses of the single tasks. However,
the model performance is very sensitive to the actual weight
selection. Hence, [32] considered the homoscedastic uncer-
tainty of each task to weight multiple tasks differently. [61]
addressed the problem of learning heterogeneous but sub-
tly correlated tasks (that have different convergence rates
and learning difficulties) with task-wise early stopping and
task-constrained models. Further different weighting strate-
gies of the combination of single tasks exist, i.e., Dynamic
Weight Average (DWA) [40] and Dynamic Task Prioritiza-
tion [27], that dynamically prioritize difficult tasks during
training. The methods by [13] (GradNorm) and [20] (GCS)
are based on gradients for loss scaling, while [21] adds con-
nections between layers, and hence, these methods depend
on the network architecture. [44] addresses the challenge
of combining auxiliary tasks into a single coherent loss by
learning (non-)linear interactions between auxiliary tasks.

3. Methodology
We now present the problem formulation and method-

ological foundation of our approach. Fig. 2 gives an
overview of our method for both the inertial and visual
datasets. We encode the input data sources with a CNN
trunk and process the features for each individual task with

separated heads. We will first describe details for the MTSC
task (i.e., following the classification head) in Sec. 3.1.
For the trajectory prediction task (i.e., along the regression
head) we make use of distance, spatio-temporal and distri-
bution-based loss functions introduced in Sec. 3.2. We then
present different MTL strategies for the combination of loss
functions in Sec. 3.3, and propose suitable MTL architec-
tures in Sec. 3.4 that allow to predict the class labels and
MTS trajectories. Details are given in the Appendix A.1.

3.1. Multivariate Time Series (MTS) Classification

An MTS U = {u1, . . . ,um} ∈ Rm×l is an ordered se-
quence of m ∈ N streams with ui = (ui,1, . . . , ui,l), i ∈
{1, . . . ,m}, where m is the length of the time series and l
is the number of dimensions. For example in pose track-
ing, we might have several streams induced by sensors at-
tached to the body plus (features extracted from) a video
stream. Each MTS is associated with a class label v ∈ Ω
from a pre-defined label set Ω. The training set is a sub-
set of the array U = {U1, . . . ,Un} ∈ Rn×m×l, where
n is the number of time series, and the corresponding la-
bels V = {v1, . . . , vn} ∈ Ωn [60]. The MTSC task is
to predict an unknown class label V̂ for a given MTS. We
learn the classification model using the cross-entropy loss
LCE(U ,V) [25]. For details, see Appendix A.1.

3.2. Trajectory Regression Metrics

When reconstructing or regressing trajectories, such as
handwritten characters, we have to consider another multi-
dimensional (discrete) time series of varying length. The
MTS can take values in Ψ ⊂ R and is represented by a
matrix of size n × d (n: number of timesteps, d: dimen-
sions of the time series). Given a ground truth time series
Y = {y1, . . . ,ym} ∈ Rm×d, the goal is to predict a time
series X = {x1, . . . ,xn} ∈ Rn×d, such that X is closely
aligned to Y [34]. For our OnHW recognition task, the
prediction is of size (100, 2), but can be chosen arbitrar-
ily for different applications. In the following, we consider
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Figure 3: Overview of inertial-based architectures. STL: (A0) and (A1). MTL (A2) to (A8).
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Figure 4: Overview of visual-based architectures. STL: (A0) and (A1). MTL (A2) to (A8).

X and Y to be of same length n, and ri = yi − xi be
the residual between Xi and Yi. We consider a (differen-
tiable) substitution-cost function L : Rd × Rd → R+ to
learn the trajectory regression task. Different loss functions
have different challanges and advantages. We make use of
distance-based, spatio-temporal and distribution-based loss
functions. For more details, see Appendix A.1.

As our distance-based loss function we consider the
mean squared error LMSE(X ,Y) = 1

n∥X − Y∥22 =
1
n

∑n
i=i r

2
i with L2-norm || · ||2, the Huber loss

LH(X ,Y, δH) [30], which is less sensitive to outliers but
depends on a hyperparameter δH , and the Andrew’s Sine
loss LAS(X ,Y, δAS) [8] with hyperparameter δAS . Dis-
tance-based loss functions, however, do not consider rela-
tive differences in input pairs.

