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Abstract

When compared to single modality approaches, fusion-
based object detection methods often require more com-
plex models to integrate heterogeneous sensor data, and use
more GPU memory and computational resources. This is
particularly true for camera-LiDAR based multimodal fu-
sion, which may require three separate deep-learning net-
works and/or processing pipelines that are designated for
the visual data, LiDAR data, and for some form of a fusion
framework. In this paper, we propose Fast Camera-LiDAR
Object Candidates (Fast-CLOCs) fusion network that can
run high-accuracy fusion-based 3D object detection in near
real-time. Fast-CLOCs operates on the output candidates
before Non-Maximum Suppression (NMS) of any 3D de-
tector, and adds a lightweight 3D detector-cued 2D image
detector (3D-Q-2D) to extract visual features from the im-
age domain to improve 3D detections significantly. The
3D detection candidates are shared with the proposed 3D-
Q-2D image detector as proposals to reduce the network
complexity drastically. The superior experimental results
of our Fast-CLOCs on the challenging KITTI and nuScenes
datasets illustrate that our Fast-CLOCs outperforms state-
of-the-art fusion-based 3D object detection approaches. We
will release the code upon publication.

1. Introduction

The ability of an autonomous vehicle to perform 3D ob-
ject detection is essential for safe planing and navigation.
Significant progress has been made in both 3D object de-
tection using LiDAR [42, 37, 28, 32, 19, 31], and 2D ob-
ject detection’ using video [30, 5, 22, 23]. LiDAR is able
to generate accurate 3D measurements but has low verti-
cal resolution. Fig 1 illustrates the difficulty for LiDAR-
only detector in detecting objects from just a few points
and no texture in point cloud. Cameras can provide abun-

INote that in this paper, we use 2D detections” to denote detections in
the camera RGB image plane, not a top-down bird-eye view.
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Figure 1: Fast-CLOCsSs can leverage the proposed 3D-Q-2D
detector to remove false positive detections. (a) LiDAR-
only detector has four false positives. The numbers shown
in the figure are LiDAR confidence scores. (c) The 3D-
Q-2D detector suppresses these false positives by allocat-
ing them very small visual confidence scores. These Li-
DAR false positives are more easily removed with image
appearance information. (b) and (d) show the proposed
Fast-CLOC:s fusion result with false positives removed.

dant texture information at very high resolution but no di-
rect depth information. The complementary nature of these
two types of sensors has inspired the development of muti-
modal fusion methods to achieve better perception. How-
ever, it has been challenging to design fusion-based neu-
ral networks for effectively exploiting both modalities in a
way that demonstrates improvements over single-modality-
based methods. Most of the leading entries in the chal-
lenging open 3D detection benchmarks, such as KITTI [11]
and nuScenes [2], are LIDAR-only based methods. In addi-
tion, fusion methods typically add computational complex-
ity, and consequently, do not achieve real time operation.
LiDAR-camera fusion methods can be divided into three
categories. First, cascaded fusion, also referred to as 2D
driven 3D detection, exploits 2D detectors to narrow down
the 3D processing field and guide the 3D detector. Sec-
ond, integrated fusion, which combines 3D point cloud and
2D images either at the input or at an intermediate stage.
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This architecture has the best possible opportunity for cross-
modal interaction, but at the same time inherent challenges
regarding data differences between modalities including
alignment, representation, and sparsity [9, 18, 36, 21].
Third, separated fusion, also referred to as late fusion or
detection-level fusion, which processes each modality on
a separate path and fuses the outputs at the decision level.
This architecture is easy to train, as single modality algo-
rithms can be trained using their own sensor data, but in-
volves less interaction between different modalities.

Recently, a Camera-LiDAR Object Candidates (CLOCs)

based fusion has been proposed [26]. This performs
detection-level fusion using any pair of pre-trained 2D and
3D detectors to generate better 2D/3D detections. The
CLOCs fusion step is fast and adds negligible delay to
the perception system. More importantly, CLOCs provides
significant improvements to the performance of the under-
lying 3D and 2D detection methods used. However, by
requiring a 2D detector and a 3D detector to run simul-
taneously, CLOCS uses high GPU memory and compute
power. We propose Fast-CLOCs: Fast Camera-LiDAR Ob-
ject Candidates fusion framework to achieve improved ac-
curacy for 3D object detection with near real-time perfor-
mance (Fig. 2). Unlike the original CLOCs, Fast-CLOCs
eliminates a separate heavy 2D detector; and instead, uses a
3D detector-cued 2D image detector (3D-Q-2D) to reduce
memory and computation. This proposed architecture de-
livers the following contributions:

* Fast-CLOC:s uses any 3D detector without re-training.

