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Abstract

We tackle the few-shot open-set recognition (FSOSR)
problem in the context of remote sensing hyperspectral im-
age (HSI) classification. Prior research on OSR mainly con-
siders an empirical threshold on the class prediction scores
to reject the outlier samples. Further, recent endeavors in
few-shot HSI classification fail to recognize outliers due to
the ‘closed-set’ nature of the problem and the fact that the
entire class distributions are unknown during training. To
this end, we propose to optimize a novel outlier calibra-
tion network (OCN) together with a feature extraction mod-
ule during the meta-training phase. The feature extractor
is equipped with a novel residual 3D convolutional block
attention network (R3CBAM) for enhanced spectral-spatial
feature learning from HSI. Our method rejects the outliers
based on OCN prediction scores barring the need for man-
ual thresholding. Finally, we propose to augment the query
set with synthesized support set features during the similar-
ity learning stage in order to combat the data scarcity issue
of few-shot learning. The superiority of the proposed model
is showcased on four benchmark HSI datasets. 1

1. Introduction
In the modern era, with the rapidly growing popula-

tion, land-cover classification plays an indispensable role in
the strategic management of the available natural resources
[18]. Amongst different remote sensing technologies, HSI
plays a crucial part in land-cover classification for its en-
riched spectral-spatial characteristics. There exist several
machine learning and deep learning-based endeavors for
HSI classification [5, 23, 24, 37]. However, HSI data suffer
from the ‘curse of dimensionality’ [5] given a large number
of bands and the availability of small training data for cer-
tain land-cover classes. As a pragmatic alternative, few-shot
learning (FSL) [6, 27, 31] has become popular due to bet-
ter generalization capability from limited training samples
[17, 21, 36]. Nevertheless, the existing HSI classification

1The code is available at https://github.com/DebabrataPal7/OCN

models mainly focus on the closed-set learning setup where
the classes observed during training and testing are indis-
tinguishable. Closed-set learning overestimates the train-
ing classes and fails to detect any unseen class test sample
which may appear in real-life applications.

Figure 1. (Left) The original image of the University of Pavia HSI
dataset is displayed. (Middle) Land cover maps of nine known
classes are annotated as per the actual ground truth. (Right) Six
more unknown classes are annotated along with known classes,
which often get misclassified to one of the known classes.

We further motivate the problems through one of the
benchmark HSI datasets in Fig. 1. The dataset has an-
notations for nine land-cover classes. Still, the labeling is
highly inconsistent across the classes with severe data im-
balance, which poses significant challenges in designing ro-
bust supervised learning models. It can also be seen from
the middle figure of Fig. 1 that a large portion of the scene is
unlabeled (black pixels) [1, 18]. This is because of the fact
that labeling is costly and many of the classes have very
marginal differences in the spectral dimensions. Let us now
consider two scenarios for deploying a model trained on this
data: i) on another geographical area, ii) on the same area
but at a future time. In both cases, this is highly likely that
the model will encounter novel class samples due to spatial
or temporal changes. It is evident from these discussions
that the paradigms of classification with less supervision
and open-set learning are very much relevant to HSI clas-
sification. However, less emphasis has been given to it.

Closed-set learning misclassifies these unknown samples
into one of the known classes. Again, efforts by applying
a threshold on the softmax probability in closed-set learn-
ing only convey the training class prediction uncertainty [3].
Contemporary Open-Set Recognition (OSR) methods apply
a threshold on the distance of test samples from the train-
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Figure 2. By learning from large samples, OSR develops a firm discriminative boundary to reject the outliers. Due to the availability of
few samples, Contemporary FSOSR can not learn distribution density like OSR. It causes many known class samples to get misclassified
as outliers. Our FSOSR with an augmented query set approach amplifies known class prototype representation. It squeezes the known
class query distance from the prototype compared to an outlier’s with equivalent latent feature embedding.

ing class prototypes or on the prediction probability post
calibrating with a distribution [3, 7, 18]. To reject the out-
liers, OSR methods [2, 25] alternatively seek to maximize
the data density given a large set of training samples. This
limits OSR applicability over HSI datasets due to limited
training samples, class imbalance, and the spectrally fine-
grained nature of the closed-set and open-set classes.

Our focus in this paper is FSOSR, where we have ac-
cess to very few labeled samples for the known classes,
and no information regarding the outliers is present during
training. The existing FSOSR methods function by updat-
ing the model parameters in metric space to distinguish un-
seen samples from seen classes along with the classifica-
tion of seen class samples [12, 16, 26]. However, it gener-
ates an uncertain prototype radius [12, 16] where both the
known and unknown class query can reside equidistant from
the prototype, impacting an outlier to get misclassified as a
known class sample. There exists limited research progress
on FSOSR, and majorly they focus on applying empirical
threshold [16, 12] which is non-trivial to set in general op-
timally. To the best of our knowledge, there does not exist
any FSOSR method for HSI in the true sense, and the only
existing method uses more than twenty samples per class
[18] whereas a typical FSOSR system should consider not
more than five samples classwise.