The following spatio-temporal loss functions take into
account the temporal dimensions of the data and maximize
the shape similarity between ground truth and predicted tra-
jectory. The Cosine Similarity is a measure of similarity be-
tween two non-zero vectors of an inner product space. The
loss is defined by LCS(X ,Y) = 1 − (x · y)/(∥x∥2∥y∥2).
Cosine Similarity is not invariant to shifts that is required
for our application. The Pearson Correlation [47], in con-
trast, is invariant to shifts as it measures the linear relation-
ship between two distributions in [−1, 1], with 1 being a
perfect alignment. Instead of the symmetric distance pre-
diction [34], we train our model based on the Pearson Cor-
relation loss LPC(X ,Y) = LCS(X − X ,Y − Y) with X
and Y the mean of X and Y , respectively.

Finally, we also consider distribution-based loss func-

tions. Specifically, we use the Wasserstein distance [23] that
defines a distance between two probability distributions on
a given metric space M and that represents the cost δ of an
optimal mass transportation problem. To solve the learn-
ing problem, we need to minimize the loss LWASp

(X ,Y),
but calculating the gradient is computationally expensive.
Hence, we optimize a smoothened Wasserstein loss func-
tion that is strictly convex [18].

3.3. Multi-Task Learning (MTL)

Our goal is to jointly classify an MTS using the cross-
entropy loss and regress the corresponding trajectory, see
the right part in Fig. 2. For each task, we have separate
architecture heads. We show that both tasks are related,
and hence, the MTL approach takes advantage of the in-
formation gain over single task approaches. The training
of different tasks is non-trivial (see, [38, 39, 42, 61]). We
have a set of tasks K = {T1, ..., T|K|} with |K| tasks.
The naive approach is to combine losses by a weighted
sum Ltotal =

∑|K|
i=1 ωiLi, with pre-specified, constant

weights ωi. We use this technique as a baseline, and choose
ωi = 1,∀i ∈ {1, . . . , |K|} as default value, i.e., we weight
the regression and classification losses equally. For trajec-
tory regression we additionally combine two losses, namely
distance-based metrics such as the MSE LMSE , Andrew’s
Sine LAS or Huber LH loss, with spatio-temporal distances
such as the Cosine Similarity LCS or the Pearson Corre-
lation LPC , or distribution-based loss functions, i.e., the
Wasserstein metric LWASp

. We perform different weight-
ing strategies for these losses. First, we apply the naive
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approach. Our second approach is to perform an epoch-
dependent weighting where the weighting of the second
task is dependent on the training process, i.e., the epoch
number. We apply linear weight increase, squared weight
increase, and squared weight decrease with respect to the
weight of the second regression loss (see the blue, green
and red lines in Fig. 2). As a third option, we apply DWA
[40] by averaging task weighting over time. In detail, we
define the weights for the current epoch e as

ωi(e) =
eλi(e−1)/P∑
k e

λk(e−1)/P
; λi(e− 1) =

Li(e− 1)

Li(e− 2)
, (1)

where P is a pre-specified softness of task weighting. For
large P, λi ≈ 1, and tasks are weighted equally. We set
P = 1. λi is the relative descending rate between previous
epochs e− 1 and e− 2 and is in the range (0,+∞).

3.4. MTL-specific Architectures

We consider different architectures to jointly learn the
two tasks. For the MTL approach, lower representation
layers (trunk) have to be shared between different tasks by
forking into task-specific separate layers (heads). The ratio
between trunk and heads is particularly important for our
application. We train the following nine architectures: only
regression (A0), only classification (A1), and MTL-based
architectures (A2 toA8) with different split points (fromA2

being the latest split to A8 being the earliest split). For our
experiments we implement two different feature encoders:
(1) a CNN that extracts features from the channels of the
IMU (see Fig. 3), and (2) a CNN that extracts features from
the visual dataset (see Fig. 4). The output of the CNNs are
either the class for the MTSC task, the trajectory for the re-
gression task, or both for the MTL approach. For details,
see Appendix, Sec. A.2.