* The proposed 3D-Q-2D image detector within Fast-
CLOCs outperforms state-of-the-art (SOTA) image-
based detectors in 2D object detection.

* Fast-CLOC:s is significantly more memory and compu-
tationally efficient than SOTA fusion methods, and can
run in near real-time on a single desktop-level GPU.

* Fast-CLOCs improves the SOTA LiDAR-camera fu-
sion performance on the KITTI and nuScenes datasets.

The rest of the paper is organized as follows. Related works
are reviewed in Section 2. Section 3 discusses challenges
and opportunities for LiDAR-camera fusion, and why we
choose a separate fusion architecture. Section 4 details
our Fast-CLOCs fusion network. Experimental results on
KITTI and nuScenes are provided in Section 5 followed by
the conclusion in Section 6.

2. Related Work

Related LiDAR-camera fusion methods are organized in
three categories: cascaded fusion, integrated fusion and sep-
arate fusion. Each is reviewed in turn.

Cascaded Fusion: This type of fusion exploits mature
image-based 2D detectors to narrow down the 3D process-
ing domain to the corresponding cropped region in the im-
age. The image processing and LiDAR point cloud pro-

cessing are done in a cascaded style. The 3D detection are
only based on cropped LiDAR point clouds. The problem
for this type of fusion is that the 2D image-based proposal
generation might fail in some cases that could only be ob-
served from 3D space. This is problematic, since based on
our statistics in Fig. 7, the recall of image-based detectors is
usually lower than LiDAR-based detectors. Frustum Point-
Net [27], Pointfusion [36] and Frustum ConvNet [34] are
the representatives of this category.

Integrated Fusion: In an integrated fusion architecture,
the 3D point cloud and 2D image are either combined at the
input or at the intermediate stage. MV3D [9] and AVOD
[18] project the raw point cloud into bird’s eye view (BEV)
to form a multi-channel BEV image. A deep fusion based
2D CNN is used to extract features from this BEV image as
well as the front camera image for 3D bounding box regres-
sion. But the crop and resize operations used in these meth-
ods result in inaccurate correspondence between the feature
vectors. To improve feature correspondence, MMF [20]
adopts continuous convolution [21] to build dense LiDAR
BEV feature maps and does point-wise feature fusion with
dense image feature maps. 3D-CVF [40] employs auto-
calibrated projection to transform the 2D camera features
to a smooth spatial feature map with the highest correspon-
dence to the LiDAR features in the BEV domain, then a
gated feature fusion network is applied to fuse the features.
PointPainting [33] works by projecting lidar points into the
semantic segmented image and appending the class scores
to each point, this “painted” point cloud can then be fed to
any LiDAR-based detectors. EPNet [16] presents a fusion
module to augment the point features with semantic image
features in a point-wise manner. The overall performance
of these fusion based methods is worse than LiDAR-only
based methods. In KITTI 3D detection leaderboard, 3D-
CVF has the best performance among all these integrated
fusion method, but it is still worse than other LiDAR-only
detectors such as PV-RCNN [31].

Separate Fusion: Separate fusion processes each modal-
ity independently and fuses the detections at the decision
level. Not many works are published in this category.
CLOCs [26] exploits the geometric and semantic consis-
tencies between 2D and 3D detections and automatically
learns probabilistic dependencies between detections. The
idea is not complicated and yet CLOCs has the highest rank-
ing among fusion-based methods on the KITTI 2D, 3D and
BEV object detection leaderboards.

3. Camera-LiDAR Fusion

In this section, we discuss existing issues for Camera-
LiDAR fusion, including what information LiDAR and
camera can each contribute towards 3D object detection,
and why we choose separate fusion.
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Figure 2: Fast-CLOCs system architecture. There are three primary components of the system: (1) 3D object detector; (2) 3D
detector-cued 2D image detector (3D-Q-2D); (3) the original CLOCs fusion [26]. Compared to original CLOCs, we propose
to leverage a lightweight 3D-Q-2D detector (green block), instead of a separate complete 2D image detector, to significantly

reduce the GPU memory and computational cost.
3.1. Existing Issues for Camera-LiDAR Fusion

Data association between different sensor modalities is
arguably the most challenging issue for multimodal sensor
fusion. While 3D LiDAR points can be projected into a
corresponding image to obtain a 2D-3D association, the
LiDAR points are typically sparse resulting in incomplete
pixel association, and moreover, association typically con-
tains errors. There are multiple reasons for erroneous asso-
ciations including differing visibility, occlusions due to dis-
placed sensor viewpoints, as well as scan-time differences
from a moving platform, as illustrated in Fig. 3.