This research proposes a unified architecture comprising
three modules; salient feature learning from HSI patches,
enhancing the known class distribution through augmen-
tation, and automatic outlier recognition using a decision
network. For learning better fine-grained salient features
from limited samples, we extend the traditional CBAM [33]
to support the spectral, spatial, and channel dimensions of
HSI cubes and propose Convolutional Block Attention 3D
(CBAM3D) layer. We incorporate them in-between Conv3d
layers in our feature extraction network R3CBAM. This
helps in attenuating irrelevant features with simultaneous
amplification of relevant salient features. To further rein-
force prototype representation and mitigate sampling bias,

we propose to augment query set with samples generated
by Variational Autoencoder (VAE) [15]. We illustrate in
Fig. 2 how our augmentation strategy helps to learn known
class data density in few-shot context. Finally, OCN is in-
troduced to reject outliers by optimizing cross-entropy loss
in each episode of meta-training as shown in Fig.3. This
helps in gaining transferable knowledge to reject outliers
during meta-testing without defining any threshold. Over-
all, our contributions are summarized as follows:

• To the best of our knowledge, ours is among the first
endeavors to use the meta-learning-based FSOSR for
HSI datasets that do not require any threshold.

• Our model consists of two novel sub-modules, i) an
OCN to automatically reject the outliers ii) a residual
feature extraction network, R3CBAM with newly pro-
posed CBAM3D layer to learn salient spectral-spatial
features from few samples. We also introduce a feature
augmentation paradigm to better estimate the known
class distributions.

• We perform extensive experiments on four benchmark
HSI datasets, namely, Indian Pines, Pavia, Salinas,
and Houston-2013. On average, our method beats the
next best FSOSR alternative by 7% ClosedOA, 10%
OpenOA, and 20% AUROC on these datasets.

2. Related Work
Few-shot open-set recognition: Metric-based [27, 28, 31]
and optimization-based [6] closed-set FSL does not enrich a
model to recognize the outliers. Finding an optimal thresh-
old is crucial for FSOSR as insufficient training data cre-
ates sampling bias in learning known class distributions.
Outliers are rejected if the largest probability is small [16].
In case of transformation inconsistency of modified proto-
types, unknowns are detected based on a certain threshold
in [12]. A threshold of 0.5 on cumulative distribution func-
tion is used to detect HSI outliers in [18]. In [1] discrimi-
nation threshold is varied on reconstruction error under the
Receiver Operating Characteristic (ROC) curve.
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Figure 3. Visualization of our method. Input support set corresponding to known (K′) class samples and a query set corresponding to
known (K′), pseudo-unknown (U) samples are passed through feature extraction network, R3CBAM, in each episode. Support features
are augmented with query features and passed through VAE to generate pseudo-known samples. Finally, features are classified as seen or
unseen based on OCN prediction. For seen class prediction, K′ class samples are classified based on their distance from prototypes P .

In contemporary OSR approaches, the model parame-
ters are not optimized to cope with an empirical thresh-
old to reject outliers. Alternatively, we propose to follow
a generative-discriminative approach, where class represen-
tations are enriched in a low-data regime with a pseudo sup-
port set. Thanks to OCN, we have overcome the require-
ment of manual rejection thresholding.
Threshold computation in open-set recognition: OSR
aims to detect outliers by forcing the model to give a high
rise of entropy posterior distributions. Existing OSR ap-
proaches trained on large-scale dataset can broadly be cat-
egorized as discriminative [2, 3, 9, 25], generative [35, 19,
20], and combination of both [22]. OpenMax [3] detects
outliers by thresholding on uncertainty after applying Ex-
treme Value Theory on the SoftMax generated known class
probabilities. A contamination ratio is considered globally
as well as per class to define a threshold [9]. An optimal
threshold is computed in [20] by inspecting histogram be-
tween match reconstruction errors and non-match counter-
part after passing samples through an autoencoder.
Residual attention-aware network engineering: To ex-
tract strong representative-discriminative feature, network
engineering has been evolved from Universal Approxima-
tion theorem [11] to state-of-the-art models with increas-
ing width [29], depth, residual connection [10], cardinality
[34] and attention [13, 30, 4]. Introducing skip connections
around few layers and adding to main path alleviates van-
ishing or exploding gradient problem [17] which can occur
in high parameterised conv3D layers. Using conv3D layers,
HSI spectral-spatial feature correlation can jointly be learnt
[24, 37, 17], but it takes 5-dimensional input. There exists a
disjoint effort on attention-based [8] and 3D residual convo-
lution based HSI classification [37, 17]. To learn spectral-
spatial cubic salient features, we extend [33] by paying at-
tention in depth dimension and created CBAM3D layer to
stitch with conv3d layer connected in residual topology.

3. Proposed Method
3.1. Preliminaries

At each HSI pixel location, we form 3D patches com-
prising spectral and spatial features. FSOSR is a supervised

meta-learning approach. During meta-training, the model
learns the ability to reject the outliers along with the classi-
fication of known class samples using an episodic learning
strategy. During meta-testing, it employs the learned model
to classify the outliers and the known class samples cor-
rectly. To this end, each dataset is split into two disjoint
sets of classes, base classes for training and target classes
for testing. In HSI datasets, the sample distributions for the
outliers have a high degree of identical reflectivity patterns
with those of the known classes. To comply with this issue,
we select a subset of base classes as known or seen while the
rest act as the pseudo-unknown in each episode during the
meta-training phase. Let K = {1, 2, · · · ,K} and U define
the set of known classes and the pseudo-unknown classes,
where |K| = K denote the cardinality of K.