4. Joint Classification and Trajectory Regres-
sion of Online Handwriting (OnHW)

There exists no state-of-the-art dataset that contains ground
truth trajectories and classification labels. We recorded two
novel datasets for OnHW recognition of characters with a
sensor-enhanced pen written on a tablet for ground truth and
three outside-in cameras for pen tip reconstruction.

Figure 5: Pen with an integrated gyroscope, magnetometer,
front and rear accelerometers, and a force sensor.

(a) Recording setup
of three cameras, a
sensor-enhanced pen,
and a tablet.
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(d) Visual data
pre-processing.

Figure 6: Data recording of our OnHW dataset.

Recording Setup. Our inertial dataset uses a sensor-
enhanced pen [46] that contains two accelerometers (3 axes
each), one gyroscope (3 axes), one magnetometer (3 axes),
and one force sensor at 100 Hz (Fig. 5). We replace the pen-
cil lead with a Wacom EMR module and record ground truth
trajectories at 30 Hz on a Samsung Galaxy Tab S4 tablet.
Our visual dataset uses three cameras pointing on the pen
(Fig. 6a) to record the movement of the pen tip at 60 Hz.
A right-handed person wrote ≈18×83 characters contain-
ing small (26) and capital (26) letters, numbers (10), and
symbols (21).

Pre-processing and Dataset. Fig. 6b shows an IMU sig-
nal of the letter ’A’ (from the inertial dataset) and Fig. 6c
shows characters ’A’ to ’P’ (from the visual dataset) from
the pre-computed trajectory in camera coordinates (top row)
and the ground truth trajectory produced by the tablet (bot-
tom row). For the camera-based trajectories we segment the
pixels of 100 random images of the dataset in the classes
“pen“ (the purple parts of the pen in Fig. 6d), “pen tip“
(green parts of the pen), and “background“. We train U-Net
[49] to predict the pen tip from all images and choose the
middle 90th percentile of 20 top-left pen tip pixels as the tra-
jectory in camera coordinates (Fig. 6c). We interpolate the
ground truth trajectory to (100,2). A 71/29 train/validation
split results in 822 training and 332 validation characters
for the IMU dataset, and in 2,466 training and 992 valida-
tion characters for the visual dataset. Datasets and source
code publicly available upon publication.1

CNN Architectures. The visual time series input is of
sizem = 40 due to 20 pixels in both camera axes, the length
l is variable and dependent on the length of the character.
For the IMU input the time series is of size m = 13 (for the
two accelerometers, the gyroscope and the magnetometer

1Dataset and source code: https://iis.fraunhofer.de/onhw-dataset/
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Network MSE+CE AS+CE H+CE MSE+PC+CE MSE+CS+CE MSE+WAS+CE PC+CE CS+CE WAS+CE
Traj. Class. Traj. Class. Traj. Class. Traj. Class. Traj. Class. Traj. Class. Class. Class. Class.

Only regression (A0) 0.1705 - 0.1594 - 0.1501 - 0.1723 - 1.0023 - 0.3107 - - - -
Only classification (A1) - 88.11 - - - - - - - - - - - - -

Class. for regr. (A2) 0.1169 86.69 0.1779 9.78 0.1290 62.78 0.1127 86.81 0.3554 86.28 0.1612 7.28 86.73 86.02 12.60
Latest split (A3) 0.1381 86.67 0.1856 49.31 0.1569 66.73 0.1381 85.75 6.1464 87.22 0.3375 20.79 86.22 84.15 25.53

Late split (A4) 0.1372 86.46 0.1421 76.28 0.1581 63.64 0.1357 88.64 1.3928 87.62 0.3262 26.65 86.67 89.51 29.74
Split after LSTM (A5) 0.1370 87.34 0.1629 68.64 0.1458 73.74 0.1386 85.53 1.0578 88.58 0.3284 35.49 86.93 88.03 54.84

Split after 2. Drop. (A6) 0.1623 87.68 0.1464 83.96 0.1580 84.76 0.1647 84.94 1.0053 85.28 0.3208 80.59 83.37 84.49 84.65
Split after 1. Drop. (A7) 0.1866 84.27 0.1676 86.93 0.1546 86.89 0.1638 84.55 1.1388 87.20 0.3071 84.13 83.58 86.34 81.87

Separate heads (A8) 0.1936 86.87 0.1660 86.02 0.1533 88.43 0.1490 87.03 1.0986 85.79 0.3315 82.03 87.15 88.15 82.58

Table 2: Evaluation results for the IMU-based dataset trained with different loss combinations. Trajectory evaluation metric:
root mean squared error (RMSE). Classification accuracy given in %. A0 and A1: single task architectures. A2 to A8:
MTL architectures. Underlined: baselines. Bold: best results. Columns are combinations of different loss functions, e.g.,
MSE+CE is a combination of the LMSE and the LCE losses, etc.