These mismatches are particularly problematic for inte-
grated fusion. These methods rely on fused data structures
including image-augmented LiDAR point cloud [33, 16],
LiDAR-augmented depth image [6] and BEV grid-map that
stores visual information and LiDAR points from a pillar
space into a grid [9, 18]. The mismatch error in the original
pixel association can harm the downstream learning due to
difficulty in distinguishing backgrounds and foregrounds.

The mismatch exists in feature domains as well. Align-
ing features using interpolation and cropping can result in
inaccurate correspondence between these feature vectors
and therefore likely degrading the final fusion performance.

Figure 3: Examples of mismatch in LiDAR and camera.
Left ellipse shows many points from the background pro-
jected on the vehicle. The right ellipse shows missing Li-
DAR points and so no association for camera pixels.

(a)

(b)

Figure 4: Example of M3D-RPN [1] SOTA monocular
image-only 3D detections. This example highlights the er-
ror in 3D properties learned from monocular images. The
red bounding boxes represent the predictions from M3D-
RPN, the green bounding boxes stand for the ground-truth.
As shown in (a), the prediction looks perfect in image, but
in 3D space (b), there is significant location error.

3.2. LiDAR and Camera Contributions to Fusion

LiDAR and cameras bring different types of information
to the detection task. LiDAR provides the best source of 3D
properties and shape information including 3D location and
size. However, due to the sparsity and lack of texture infor-
mation, semantic classification is a relatively weak spot for
LiDAR compared to camera, especially for smaller objects.

For camera images, besides object classification, the 3D
properties of the object can also be learned from appearance
and relative 2D size [25, 1, 10, 29]. These 3D properties can
be used for fusion-based 3D object detection. However, we
observed that the 3D properties obtained from a monocular
images are often orders of magnitude worse than from a
LiDAR point cloud, as illustrated in Fig. 4. Therefore, we
believe it is better to rely on images for classification than
for fine-tuning the 3D properties.
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3.3. Why Separate Fusion

Separate fusion can avoid some of the issues discussed
above. There are fewer ambiguities and nearly no mismatch
in the final detection candidates compared to raw input data
and intermediate features. Detection candidates are also
compact and simple to encode, enabling practical deploy-
ment for real-time applications. As we show next, Fast-
CLOC:s is not strictly separable, as 2D detections are cued
by 3D, but it maintains the advantages of separate fusion.

4. Fast-CLOCs

A high-level diagram of the proposed Fast-CLOCs archi-
tecture is shown in Fig. 2. This illustrates the three primary
components of the system: (1) 3D object detector, (2) 3D-
Q-2D image detector, and (3) CLOCs fusion. The details of
the system will be described and illustrated in this section.

The 3D detector processes the 3D point cloud to generate
3D candidates. Here detection candidates are used before
Non-Maximum Suppression (NMS) because many correct
detections are mistakenly suppressed during NMS [26]. A
lightweight 3D-Q-2D image detector is proposed to gener-
ate high-accuracy 2D detections for fusion. This proposed
detector uses the projected 3D candidates as its region pro-
posals and refines them to predict its own 2D detections.
Then, CLOCs [26] fusion is applied to fuse the 3D and 2D
candidates and produce more accurate 3D detection results.

4.1. 3D-Q-2D Image Detector
4.1.1 The Input Data

We propose incorporating a 3D-Q-2D image detector in-
stead of a separate complete 2D image detector used by the
original CLOC:s to significantly reduce the GPU memory
and computational cost. As shown in Fig. 5, for traditional
RCNN-style multi-stage 2D image detectors [30, 12, 4], the
first stage is designed to generate foreground region pro-
posals with high recall rate, then the following stages are
applied for further classification and bounding box refine-
ment. The quality of the proposals is of a paramount impor-
tance for the final detection output. The 3D detection can-
didates from the 3D detectors are of high quality and high
recall rate; therefore, the projected 3D detection candidates
can be leveraged as the 2D proposals for the 2D image de-
tector with no extra costs. We project all the 3D detection
candidates into the image plane using the calibration param-
eters between LiDAR and camera, and these constitute cues
for our 3D-Q-2D image detector.

Note that there are 8 corner points for each 3D bounding
box. After projecting them into the image plane, we use
the maximum and minimum zy pixel coordinates to build
an axis-aligned 2D bounding box. In this paper, “projected
3D detection candidates” refers to the corresponding axis-
aligned 2D bounding box in the image plane.
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Figure 5: Architecture comparison of our 3D-Q-2D image
detector and RCNN-style 2D image detector. The 3D detec-
tion candidates from the 3D detectors can be leveraged as
the 2D proposals for the 2D detector at no extra cost. There-
fore, there is no need to have a computationally expensive
first-stage network in our proposed 2D detector.