By definition, an episode consists of a support and query
set. Mathematically, the support set is defined as S =

{(xsi , ysi )}
m|K′|
i=1 where |K′| = K ′ classes are randomly

sampled from K (K′ ⊂ K) and is termed as K ′-way m-
shot since there exist exactly m training samples per K′

classes. The query set, Q = {(xqj , y
q
j )}

N |K|
j=1 contains N

samples from each of the K classes, where samples corre-
sponding to K′ act as inliers while the remaining class sam-
ples are treated as U . xs, xq represent HSI patch cubes and
ys ∈ K′, yq ∈ K. We propose to generate synthetic samples
by VAE corresponding toK′ and augment it withQ for bet-
ter estimating class density. We representQ(K′) as known-
class query set andQ(U) as unknown-class query set, where
U = K − K′ and ′−′ defines set difference operation. The
feature extraction network (fθ) with learnable parameters θ
gains transferable knowledge by learning to correctly clas-
sify Q(K′). Also, the proposed OCN (uϕ) with learnable
parameters ϕ learns the ability to identify Q(U).

After meta-training, we fine-tune fθ parameters based
on the available samples of a subset of target classes to adapt
to the new classification environment quickly. Finally, at
the meta-testing phase, an unlabeled query sample from the
target class is first classified by OCN, to find whether it be-
longs to a known or unknown class. If the OCN labels the
sample as known, its class is estimated based on the Eu-
clidean distance from the learned prototypes.
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Figure 4. (Left) The architecture of the proposed attention-aware feature extraction network, R3CBAM, is to learn the complex salient
spectral-spatial features of HSI data. Our proposed CBAM3D layers are stitched after each conv3D layer for paying attention to relevant
3D HSI features. (Right) We introduce OCN architecture to reject the outliers.

3.2. Overview of the proposed model components
Here we first discuss the R3CBAM feature encoder

model together with the proposed CBAM3D attention layer,
followed by a discussion on OCN.
Feature extractor R3CBAM: The architecture of the pro-
posed R3CBAM encoder (fθ) for HSI feature extraction
and learning the known class prototypes is shown in Fig.4
(Left). At each spatial pixel location of HSI data, 3D
spectral-spatial patches I ∈ RH×W×B are formed, where
H,W,B indicate the height, width, and spectral bands, re-
spectively. Principal component analysis (PCA) [32] is
applied to preserve only the b significant bands, where
b << B. The backbone of fθ is based on the 3D CNN
architecture, primarily consisting of 3D residual convolu-
tional layers [17] which can learn improved spectral-spatial
features. Two residual blocks, as shown in dashed boxes
in Fig.4 (Left), are comprised of three successive units of
Conv3D and the proposed CBAM3D layers. There also ex-
ists a skip connection in each residual block [10]. After each
residual block, 3D max-pooling layer reduces the computa-
tional complexity and aggregates spectral-spatial relation-
ship. Due to the presence of a higher number of bands b as
compared to H and W , stride across spectral dimension is
chosen as 4 whereas it is taken as 2 for spatial dimension.
Finally, one Conv3D-CBAM3D layer is used to extract the
compact salient feature globally corresponding to the input
3D patch before flattening the features.
CBAM3D attention layer: Attention learning has been
proved to highlight the insightful visual features in a CNN
model. In this respect, the CBAM model, proposed in [33],
disentangle the spectral and spatial attention learning mod-
ules. However, CBAM is designed for RGB images. But,
to exploit the spectral-spatial relationship of HSI data, we
need a module that could also refine features along the spec-
tral dimension. To this note, we propose a novel 3D atten-
tion module, CBAM3D, built upon CBAM [33], for high-
lighting the important regions in the spectral-spatial feature
maps. The proposed CBAM3D module can infer attention
maps both along the channel dimension and the spectral-
spatial dimension and is illustrated in Fig.5.

Figure 5. Visualization of the proposed CBAM3D layer. Input 3D
feature is passed initially through the channel attention module to
learn inter-channel salient features. Using the residual connection,
features are refined with a channel attention map. Finally, this fea-
ture is refined with a spatio-spectral attention module to amplify
the relevant features across the spatial and spectral dimensions.

A given feature map output F ∈ RC×H×W×D from
Conv3d layer is passed through CBAM3D to sequentially
infer 1D channel attention map Ac ∈ RC×1×1×1 followed
by a spatio-spectral attention map Ass ∈ R1×H×W×D,
where C,H,W,D refer to number of channels, height,
width, and depth of HSI patches respectively. The math-
ematical formulation of refinement of feature maps using
proposed CBAM3D is represented by (1), where ⊗ sym-
bolizes element-wise product with necessary broadcasting.

F ′ = Ac(F )⊗ F,
F ′′ = Ass(F ′)⊗ F ′ (1)

Channel attention module explores the inter-channel
salient features by squeezing spatial and depth dimensions.
This module helps in identifying the channels with im-
portant features. Using 3D GlobalAveragePooling and 3D
GlobalMaxPooling layers, overall latent statistics (F cavg3d)
and significant features (F cmax3d) are extracted, respec-
tively. These global features are passed individually through
a shared multi-layer perceptron (MLP) with one hidden
layer of RC/r×1×1×1 activation units, where r is the pa-
rameter reduction ratio. Finally, the outputs of the MLP are
added element-wise to produce Ac in (2), where σ denotes
the sigmoid activation to keep attention map within [0, 1].

Ac(F ) = σ(MLP (F cavg3d) +MLP (F cmax3d)) (2)
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Spatio-spectral attention module explores the rela-
tionship across spatial and spectral dimensions. Average-
pooling and max-pooling are applied independently on F ′

along the channel dimension to generate global (F ssavg3d ∈
R1×H×W×D)) and significant (F ssmax3d ∈ R1×H×W×D)
descriptors. These descriptors are then concatenated and
passed through a conv3d layer to generateAss in (3), where
f7×7×7 symbolizes 3D convolution with kernel 7 × 7 × 7.