Network MSE+CE AS+CE H+CE MSE+PC+CE MSE+CS+CE MSE+WAS+CE PC+CE CS+CE WAS+CE
Traj. Class. Traj. Class. Traj. Class. Traj. Class. Traj. Class. Traj. Class. Class. Class. Class.

Only regression (A0) 0.1360 - 0.1388 - 0.1271 - 0.1348 - 2.5733 - 0.2302 - - - -
Only classification (A1) - 73.19 - - - - - - - - - - - - -

Class. for regr. (A2) 0.1250 80.15 0.1279 12.47 0.1475 55.81 0.1327 77.27 0.4900 74.33 0.1844 56.44 74.85 73.52 71.10
Latest split (A3) 0.4314 23.21 0.1327 74.3 0.1577 64.15 0.1401 75.54 0.6713 9.32 0.1960 49.22 76.57 10.34 75.08

Late split (A4) 0.1351 78.49 0.1260 78.23 0.1230 79.42 0.1284 80.89 1.1177 77.08 0.1348 74.50 58.07 74.42 74.25
Split after LSTM (A5) 0.1291 80.40 0.1252 81.24 0.1307 78.06 0.1478 73.21 0.1705 77.22 0.1359 76.64 75.17 79.21 76.47
LSTM in tr. head (A6) 0.1334 77.33 0.1383 74.31 0.1605 63.31 0.1243 81.64 0.1747 78.80 0.1376 73.64 74.05 77.47 75.42
LSTM in cl. head (A7) 0.1378 78.58 0.1267 80.52 0.1330 78.86 0.1459 74.25 1.2483 79.99 0.1380 75.87 80.51 72.10 78.03

Split after 1. Drop. (A8) 0.1246 78.56 0.1248 75.69 0.1310 75.18 0.1251 79.27 0.4132 78.67 0.2448 75.83 78.83 80.76 79.42

Table 3: Evaluation results for the visual dataset trained with different loss combinations. For definitions, see Table 2.

with 3 axes each plus the force sensor) with a variable length
l. When training both encoders, each batch is bias shuf-
fled, such that each batch contains letters of approximately
the same time step length. To account for variable batch
length, we use zero padding to the maximal size in each
batch. For the classification task the last dense layer has
83 neurons, for the trajectory regression task 200 neurons
(reshaped: 100×2). In a preliminary study, we searched
for the optimal dropout and LSTM neurons for the visual
CNN architecture (see Appendix, Fig. 11). We choose an
LSTM combination of 500 and 100 units, and two dropout
layers with 20% dropout after the convolution and the sec-
ond LSTM layer.

5. Experimental Results

We here describe the results for the IMU dataset (Sec. 5.1
to 5.3, Table 2) and for the visual dataset (Sec. 5.4, Ta-
ble 3). More specifically, Sec. 5.1 compares the proposed
MTL architectures against the baseline networks A0 and
A1. We use the cross-entropy loss for MTSC, and distance,
spatio-temporal, and distribution-based losses for trajectory
prediction (Sec. 5.2). In Sec. 5.3, we evaluate our MTL
strategies, and compare our methods to state-of-the-art tech-
niques in Sec. 5.5.

Preliminary. We first want to emphasize that improve-
ments in the smoothness of the predicted trajectory are ut-
most importance in our handwriting application, but that
smoother trajectories do not necessarily lead to a signifi-
cant improvement of the reconstruction error. This is sim-
ilar to image reconstruction, where the biggest gain in per-
formance is achieved by vaguely reconstructing the image,
yet the image still looks unnatural for humans. Hence, also
small trajectory improvements are of interest.