4.1.2 The Backbone Feature Extraction Network

We use ResNet-50 with Feature Pyramid Network
(FPN) [14, 22] pretrained in COCO [24] as the backbone.
The FPN produces a multi-scale feature pyramid in which
all levels are semantically strong, improving performance
compared to producing the single-scale output feature map
from the backbone. The feature level selection module as-
signs the level of a proposal based on its size in the original
image. Small size proposals will be assigned to low-level
high-resolution feature maps. The corresponding region of
interest (Rol) in the feature map are calculated based on the
downsample rate of that feature map (e.g., 4, 8, 16). Multi-
scale Rol align [13] is applied to extract features within the
Rol in the feature maps. Then, the extracted feature maps
are converted into fixed spatial extent of H X W (e.g., 7 X 7).
Bilinear interpolation is applied to avoid quantization of the
Rol boundaries or bins.

4.1.3 Detection Head

A bounding box regression head and a classification head
are attached to the & output Rol feature maps, where k£ is
the number of projected 3D detection candidates. The 2D
bounding box is parameterized using top left and bottom
right pixel coordinates. The bounding box prediction and
training parameterizations are defined as follows:

wPre = xgro _ LL'IIWO, hPTo — ygro _ y{)ra (1)
ter = (w1 — 2"7) /WP, tea = (x2 —a5"°) /WP (2)
tyr = (g1 —y1 )R, by = (y2 — 5 ) /PP (3)
to = (a7 —2)"0) JwP™®, thy = (x5 — 2577) /wP™ (4)
tye = (Wi =) /R0ty = (g —ys )/ (5)
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where variables (z1,y;) and (x2,y2) are the top left and
bottom right pixel coordinates of the 2D bounding box, with
height, i, and wdith, w. Variables x, xP"° and x* are for the
predicted 2D box, projected 2D box (from 3D detector) and
ground-truth 2D box, respectively.

The classification head maps the Rol features into soft-
max probabilities using (n + 1) classes, with n for objects
and 1 for background. Here note that although we have
softmax probabilities for each class, the output class of the
2D image detector is still determined by the 3D detector.
This is because for fusion of a 3D detection with class #A,
we ask from the image detecor “how likely is it that there
is an object with class #A in the projected region?”, rather
than “what is the class of the object within the projected
region?”. The latter is more challenging, requires a more
complicated network, and not needed for our fusion task.

4.1.4 Multi-Task Loss and Training

We have two loss functions for the proposed 2D detector,
namely smooth L1 loss for bounding box regression, and
focal loss [23] for classification and to address class imbal-
ances between targets and backgrounds. During training,
the intersection of union (IoU) between projected 3D de-
tection candidates (2D proposals) and the 2D ground-truths
are calculated. Proposals with IoU larger than 6,,, are la-
beled positive and those with IoU smaller than 6;,,, are la-
beled negative examples. Different classes have different
IoU thresholds. Only positive examples are included in the
bounding box regression loss, while both positive and nega-
tive examples contribute to the classification loss. The final
loss is the weighted sum of the two losses, following [17] to
use uncertainty to weigh the two losses during training.

The proposed network is trained using stochastic gradi-
ent descent (SGD). We use the Adam optimizer with max
learning rate learning rate of 1 * 10, weight decay 0.01,
and momentum 0.85 to 0.95 for 20 epochs.
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Figure 6: CLOC:s [26] fusion architecture.

4.2. CLOC:s Fusion Network

CLOC:s fusion is taken from [26] and illustrated in Fig. 6.
For completeness we summarize it here including several

small improvements.

4.2.1 Geometric and Semantic Consistencies

CLOC:s leverages an image-based IoU between 2D detec-
tions and projected 3D detections to quantify geometric
consistencies between 2D and 3D detections. Semantic
consistency ensures that only detection candidates with the
same category are associated during fusion.