Ass(F ) = σ(f7×7×7[F ssavg3d;F
ss
max3d]) (3)

Outlier Calibration Network: In order to alleviate defin-
ing an empirical threshold for outlier rejection as done tra-
ditionally, we propose OCN (uϕ) to detect unseen samples.
The objective of uϕ is to correctly classify known class
queries and the VAE generated samples as seen while si-
multaneously predicting unknown class queries as outliers.
The input to uϕ is the set of Euclidean distances of the test
query from the known class prototypes. Since distances are
a measure of the similarity between embeddings, uϕ learns
to correctly identify the outliers by leveraging the distances
in metric space. The architecture of the proposed MLP-
based uϕ is shown in Fig.4 (Right). OCN has three hidden
layers. The first two layers have 16 and 8 hidden units, re-
spectively, with RELU activation. The last layer has two
hidden units with a softmax activation function to predict
the probability of a sample belonging to the seen or unseen
class. Also, a dropout layer with the probability of drop-
ping neurons as 0.4 is added in between the first two layers
to regularise the network. By meta-training, uϕ learns to
recognize outliers without the need for any threshold.

3.3. Augmentation with VAE generated samples

It is pretty challenging to learn the known class distri-
bution from limited samples in FSOSR. Due to insufficient
knowledge, a known class query mistakenly gets classified
as an outlier, whereas an outlier might get recognized as a
seen class sample. To improve the known class data den-
sity, we generate pseudo-known samples by optimizing a
VAE using the known class support and query sets. The en-
coder (qψ) of our VAE with learnable parameters ψ has two
dense layers of 32 and 16 units and has RELU activation
in each layer. The decoder (pν) with learnable parameters
ν has three dense layers of 16, 32, and 64 units along with
RELU activation. The last layer of the VAE decoder outputs
64 units as R3CBAM generates 64-dimensional features.

3.4. Training and inference protocol

Our framework is built upon the Prototypical Networks
[27]. As aforesaid, each episode consists of support set con-
sisting of known (K′) classes and a query set consisting of
known and pseudo-unknown classes, K, randomly sampled
from the set of base classes. The inputs to our Algorithm

Algorithm 1: FSOSR meta-learning steps
Meta-Training Phase:
Input: fθ, uϕ, qψ , pν , S(K′), Q(K), ys, yq

Output: Updated θ, ϕ, ψ, ν parameters
1 Extract features:
Sf ← fθ(S(K′)),Qf ← fθ(Q(K)) ;

2 Compute known class prototypes P from Sf in (4);
3 Update qψ , pν by optimizing loss (7) with samples

x, where x ∈ pν(qψ(fθ(Q(K′) ∪ S(K′)))) ;
4 Augment Qf with VAE generated samples:
Qaug ← Qf∪ pν(qψ(fθ(Q(K′) ∪ S(K′)))) ;

5 Update uϕ by optimizing Luϕ outlier (8) for Qaug;
6 Update fθ by optimizing LTotal (9) for Qaug from

classification loss Lfθ clf (6) and Luϕ outlier (8) ;
7 return Updated parameters of fθ, uϕ, qψ , pν ;

Meta-Testing Phase:
Input: fθ, uϕ, S(K′), Q(K), ys, yq

Output: Classification of the query samples
8 Extract features: Sf ← fθ(S(K′)),
Qf ← fθ(Q(K)) ;

9 Compute known class prototypes P from Sf ;
10 Compute Euclidean distances: D ← ∥Qf − P∥22 ;
11 Pass D as input to uϕ;
12 If uϕ classifies a sample as seen;

Predict class by applying softmax over D ;
Else;

Classify the sample as an outlier;
13 return Predicted class of the query samples;

1 are fθ (R3CBAM), uϕ (OCN), qψ , pν , S(K′), Q(K), and
ys, yq representing the label space for S(K′), Q(K).
Estimating the known class prototypes: All the S(K′) and
Q(K) samples are passed through fθ where relevant class-
specific features are magnified. We represent the extracted
features fθ(S(K′)) by Sf and fθ(Q(K)) by Qf . For m >
1, each known class prototype Pk for class k is computed in
(4) after estimating classwise mean of support embeddings.

Pk =
1

m

∑
xsi∈Sk

fθ(x
s
i ) (4)

Where Sk is the support set of kth known class and P is the
collection of all known class prototypes.
Multi-task VAE and R3CBAM classification loss: To
gain representative knowledge of the distributions concern-
ing the known classes in the low-data regime, we pass the
extracted Sf and the known class query features fθ(Q(K′))
through the VAE and generate pseudo-known class samples.
In each episode, we optimize VAE parameters based on the
computed gradients from the standard VAE loss (5) and the
classification loss of the generated samples (6). We repre-

3805



sent the standard VAE loss (5) as consisting of a reconstruc-
tion loss and the KL divergence loss. The VAE reconstruc-
tion loss is simply the Euclidean distance between the input
and the generated samples. The KL divergence term regu-
larizes the distributions of the latent space.

LV r = Ez∼qψ(z|x)(∥pν(z)−x∥
2+KL(qψ(z|x)∥N (0, I)))

(5)
where, z is the latent space vector, N (0, I) represents the
standard Gaussian distribution, and x ∈ pν(qψ(fθ(Q(K′)∪
S(K′)))) denotes input with class label y. The classification
loss is computed for each x in (6).