Hardware and Training Setup. For all experiments we
use Nvidia Tesla V100-SXM2 GPUs with 32 GB VRAM
equipped with Core Xeon CPUs and 192 GB RAM. We use
the vanilla Adam optimizer with learning rate 10−4. We run
each experiment three times for 20,000 epochs with a batch
size of 50 and report averaged results (over five epochs).

Evaluation Metric. For evaluation we compute the cate-
gorical metric for class prediction in %, and the root mean
squared error (RMSE) for trajectory prediction. As in [59],
we also compute the geometric shape-based Fréchet [10],
Hausdorff [55] and Procrustes [51] measures, as well as the
time warping approach DTW [15] (see Sec. 2.2). Due to a
correlation between these metrics with the RMSE and for
better readability, we only report the RMSE.
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(a) MSE. (b) Andrew’s Sine. (c) Huber. (d) Pearson Correlation.

(e) Cosine Similarity. (f) MSE + Pearson Correlation. (g) MSE and Cosine Similarity. (h) MSE + Wasserstein.

Figure 7: Trajectory prediction (blue) against the ground truth trajectory (red) of the characters ’A’, ’P’ and ’W’ based on
inertial data trained with different combinations of loss functions.
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Figure 8: Evaluation of combinations of loss functions av-
eraged over all architectures (A0-A8). MTL strategy: naive
weighting w = 1. Baseline (blue): L2 + LCE .

5.1. MTL Architecture Evaluation

As a baseline for the inertial dataset, model A0 results
in an error of 0.1705 using the LMSE , and model A1 in an
accuracy of 88.11%. Exemplary reconstructed letters of the
baseline method is shown in Fig. 7a. The trajectory regres-
sion task improves up to 0.1169 for model A2 to 0.1623 for
model A6, but decreases for model A7 and A8. The accu-
racy of 86.69% (A2) is less accurate than the baseline A1

(87.68%). We conclude, that a late split has a positive influ-
ence on the trajectory regression by sharing more trainable
parameters in the trunk. This even holds for smaller model
sizes (see Appendix, Table 5). For a larger regression head
(A7 and A8) the model is prone to overfitting.

5.2. Loss Function Evaluation

Single Loss Functions. For more details on hyperparam-
eter searches, see Appendix Sec. A.3. For the distance-
based metrics, i.e., Andrew’s Sine and Huber we observe
a decrease in trajectory error (Fig. 7b and 7c) compared to
LMSE at the cost of a deterioration of the classification ac-
curacy. For the LAS loss, the trajectory error decreases for
modelsA6 toA8 against LMSE , while the classification ac-
curacy decreases. The same holds for the LH loss, where
we can increase the classification accuracy up to 88.43%.
Using spatio-temporal losses we are able to learn the shape
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Figure 9: MTL strategy evaluation for LMSE combined
with spatio-temporal LPC and distribution-based LWAS1

losses averaged over all architectures (baseline: blue).

of the characters (Fig. 7d and 7e), but at a wrong scale. A
trajectory trained with the LPC is smoother (less variance)
compared to LCS , yet with a lower accuracy in the classi-
fication. Our goal is to minimize the distance of the pre-
dicted trajectory while ensuring a smooth shape. Hence, we
train the (distance) LMSE loss combined with the (spatio-
temporal) LPC and LCS .

Combined Loss Functions. Fig. 8 compares all metrics
based on the naive weighting. For the combination of
LMSE and LPC , the regression loss improves over a model
trained on LMSE only, while providing a smoother tra-
jectory (Fig. 7f). The combined loss LMSE + LCS does
not scale the characters correctly (Fig. 7g) and gives a less
smooth trajectory than the approach with either only LMSE

(Fig. 7a), only LPC (Fig. 7d), or only LCS (Fig. 7e). We
evaluate the LWASp

loss when combined with the LMSE

loss. For larger p, the predictions become more evenly dis-
tributed (as found by [23]). When choosing p = 1 and the
naive weighting strategy (Fig. 9b) the trajectory prediction
error is large (Fig. 7h), but can be significantly improved
using alternative MTL strategies, as described in the fol-
lowing.
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5.3. MTL Strategy Evaluation