4.2.2 2D-3D Association via a Sparse Tensor

The goal of the encoding step is to convert all 2D and 3D
detection candidates into a consistent joint representation
which can be fed into the CLOCs fusion network. For k
2D detections and n 3D detections, a k X n X 5 tensor T is
built, as shown in Fig. 6. For each element T'; ;, there are 5
channels denoted as follows:

Ti,j = {IOUiyj,S?D,S?D7dj,flag} (6)
where IoU; ; is the IoU between iy, 2D detection and
jin projected 3D detection, s?P and S?D are the confi-
dent scores for 7;;, 2D detection and j;;, 3D detection re-
spectively. d; represents the normalized distance between
the 7,5, 3D bounding box and the LiDAR. Unlike standard
CLOCs, we add another flag channel to highlight whether
a 3D detection overlaps with at least one 2D detection.
There are two reasons for this. First, we want to keep the
3D detection candidate that has no 2D detections overlap
with it. Because, as shown in Section 4.3, the recall rate for
the 3D LiDAR-based detector is higher than the 2D image-
based detector. Second, adding this new channel helps the
network distinguish this case from other examples with very
small ToU and s2P.

For each projected 3D detection, only few 2D detections
intersect with it, and elements T'; ; with zero IoU are set as
empty as they are geometrically inconsistent. Therefore the
k x n x 5 input tensor is a sparse tensor. The fusion network
only needs to learn from these overlapping examples which
are non-empty elements in the sparse input tensor.

4.2.3 Generating Fused Confidence Scores

The non-empty elements are fed to the fusion layers to gen-
erate fused confidence scores for all potential associations.
Unlike the original CLOCs, we use Residual blocks [14] in-
stead of standard 1 x 1 convolutional layers to improve the
robustness and performance. As shown in Fig. 6, assuming
there are p non-empty elements from the sparse input ten-
sor, the output has a shape of 1 x p x 1 which represents
the fused confident scores for p potential 2D and 3D associ-
ations. From this the output tensor T',,,; of shape k x n x 1
is built by filling p outputs based on their indices (i, j) in
the input tensor and set negative infinity elsewhere. Finally
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the output tensor is mapped to the fused probability map for
n 3D detections through maxpooling in the first dimension.

4.3. The Scalability of Fast-CLOCs

Fast-CLOC:s is a detection level fusion approach with a
3D-Q-2D block that leverages 3D detections to cue the 2D
detector. Thus it is crucial that the 3D detector have a high
recall rate, as detections it misses will also be missed by the
2D detector. Based on our statistics, we believe this is not a
problem because SOTA 3D-based detectors have far fewer
misses than SOTA 2D detectors. Fig. 7 shows statistics on
the KITTI dataset where we compare the number of true
positives and misses by SOTA 2D and 3D detectors. The 3D
detector misses only 219 objects that are detected by the 2D
image detector whereas the 2D detector misses 2491 objects
detected by 3D LiDAR detector. This high effective recall
rate of the 3D detector validates using the 3D-Q-2D detector
to replace an independent 2D image detector in fusion.

PV-RCNN and Cascade-RCNN

Total number of
objects: 14384
Number of True Positives from
PV-RCNN: 13726
Number of True Positives from
Cascade-RCNN: 11454
Number of Misses from Cascade-RCNN but

True Positives by PV-RCNN : 2491
Number of Misses from PV-RCNN but True

Positive by Cascade-RCNN: 219

0 2000 4000 6000 8000 10000 12000 14000

Figure 7: KITTI validation car detection comparison of
true positives and misses from a 2D detector (Cascade-
RCNN [4]) and 3D detector (PV-RCNN [31]). Only 219
objects are missed by 3D detector but detected by 2D de-
tector, while 2491 are missed by 2D detector but detected
by 3D detector. This shows that 3D detector has higher
recall rate than 2D detector, and validates using 3D-Q-2D
replacing an independent 2D image detector in fusion.

Detector Input Data 2D AP (%)
easy |moderate| hard
MS-CNN [3] Img 90.83| 89.88 (79.16

Cascade-RCNN [4] Img 91.35| 90.59 |80.64

SECOND [37] LiDAR [97.87| 92.37 [89.87
SECOND+3D-Q-2D [LiDAR+Img|98.75| 95.56 [90.14

PV-RCNN [31] LiDAR [98.26| 94.42 |89.24
PV-RCNN+3D-Q-2D|LiDAR+Img|98.52| 95.08 |89.48

Table 1: Comparison of 2D detection performance with
SOTA 2D image-based detectors and corresponding 3D de-
tectors on car class in KITTI validation set.

5. Experimental Results

We evaluate our Fast-CLOCs on the challenging
KITTI [11] and nuScenes [2] object detection benchmarks.
We implement Fast-CLOCs using three 3D detectors: SEC-
OND [37], PV-RCNN [31] and CenterPoint [39], termed
Fast-CLOCs-SEC, Fast-CLOCs-PV and Fast-CLOCs-CP
respectively.