LV c = E

[
− log

exp(−d(x,Py))∑K′

k=1 exp(−d(x,Pk))

]
(6)

where, Py is the true class prototype of query x and d is
squared Euclidean distance. These loss components (7) are
optimized to update VAE parameters in each episode to gen-
erate synthetic samples precisely.

LV AE = LV r + LV c (7)

After updating parameters of VAE, we use VAE generated
samples to augment the query set. The augmented query
set, denoted byQaug , is basicallyQf ∪ pν(qψ(fθ(Q(K′)∪
S(K′)))). The known class classification loss for optimiz-
ing R3CBAM is calculated for each query feature in Qaug ,
using (6). The optimization withQaug helps in learning dis-
tribution density of the known classes in metric space from
limited supervised data. This loss is denoted by Lfθ clf .
OCN outlier rejection loss: We represent the Euclidean
distances of the query features in the augmented query set
(Qaug) from the known class prototypes P by Daug , which
is given as input to uϕ so that it can learn to classify known
class queries and the VAE generated samples as seen and
the unknown class query samples as outliers. It makes OCN
a threshold-free outlier detector. We use cross-entropy loss
(8) to optimize the OCN parameters.

Luϕ outlier = −
2∑
i=1

tilog(uϕ(Daug)i) (8)

where, ti ∈ {0, 1} is the true label for the seen and unseen
class of the query sample and uϕ(Daug)i is the OCN output
probability for the ith class(seen or unseen).
Total training loss: Finally, a multi-task loss constituting
of known class classification loss and outlier prediction loss
is used to optimize fθ parameters in (9).

LTotal = Lfθ clf + Luϕ outlier (9)

Inference Strategy: We first sample an episode from the
target set and calculate the Euclidean distances D of the ex-
tracted query features from P . D is then given as input

to uϕ, which classifies the query samples as seen or outlier
without using any threshold. If uϕ classifies a query as seen,
we further apply softmax over D to predict the class.

4. Experiments
4.1. Datasets and preprocessing

We use four benchmark HSI datasets 2. Indian Pines
(IP) was acquired using AVIRIS sensor in northwestern In-
diana for 16 land-cover classes and had 145 × 145 spatial
resolution with 220 bands. Salinas also has 16 classes and
was captured at Salinas Valley, California. It has 512× 217
pixels with 204 spectral bands. Using ROSIS sensor, Uni-
versity of Pavia dataset was captured for nine classes hav-
ing 610× 610 pixels with 103 bands. We consider six addi-
tional classes annotated in [18] for FSOSR. The Houston-
2013 dataset was captured for 15 classes at the University
of Houston and it has 349× 1905 pixels with 144 bands.

Thirty bands are used for each of IP, Pavia and Sali-
nas and ten for Houston to preserve more than 99% data
variance after applying PCA. Then, cubic patches of size
(11, 11, ch) are formed at each pixel location using zero
padding, where ch denotes the number of spectral bands.

4.2. Evaluation metrics

We compare the proposed method with other FSOSR ap-
proaches using Closed Overall Accuracy (ClosedOA), Open
Overall Accuracy (OpenOA), and AUROC (Area Under Re-
ceiver Operating Characteristics Curve). In OSR, closed-set
refers to the collection of seen classes, and open-set relates
to the samples from outlier classes. ClosedOA refers to the
percentage of seen class samples correctly classified by the
model. To evaluate the performance of the model in the
open-world settings, OpenOA is defined in (10).

OpenOA =

∑K′+1
k=1 TP k + TNk∑K′+1

k=1 TP k + TNk + FP k + FNk

(10)

where, TP k, TNk, FP k, FNk are true positive, true neg-
ative, false positive, and false negative of the kth class. For
OpenOA,K′+1 classes are evaluated consideringK′ known
classes and all outliers belonging to one additional class.

In the presence of mixed seen class queries and outliers,
AUROC measures how well the model detects the outliers at
various threshold settings. It should be one for an ideal clas-
sifier. Even though our OCN-based FSOSR is a threshold-
free approach, high AUROC is observed using our method.

4.3. Experimental Protocol

We select six classes randomly per dataset and keep them
aside as target classes for meta-testing while the remaining
classes are used as base classes in the meta-training phase.

2http://www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes
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Table 1. Comparison of 1-shot open-set classification performance on hyperspectral datasets of the proposed R3CBAM and SOTA Methods
Model Indian Pines Pavia University Salinas Houston-2013

ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC
OpenMax [3] 43.33±0.63 48.54±0.29 44.44±0.33 52.08±0.53 54.61±0.21 52.22±0.35 51.92±0.52 42.50±0.23 50.33±0.34 37.50±0.73 31.33±0.71 36.11±0.33
RDOSR [1] 51.28±0.34 50.13±0.41 47.29±0.23 50.85±0.27 51.68±0.32 55.45±0.42 59.14±0.35 60.19±0.33 54.23±0.21 58.92±0.27 63.53±0.51 61.08±0.34
MDL4OW [18] 46.15±0.21 46.50±0.23 48.66±0.32 56.66±0.22 54.89±0.21 51.11±0.34 58.33±0.21 57.28±0.31 52.77±0.32 41.66±0.43 43.42±0.34 43.88±0.32
PEELER [16] 71.41±0.31 75.45±0.24 71.84±0.21 57.18±0.35 71.55±0.31 52.39±0.18 65.14±0.53 69.63±0.43 57.78±0.33 46.95±0.41 74.34±0.17 53.75±0.32
SnaTCHer [12] 89.33±0.11 81.25±0.23 74.53±0.32 58.50±0.29 75.57±0.34 50.35±0.33 65.94±0.67 78.91±0.28 53.88±0.43 58.73±0.35 77.42±0.33 48.05±0.34
R3CBAM [Ours] 80.67±0.63 82.72±0.34 75.93±0.32 59.50±0.21 84.77±0.34 89.96±0.43 82.64±0.31 74.27±0.32 81.36±0.21 60.84±0.32 78.93±0.46 74.26±0.17