We now compare all described MTL strategies
(Sec. 3.3): naive weighting (w=1), linear as well as squared
increase, squared weight decrease with maximal weight-
ing of wmax={10, 1000}, and DWA [40]. Fig. 9 shows
MTL results for LMSE combined with LPC (Fig. 9a) and
LWASp

with p = 1 (Fig. 9b). When combining LWAS1

with the LPC loss, the error further decreases for linear and
squared weight increase. Squared weight decrease notably
increases the error as the scaling of the shape diverges. With
an optimal epoch-dependent weighting strategy the Pearson
Correlation provides a suitable shape while still yielding to
an improvement in accuracy. Combined with the LWAS1

loss, all weighting strategies significantly decrease the er-
ror (improvements between 0.16 to 0.18) in comparison to
the naive approach (0.31), yet still preserve smooth predic-
tions. When only training based on the LMSE loss, the
distance is still smaller, but predicted trajectories are less
smooth and not realistic. For the LPC loss combined with
the LMSE loss DWA is worse than the linear or squared
weight increase. As the loss of LWASp is higher than the
loss of LMSE , DWA cannot optimize the training (Fig. 9b).
We conclude, that the order of weight increase is important
for combining metrics and that a slow weight increase is
the best approach for jointly learning the classification and
trajectory regression tasks.

5.4. Visual Dataset Evaluation

Loss Functions. The visual dataset is more challenging
than the IMU dataset as the network needs to learn the
transformation from the camera to the tablet coordinates
and needs to identify the pen tip hover and touch data be-
tween strokes. This results in a much larger computing
times, i.e., an average run time of 5.4s per epoch (see Ap-
pendix, Table 7). The baselines yield an error of 0.1360 for
the trajectory regression task and 73.19% accuracy for the
MTSC task (see Table 3). For the evaluation of MTL archi-
tectures, we can draw the same conclusions as in Sec. 5.1.
Similar to the IMU dataset, for both, the LH and the LAS
loss we (partly) observe a decrease in trajectory error at
the cost of a worsening classification accuracy. The sin-
gle spatio-temporal LPC loss increases the classification
accuracy (80.51%), but yields improperly scaled characters.
Through the combination of LMSE + LPC , we further de-
crease the trajectory error (0.1243) and increase the classi-
fication accuracy (81.64%) for architecture A6, while still
providing a smooth trajectory. Neither the single distribu-
tion-based LWASp

loss nor the combination with the LMSE

loss can be used to improve the single and combined tasks.
For more details, see Appendix, Sec. A.3.

Method Inertial Visual
MLSTM-FCN [31] w/ SE 89.33% 80.49%

w/o SE 88.41% 78.73%
TapNet [60] 89.02% 79.27%

Ours 89.51% 81.64%
(A4, CS + CE) (A6, MSE + PC + CE)

Table 4: Comparison of state-of-the-art MTSC methods
with our approach on the inertial and visual datasets.

5.5. Comparison to MTSC Methods

We compare our method with MLSTM-FCN [31] and
TapNet [60], two approaches achieving the highest classifi-
cation accuracy on the well-known UEA MTS dataset [5].
For both techniques we interpolate the IMU data to 114 and
the visual data to 71 timesteps. We evaluate various con-
figurations of both networks in the line with suggestions by
the authors. We optimized TapNet and searched for differ-
ent configurations (with default parameters for the CNN,
LSTM and random projection) and optimized the hyper-
parameters for training (such as different learning rates at
10−3, 10−4 and 10−5). For the MLSTM-FCN we achieved
the best results with its squeeze-and-excitation block (see
Table 4). TapNet achieves a better MTSC accuracy in com-
parison to MLSTM-FCN for the visual dataset. However,
this still lacks behind our best reported results, which are
both higher than TapNet and MLSTM-FCN. For the visual
dataset our approach shows a larger margin and is notably
better for certain loss combinations and architectures.

6. Conclusion
We addressed the problem of aligning a ground truth

trajectory that is smooth over time by combining distance-
based with spatio-temporal and distribution-based metrics.
For the application of OnHW recognition of characters
based on IMU and visual data sources, we significantly im-
proved the trajectory prediction task, while still providing
similar shapes. We proposed a framework of architectures
and evaluated different MTL techniques. Through the com-
bination of the trajectory prediction task with the subtly
correlated MTS classification task we further improved the
classification accuracy.
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