5.1. Datasets

KITTI: There are 7481 training samples and 7518 testing
samples in KITTI object detection dataset. The true positive
metric is based on 2D/3D IoU. Methods are evaluated using
average precision. All the instances are classified into three
difficulty levels: easy, moderate and hard, based on their
2D bounding boxes’ height, occlusion level and truncation
level. For experimental studies, we follow the convention
in [8] to split the original training samples into 3712 training
samples and 3769 validation samples.

nuScenes: nuScenes 3D detection dataset contains 1000
driving segments of 20 seconds each, with 750, 150 and
150 segments for training, validation and testing respec-
tively. The annotation rate is 2Hz, so there are 28k, 6k and
6k annotated frames for training, validation and testing re-
spectively. There are 10 classes of objects. The main eval-
uation metrics are mean average precision over all classes
and nuScenes detection score (NDS) [2]. The true positive
metric is based on BEV center distance instead of IoU.

5.2. Evaluation Results

3D-Q-2D Image Detector: Before evaluating our Fast-
CLOC:s in 3D object detection, we first evaluate the pro-
posed 3D-Q-2D image detector. For Fast-CLOCs, the
quality of the input 2D detection candidates is of a
paramount importance. We use SECOND [37] and PV-
RCNN [31] as cueing 3D detectors for KITTI dataset,
termed as SECOND+3D-Q-2D and PV-RCNN+3D-Q-2D
respectively. CenterPoint is implemented for nuScenes
dataset and termed as CenterPoint+3D-Q-2D.

Table 2 shows the 2D detection performance of our
CenterPoint+3D-Q-2D in nuScenes validation set. Since
nuScenes does not provide 2D evaluation metrics, we ap-
ply the KITTI 2D evaluation metrics here. 3D detections
from CenterPoint [39] are projected to the image plane and
are evaluated in 2D detection metrics for comparison. All
2D detections are evaluated by Average Precision (AP) with
different IoU thresholds for different classes. As shown
in Table 2, compared to CenterPoint, our CenterPoint+3D-
Q-2D has much better performance for all classes except
for pedestrian. The main reason for this we think is for
nuScenes dataset, there are some driving sequences from
rainy weathers and night time. Detecting pedestrian in these

192



Method Barrier |Traffic Cone| Bicycle |Motorcycle|Pedestrian| Car Bus |Construction Vehicle| Trailer | Truck
IoU=0.5| IoU=0.5 |[IoU=0.5| IoU=0.5 | IoU=0.5 IoU=0.7|IoU=0.7 IoU=0.7 IoU=0.7{IoU=0.7

CenterPoint [39] 71.06 56.05 35.78 55.89 74.76 | 63.64 | 61.58 4.49 26.67 | 55.43

CenterPoint+3D-Q-2D| 72.60 59.63 56.22 | 65.25 72.99 | 76.25 | 73.08 15.94 34.26 | 56.84

Table 2: 2D detection performance on nuScenes validation set. Since nuScenes does not provide 2D evaluation metrics, we
apply the KITTI 2D evaluation metrics here. All 2D detections are evaluated by Average Precision (AP) with different 2D
IoU thresholds for different classes. CenterPoint is a 3D detector that here we evaluate on its 2D performance. By using
CeterPoint to cue a 2D detector, we can obtain much improved 2D performance which is better for fusion.

3D AP (%)