Table 2. Comparison of 5-shot open-set classification performance on hyperspectral datasets of the proposed R3CBAM and SOTA Methods
Model Indian Pines Pavia University Salinas Houston-2013

ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC
OpenMax [3] 51.92±0.34 58.33±0.51 55.62±0.46 69.17±0.32 58.12±0.53 53.36±0.53 69.23±0.25 58.12±0.35 55.44±0.34 41.66±0.24 35.64±0.35 37.84±0.51
RDOSR [1] 55.98±0.51 55.92±0.45 52.38±0.52 64.74±0.45 64.89±0.34 63.94±0.37 67.80±0.35 66.32±0.51 60.28±0.47 68.82±0.52 66.37±0.31 62.56±0.43
MDL4OW [18] 50.76±0.53 46.96±0.35 64.51±0.51 65.33±0.25 62.66±0.19 48.66±0.41 75.01±0.37 62.66±0.34 72.88±0.22 46.66±0.21 44.42±0.23 46.22±0.33
PEELER [16] 82.81±0.39 87.37±0.34 74.19±0.25 60.71±0.23 72.69±0.53 60.36±0.51 74.20±0.52 75.39±0.31 60.39±0.36 57.98±0.47 75.57±0.57 55.47±0.34
SnaTCHer [12] 92.00±0.51 89.42±0.45 76.05±0.55 74.91±0.35 78.10±0.38 54.98±0.29 74.21±0.54 83.15±0.39 72.11±0.43 69.24±0.34 83.29±0.52 49.09±0.45
R3CBAM [Ours] 94.61±0.38 84.71±0.51 88.40±0.38 71.55±0.32 87.94±0.34 91.90±0.45 84.88±0.37 85.61±0.39 88.52±0.34 71.97±0.29 84.96±0.48 88.50±0.47

Figure 6. Comparison of Area under Receiver Operating Characteristics Curve (AUROC) for 5-shot FSOSR using different methods on
four benchmark HSI datasets. The result shows our method’s superior AUROC compared to all other existing FSOSR methods. R3CBAM’s
performance indicated in the ‘Red’ envelop shows a high True-Positive Rate (TPR) at a low False-Positive Rate (FPR).

An episodic training strategy is followed to train R3CBAM
to learn salient features and OCN to reject outliers. Dur-
ing training, in each episode, we form query set (N = 15)
from six randomly chosen base classes and support set is
formed with samples from three randomly selected query
classes. At test time, we similarly sample episodes from
target classes and average the results over 500 episodes to
get trustworthy measures of the model performance. We use
Adam optimizer [14] with a learning rate of 0.0001 for each
of the learning models, namely R3CBAM, VAE and OCN.

4.4. Comparison with the other methods

We compared 1-shot and 5-shot OSR performance
against the SOTA methods respectively in Table 1 and 2.
OpenMax [3] and MDL4OW [18] are originally experi-
mented with large-scale datasets for performing OSR, but
they perform poorly on recognizing outliers from small
open-set HSI classes. To compare these methods for meta-
learning-based FSOSR, we fitted the Weibull distribution
in Prototypical Networks during meta-training phase for
OpenMax. Similarly, the classification-reconstruction en-
coder in [18] with Extreme Value Theory is fitted in Proto-
typical Networks for MDL4OW. RDOSR [1] performs OSR
with few-shot supervised samples of HSI datasets in latent
space. PEELER [16] performs Mahalanobis distance-based
metric-learning and SnaTCHer [12] detects outliers by val-

idating prototype consistency after applying transformation
functions in FSOSR context. [16, 12] are evaluated here
without any adaptation as those are introduced to tackle
the FSOSR task. Both of these two methods slightly per-
form better for IP dataset on OpenOA metric for 5-shot set-
ting. Rest, our method shows dominating performance on
all other HSI datasets in Table 2. Our method performs bet-
ter than others in a margin of 10% ClosedOA on Salinas, 9%
OpenOA on Pavia and 26% AUROC on Houston dataset for
5-shot settings. Also for 1-shot settings in Table 1, we beat
others by 17% ClosedOA on Salinas, 9% OpenOA and 35%
AUROC on Pavia dataset. This reflects in Fig.6 where our
method R3CBAM envelops maximum area under the ROC
curve compared to baseline methods projecting high outlier
detection performance in few-shot regime.

Figure 7. 5-shot FSOSR result comparison of SOTA methods on
Salinas dataset (open classes are annotated in ‘White’ color) (a)
Ground Truth (b) PEELER (c) SnaTCHer (d) R3CBAM
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Table 3. Ablation study on our attention-aware feature extraction network performance, the usefulness of support set augmentation with
VAE and outlier detection capability by newly introduced OCN on four benchmark hyperspectral datasets for 5-shot FSOSR task.