Detector S*

Car / Pedestrian / Cyclist

Bird’s Eye View AP (%)
Car / Pedestrian / Cyclist

easy moderate hard easy moderate hard
PV-RCNN (baseline) [31]| L |87.45/47.30/77.33|80.28 / 39.42 / 62.02| 76.21/36.97 / 55.52 | 91.91/52.42/79.62 | 88.10/44.85/ 64.53 |85.41/42.56 / 57.91
Fast-CLOCs-PV (Ours) | F [89.11/52.10/82.83(80.34/42.72/ 65.31| 76.98 / 39.08 / 57.43 | 93.02/57.19/83.34 | 89.49 / 48.27 / 67.55 |86.39 / 44.55 / 59.61
Improvement
(Fast-CLOCs-PV over PV-RCNN) - | +1.66/+4.8/+5.5 | +0.06 / +3.3/ +3.29|+0.77 / +2.11 / +1.91|+1.11 / +4.77 / +3.72 | +1.36 / +3.42 / +3.02 | +0.98 / +1.99/ +1.7
CLOCs_PVCas [26] F|894/—/—|80.67/—/—| 7715/ — [ — | 93.05/ — / — | 89.80 / — /| — | 86.57 /| — | —
CLOCs_SecCas [26] F|8.38/—/— | 7845/ — | — | 7245/ — [ — | 9116 / — / — | 8823 / — / — | 82.63 /| — | —-
F-PointNet [27] F [82.19/50.53/72.27(69.79 / 4215/ 56.12| 60.59/38.08 /49.01 | 91.17/57.13/77.26 | 84.67/49.57 / 61.37 |74.77 / 45.48 / 53.78
AVOD [18] F [76.39/36.10/57.19|66.47 / 27.86 / 42.08 | 60.23 /25.76/38.29 | 89.75/42.58 / 64.11 | 84.95/33.57 /48.15 |78.32/30.14/ 42.37
EPNet [16] F|89.81/—/— 7928/ —/ — | 7459 | — | — | 9422/ — /| — | 8847 /| — | — | 83.69 /| — | —
UberATG-MMEF [20] F|8840/ — / — | 7743/ — | — | 7022 /| — | — | 9367/ — | — | 8821 / — / — | 81.99 / — / —
UberATG-ContFuse [21] | F | 83.68 / — / — | 6878 /| — / — | 61.67 / — / — | 9407 / — /| — | 8535/ — | — | 7588 | — | —-
PI-RCNN [35] F|8437/—/— | 7482/ —/— | 7003/ —/ — | 9144 /| — / — | 8581 / — / — | 81.00 / — / —-
3D-CVF [40] F|8.20/—/— |8.05/—/— | 7311/ —/— | 9352/ — / — | 89.56 | — | — | 8245/ — | —

*In S column, L represents LiDAR-only. F stands for camera-LiDAR fusion-based approach.
Table 3: Performance comparison of object detection with SOTA camera-LiDAR fusion methods on all classes of KITTI test
set. Evaluation is by Average Precision (AP) with best in green and second-best in blue. Fast-CLOCs fusion outperforms
other SOTA fusion-based detectors in most measures, and has same level of performance compared to CLOCs_PVCas [26].
While CLOCs_PVCas requires significantly more computation (shown in Table. 5).

scenarios from camera images are more challenging than
using LiDAR. Table 1 compares 2D detection performance
with SOTA 2D image detectors and corresponding 3D de-
tectors on car class in KITTI validation set. This shows our
3D-Q-2D image detector outperforming SOTA 2D image
detectors by a large margin.

5.3. Main Results

We present our 3D detection results on the test set of
KITTI in Table 3 and the test set of nuScenes in Table 4. In
the KITTT test set, our Fast-CLOCs-PV outperforms most
of the SOTA fusion-based methods in all three classes. Note
that the official open-source code of PV-RCNN performs
slightly worse than the private one owned by the PV-RCNN
authors shown on the KITTI leaderboard, and our Fast-
CLOCs-PV result is based on the open-source PV-RCNN.
The baseline PV-RCNN in Table 3 refers to the open-source
PV-RCNN. As shown in Table 3, compared to baseline PV-
RCNN, our Fast-CLOCs-PV increases the performance in
3D and BEV object detection by a large margin. Only
CLOCs_PVCas has slightly better performance than ours
(less than 0.4% AP) in car class. But CLOCs_PVCas re-

Method Setting*|mAP 1|{NDS 1
CenterPoint [39] L 58.0 | 65.5
Fast-CLOCs-CP (Ours) F 63.1 | 68.7

Improvement

( Fast-CLOCs-Ié‘P over CenterPoint) : i e
PointPainting [33] F 46.4 | 58.1
3D-CVF [40] F 52.7 | 62.3
WYSIWYG [15] L 35.0 | 419
PointPillars [19] L 40.1 | 55.0
CVCNet [7] L 553 | 644
PMPNet [38] L 454 | 53.1
SSN [44] L 46.3 | 56.9
CBGS [43] L 52.8 | 63.3

*In Setting column, L represents LiDAR-only. F stands for
camera-LiDAR fusion-based approach.
Table 4: Performance comparison of 3D object detec-
tion with SOTA methods on nuScenes test set. We show
the primary evaluation metrics nuScenes Detection Score
(NDS) [2] and mean Average Precision (mAP).

quires running PV-RCNN and Cascade-RCNN simultane-
ously which cannot be deployed on a single desktop-level
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3D Detector

2D Detector Fusion Total

Method
Name |GPU Mem |Speed

Name GPU Mem |Speed| GPU Mem|GPU Mem | Speed

CLOCs_PVCas [26] | PV-RCNN | 3-4GB |9.5Hz
CLOCs_SecCas [26]| SECOND | 2.5-3GB |28Hz

Cascade-RCNN| 5+GB 4Hz

~1GB 10+GB | <4Hz
~1GB 10+GB | <4Hz

Fast-CLOCs-PV | PV-RCNN | 3-4GB |9.5Hz
Fast-CLOCs-CP  |CenterPoint| 3.5-4GB | 10Hz
Fast-CLOCs-SEC | SECOND | 2.5-3GB |28Hz

3D-Q-2D

~1GB 6.5GB | ~8Hz
1-1.5GB | 18Hz| ~I1GB 6.5GB | ~8Hz
~1GB 5.5GB |~13Hz

Table 5: Comparison of running speed and GPU memory usage between CLOCs [26] and Fast-CLOCs on RTX 3080 GPU.
The original CLOCs [26] requires running Cascade-RCNN [4] in addition to a 3D detector simultaneously, so it cannot run all
together on a single desktop-level GPU system, while Fast-CLOCs can and has better or same level of detection performance.
We cannot test running CLOCs_PVCas and CLOCs_SecCas on our RTX 3080 due to out of GPU memory issue, but since
Cascade-RCNN can only run with around 4Hz, their final inference speeds would be definitely slower than 4Hz. While

Fast-CLOC:s is much faster than that.

GPU platform, while Fast-CLOCs-PV can. 3D-CVF’s per-
formance is close to ours in easy and moderate level for
car class, but our Fast-CLOCs-PV outperforms 3D-CVF in
hard level by a large margin (nearly 4% AP better). In
nuScenes test set, our Fast-CLOCs-CP outperforms other
published SOTA methods in both mean Average Precision
(mAP) and nuScenes Detection Score (NDS). Our Fast-
CLOCs-CP outperforms baseline method CenterPoint by
5.1% and 3.2% in mAP and NDS.

Speed and Memory: For self-driving vehicles, the com-
puting resources are limited. It is challenging to install
server-level multi-GPU system on the vehicle. Compared
to other heavy fusion-based approaches, Fast-CLOCs can
run in near real-time (8-13Hz) on single standard desktop-
level GPU. All our experiments are done using NVIDIA
RTX 3080 with 10 GB GPU memory. The running speed
and GPU memory comparison results are shown in Table. 5.
The original CLOCs [26] and some other fusion-based ap-
proaches [33, 41] require running Cascade-RCNN [4] or
Mask-RCNN [13] in addition to a 3D detector simultane-
ously. These methods above are slow and cannot be de-
ployed on a single desktop-level GPU system, while Fast-
CLOC:s can and has better or same level of detection perfor-
mance with faster speed.

Qualitative Results: Due space constraints qualitative re-
sults and analyses are in the supplementary materials.

Ablation Study: We evaluate the contributions of each
component within the proposed 3D-Q-2D image detector,
the results are shown in Table 6. Rol Align [13] applies bi-
linear interpolation to avoid quantization of the Rol bound-
aries and further improve the detection performance. FPN
provides a multi-scale feature pyramids which are helpful
for detecting small objects (more than 2% AP improve-
ment in hard level). The box regression module refines the

box 2D AP (%)
regression | easy |moderate| hard
95.97| 90.04 [86.52
97.03| 90.67 |87.20
v 97.23| 91.17 |87.26
v v 97.83| 92.66 |89.54
v v v 98.75| 95.56 |90.14

focal loss|Rol Align|FPN

ASENENEN

Table 6: Ablation studies of different components in the
proposed 3D-Q-2D image detector on KITTI validation set.
SECOND [37] is applied to cue the 2D detector. Rol
Align [13] applies bilinear interpolation to avoid quantiza-
tion of the Rol boundaries or bins. Box regression repre-
sents the 2D bounding box regression head, without it the
proposed 2D detector would output projected 3D boxes di-
rectly with visual confidence score.

projected 3D detection candidates and generates better 2D
bounding boxes. Ablation study on the modifications of the
CLOC:s fusion network is provided in the supplementary
materials.

6. Conclusion

In this paper, we propose Fast Camera-LiDAR Object
Candidates (Fast-CLOCSs) fusion that can run high-accuracy
3D object detection in near real-time. Fast-CLOCs intro-
duces a lightweight 3D-Q-2D image detector to extract vi-
sual features from the image domain to improve 3D detec-
tions significantly. Compared to other separate fusion-based
approaches that run independent 2D and 3D detectors si-
multaneously, Fast-CLOCs requires much less GPU mem-
ory and operates in real time on a single desktop-level GPU.
At the same time, Fast-CLOCs achieves top or second-to-
top performance in most categories compared to other fu-
sion methods on KITTI and nuScenes datasets.
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