Model Indian Pines Pavia University Salinas Houston-2013
ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC ClosedOA OpenOA AUROC

DRes3DCNN [17] 77.51±0.21 69.37±0.32 70.14±0.35 70.44±0.33 68.11±0.28 67.51±0.26 83.46±0.43 71.36±0.42 77.09±0.42 70.44±0.52 68.61±0.36 75.54±0.23
HybridSN [24] 41.67±0.51 50.38±0.41 52.01±0.35 43.11±0.37 50.77±0.18 47.32±0.24 53.99±0.57 58.49±0.32 48.90±0.38 40.00±0.32 48.33±0.31 54.60±0.49
Without VAE 54.66±0.46 63.66±0.37 56.02±0.25 57.33±0.52 64.33±0.37 50.05±0.18 60.66±0.49 65.16±0.45 54.33±0.29 68.88±0.65 67.22±0.27 59.89±0.35
With threshold (0.5) 70.23±0.35 73.45±0.28 76.58±0.26 67.33±0.51 68.72±0.33 71.11±0.43 69.56±0.45 73.00±0.42 72.22±0.38 45.90±0.41 52.50±0.51 54.44±0.36
R3CBAM [Ours] 94.61±0.38 84.71±0.51 88.40±0.38 71.55±0.32 87.94±0.34 91.90±0.45 84.88±0.37 85.61±0.39 88.52±0.34 71.97±0.29 84.96±0.48 88.50±0.47

Figure 8. 5-shot FSOSR result comparison of SOTA methods
on Pavia dataset (open classes are annotated in ‘White’ color) (a)
Ground Truth (b) PEELER (c) SnaTCHer (d) R3CBAM

The comparison of our method’s generated classification
maps against the two most competing FSOSR methods i.e.,
PEELER and SnaTCHer, for the Salinas and Pavia datasets
are shown in Fig.7 and Fig.8 respectively. Outliers are an-
notated in ‘White’ color. From Fig.8, it can be observed
that both PEELER and SnaTCHer misclassify some known
class samples as outlier due to their threshold-based mech-
anism. In contrast, using OCN, our method correctly rec-
ognizes these outliers along with better known class sam-
ple classification by R3CBAM. Altogether this results in
high ClosedOA, OpenOA and AUROC performance of our
method. In the case of Pavia, most of the outliers are recog-
nized by our method, causing better OpenOA in Fig.8..

4.5. Further analysis
The results for the ablation studies highlighting the sig-

nificance of each novelties in our method are presented in
Table 3 for the 5-shot setting.
R3CBAM Attention Analysis: In DRes3DCNN [17],
residual 3D-CNN learns the spectral-spatial HSI features
but does not learn attention maps. A hybrid combination of
conv3D and conv2D layers are used in HybridSN [24] with-
out using the residual connection and attention learning.
We fit these encoders as fθ in Algorithm 1 and compare
against R3CBAM. Our R3CBAM uses an attention-aware
CBAM3D layer connected in residual topology. It boosts
OpenOA by 16% for Houston and ClosedOA by 17% for
IP as compared to [17]. By jointly using attention learning
and residual connections, R3CBAM gains 53% ClosedOA
for IP and 37% OpenOA for Pavia as compared to [24].

The classification map ablation based on the feature ex-
tractor performance on IP dataset is shown in Fig.9. Many
known class samples are misclassified and wrongly rec-
ognized as outliers with DRes3DCNN and HybridSN as
salient spectral-spatial features of known classes are not

Figure 9. Ablation study on feature encoder for 5-shot FSOSR on
IP (a) Ground Truth (b) DRes3DCNN (c)HybridSN (d) R3CBAM

learned due to a lack of attention-aware feature learning.
Impact of query augmentation: To see the effect of query
set augmentation using VAE generated samples, we con-
ducted experiments by removing VAE from the network.
As can be seen from the results in ‘Without VAE’ in Table
3, R3CBAM shows significantly better performance as it
learns a distribution density from limited samples due to the
usage of query set augmentation. The improvement in per-
formance by around 40% ClosedOA for IP, 23% OpenOA
and 41% AUROC for Pavia dataset is observed.
OCN outlier rejection performance analysis: We com-
pared the effectiveness of the newly introduced OCN with
the contemporary threshold-based mechanism in Table 3.
We set an arbitrary threshold of 0.5 and samples are classi-
fied as outliers if the maximum known class probability is
below this value. OCN boosts OpenOA by approximately
32% for Houston and 19% for Pavia showing its excellence
in detecting outliers in few-shot learning context.

5. Conclusions

In this work, we propose a novel meta-learning-based
FSOSR framework for the HSI datasets consisting of the
MLP-based OCN, a residual attention-aware feature extrac-
tion network (R3CBAM) and the paradigm that uses of the
query set augmentation using VAE for learning dense dis-
tribution of the known classes. The performance of our
method is better than existing OSR and FSOSR methods
in the few-shot learning paradigm for the four real-world
hyperspectral datasets. Further performance improvement
is observed when the network is trained with more spectral-
spatial samples. With superior FSOSR performance on low
inter-class variance HSI datasets, our method can easily be
adapted to any real-world OSR problems. In the future, we
plan to do more fine-level analysis of the open-set classes.

3808



References
[1] Razieh Kaviani Baghbaderani, Ying Qu, Hairong Qi, and

Craig Stutts. Representative-discriminative learning for
open-set land cover classification of satellite imagery. In
European Conference on Computer Vision, pages 1–17.
Springer, 2020.

[2] Abhijit Bendale and Terrance Boult. Towards open world
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1893–1902,
2015.

[3] Abhijit Bendale and Terrance E Boult. Towards open set
deep networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1563–1572,
2016.

[4] Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu, and
Alan L Yuille. Attention to scale: Scale-aware semantic im-
age segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3640–3649,
2016.

[5] Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang, and Yan-
feng Gu. Deep learning-based classification of hyperspectral
data. IEEE Journal of Selected topics in applied earth ob-
servations and remote sensing, 7(6):2094–2107, 2014.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning, pages
1126–1135. PMLR, 2017.

[7] ZongYuan Ge, Sergey Demyanov, Zetao Chen, and Rahil
Garnavi. Generative openmax for multi-class open set clas-
sification. arXiv preprint arXiv:1707.07418, 2017.

[8] Renlong Hang, Zhu Li, Qingshan Liu, Pedram Ghamisi, and
Shuvra S Bhattacharyya. Hyperspectral image classification
with attention-aided cnns. IEEE Transactions on Geoscience
and Remote Sensing, 59(3):2281–2293, 2020.

[9] Mehadi Hassen and Philip K Chan. Learning a neural-
network-based representation for open set recognition. In
Proceedings of the 2020 SIAM International Conference on
Data Mining, pages 154–162. SIAM, 2020.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[11] Kurt Hornik. Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251–257, 1991.

[12] Minki Jeong, Seokeon Choi, and Changick Kim. Few-shot
open-set recognition by transformation consistency. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12566–12575, 2021.

[13] Saumya Jetley, Nicholas A Lord, Namhoon Lee, and
Philip HS Torr. Learn to pay attention. arXiv preprint
arXiv:1804.02391, 2018.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[15] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[16] Bo Liu, Hao Kang, Haoxiang Li, Gang Hua, and Nuno
Vasconcelos. Few-shot open-set recognition using meta-
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8798–
8807, 2020.

[17] Bing Liu, Xuchu Yu, Anzhu Yu, Pengqiang Zhang, Gang
Wan, and Ruirui Wang. Deep few-shot learning for hyper-
spectral image classification. IEEE Transactions on Geo-
science and Remote Sensing, 57(4):2290–2304, 2018.

[18] Shengjie Liu, Qian Shi, and Liangpei Zhang. Few-shot hy-
perspectral image classification with unknown classes using
multitask deep learning. IEEE Transactions on Geoscience
and Remote Sensing, 59(6):5085–5102, 2020.

[19] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen
Wong, and Fuxin Li. Open set learning with counterfac-
tual images. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 613–628, 2018.

[20] Poojan Oza and Vishal M Patel. C2ae: Class conditioned
auto-encoder for open-set recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2307–2316, 2019.

[21] Debabrata Pal, Valay Bundele, Biplab Banerjee, and Yo-
gananda Jeppu. Spn: Stable prototypical network for few-
shot learning-based hyperspectral image classification. IEEE
Geoscience and Remote Sensing Letters, 2021.

[22] Pramuditha Perera, Vlad I Morariu, Rajiv Jain, Varun Man-
junatha, Curtis Wigington, Vicente Ordonez, and Vishal M
Patel. Generative-discriminative feature representations for
open-set recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11814–11823, 2020.

[23] Craig Rodarmel and Jie Shan. Principal component analysis
for hyperspectral image classification. Surveying and Land
Information Science, 62(2):115–122, 2002.

[24] Swalpa Kumar Roy, Gopal Krishna, Shiv Ram Dubey, and
Bidyut B Chaudhuri. Hybridsn: Exploring 3-d–2-d cnn fea-
ture hierarchy for hyperspectral image classification. IEEE
Geoscience and Remote Sensing Letters, 17(2):277–281,
2019.

[25] Lei Shu, Hu Xu, and Bing Liu. Doc: Deep open classifi-
cation of text documents. arXiv preprint arXiv:1709.08716,
2017.

[26] Yu Shu, Yemin Shi, Yaowei Wang, Tiejun Huang, and
Yonghong Tian. p-odn: prototype-based open deep net-
work for open set recognition. Scientific reports, 10(1):1–13,
2020.

[27] Jake Snell, Kevin Swersky, and Richard S Zemel. Pro-
totypical networks for few-shot learning. arXiv preprint
arXiv:1703.05175, 2017.

[28] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1199–1208, 2018.

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with

3809



convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[31] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning. Ad-
vances in neural information processing systems, 29:3630–
3638, 2016.

[32] Svante Wold, Kim Esbensen, and Paul Geladi. Principal
component analysis. Chemometrics and intelligent labora-
tory systems, 2(1-3):37–52, 1987.

[33] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018.

[34] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017.

[35] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi
You, Makoto Iida, and Takeshi Naemura. Classification-
reconstruction learning for open-set recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4016–4025, 2019.

[36] Chengye Zhang, Jun Yue, and Qiming Qin. Global prototyp-
ical network for few-shot hyperspectral image classification.
IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 13:4748–4759, 2020.

[37] Zilong Zhong, Jonathan Li, Zhiming Luo, and Michael
Chapman. Spectral–spatial residual network for hyper-
spectral image classification: A 3-d deep learning frame-
work. IEEE Transactions on Geoscience and Remote Sens-
ing, 56(2):847–858, 2017.

3810


