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Abstract

Binaural audio gives the listener an immersive experi-
ence and can enhance augmented and virtual reality. How-
ever, recording binaural audio requires specialized setup
with a dummy human head having microphones in left and
right ears. Such a recording setup is difficult to build
and setup, therefore mono audio has become the preferred
choice in common devices. To obtain the same impact as
binaural audio, recent efforts have been directed towards
lifting mono audio to binaural audio conditioned on the
visual input from the scene. Such approaches have not
used an important cue for the task: the distance of dif-
ferent sound producing objects from the microphones. In
this work, we argue that depth map of the scene can act
as a proxy for inducing distance information of different
objects in the scene, for the task of audio binauralization.
We propose a novel encoder-decoder architecture with a
hierarchical attention mechanism to encode image, depth
and audio feature jointly. We design the network on top of
state-of-the-art transformer networks for image and depth
representation. We show empirically that the proposed
method outperforms state-of-the-art methods comfortably
for two challenging public datasets FAIR-Play and MUSIC-
Stereo. We also demonstrate with qualitative results that the
method is able to focus on the right information required
for the task. The qualitative results are available at our
project page https://krantiparida.github.io/
projects/bmonobinaural.html

1. Introduction
Humans can infer approximate location of different ob-

jects by hearing the sound they emit. This is possible be-
cause of two ears and the separation between them. Due to
this separation there is a difference in sound waves received
by both ears in terms of amplitude and time. These differ-
ences, known as Interaural Level Difference (ILD) and In-
teraural Time Difference (ITD), are exploited by the brain

to infer spatial properties eg. position of the sound source
[28]. Thus, while audio recorded with a single microphone
loses all such characteristics whereas binaural audio recre-
ates original sound more accurately and gives the listener a
feeling of being in the recording place.

The recording setup for binaural audio requires two mi-
crophones placed inside a dummy human head’s ears. Such
setup is closer to human hearing as it accurately models the
sound reflection around the head and within the folds of the
ear. Since binaural recording requires a full size dummy
head, it is too bulky to be integrated into standard devices
such as cameras or smartphones. However, we could get
high quality binaural audio using standard handheld devices
if we could lift mono audio to binaural audio.

The aim of this work is to tackle this problem of audio
binauralization: take a mono channel audio as input and
predict the corresponding two channel binaural audio. In
most prior approaches [11, 16, 39, 36], the visual informa-
tion in the form of RGB image is used, in addition to the
mono audio, to predict the binaural audio. The RGB im-
age serves as an important side information for encoding
appearance of the sound producing sources and their rela-
tive locations in the scene. But most existing approaches
ignore other important information, like the distance of the
source from the microphone or the geometry of the scene.
In [29, 12] similar information in the form of explicit po-
sition and orientation of both source and receiver were fed
along with the audio input. This improved the performance
of the system as compared to using RGB images only. How-
ever, doing so requires specialized equipment to track posi-
tion of the source(s) as well as the listener, which is infea-
sible in general. We address this by using depth features of
the scene along with the visual appearance features as auxil-
iary signals in the process of audio binauralization. Further,
image, depth and binaural audio have also been shown to
be interrelated in [24]. However, unlike [24], where the au-
thors used binaural echoes to improve the depth prediction,
here we perform the reverse task of using the depth features
to obtain binaural audio. Here, depth features can be con-

13347



sidered as a proxy for encoding both position information
of sources and geometry of the scene.

As opposed to the prior approaches [11, 39], we use vi-
sual transformer [26] instead of convolutional layers as the
backbone for extracting both visual and depth features. We
propose a carefully designed cross-modal attention network
to better associate different audio components present in the
sound to the location and depth or the corresponding objects
in the scene. We also separate magnitude and phase losses
for the predicted audio. We do this as both these losses are
very different mathematical function and operate in differ-
ent range and factorizing them makes the learning easier.
We evaluate our approach on two challening public datasest
for the task, ie. FAIR-Play and MUSIC-Stereo. We show
that our approach outperforms the previous stat-of-the-art
approaches quantitatively, and produces meaningful inter-
pretable qualitative results.

2. Related Work
Audio-Visual Binaurlization: Recently the task of au-

dio binauralization has been attempted in a data-drive fash-
ion [11, 16, 19, 39] as compared to earlier approaches that
use signal processing techniques [14, 31, 40]. All the sig-
nal processing approaches model the system in the form of
a Linear Time Invariant (LTI) system. In most of the cases
[14, 40], HRTFs are measured and then convolutions are
performed with them to get the final binaural audio. More
recently, data driven approaches have been tried for the task.
In all the recent data driven approach some form of image
information as auxiliary data have been used. In [11], the
authors have used RGB frame as side information for binau-
ral audio generation. In [16], the authors have used both the
RGB frame and optical flow along with audio features for
binaural audio generation. In the similar lines, the authors
in [19], have used both RGB and optical flow for generating
full First Order Ambisonics for 360-deg. videos. In [39], the
authors approached the problem of audio binauralization in
a multi-task setting by combining the task of source sepa-
ration with it. In [25], the authors have improved the task
of audio binaurlization by performing localization of sound
sources in the image. In [12, 29], the authors performed
binauralization of speech and noise signal played using a
speaker by explicitly using the position and orientation of
source and listener along with the audio features. A prelim-
inary investigation of the usefulness of depth features for
the task of binauralization is also available in [23].

Binaural audio and Depth: There is an inherent inter-
play between binaural audio and the depth of the objects in
the scene. As our aim in the paper is to improve the task of
bianauralization using depth information, the reverse task,
i.e. improving depth prediction from binaural audio has also
been attempted. We give here some of the recent works in
this line. In [4], the depth map of the scene is estimated

Figure 1. Illustration of the concept. x1(t) and x2(t) are two
sound sources located at a distance d from the recording device.
The sound received by the left and right ears will be different
because of the head shape and the depth of the sound produc-
ing source, both in amplitude and time axes. Human brain ex-
ploits these differences for inferring the spatial information of the
sources.

directly from received bianural echoes. In [9, 24], authors
have used the received binaural echoes along with images to
improve upon the task of depth prediction from images. In
similar lines, the authors in [34] have solved both the audio
spatialization and depth prediction in multi-task framework.
Here, instead of echoes, a two channel audio directly from
the sound source is used for both depth estimation of the
scene and audio spatialization, where the number of audio
channels are increased to eight from two.

The depth of scene as an additional information has also
been shown to be useful in other tasks such as image re-
lighting [15], 3D pose estimation [35] etc.

Audio-Visual Learning: As our proposed work comes
under the broad area of audio-visual processing, we give
here some recent works in this area. In most of the works,
semantic [2, 3, 20], temporal [21], and spatial correspon-
dence [18, 37] between between both the modalities have
been explored for learning features individually for each
modality in a self-supervised manner. A separate stream of
research have fused information from both audio and visual
modality to improve upon tasks such as audio source sepa-
ration [7, 8, 10, 38], sounding object localization [1, 13, 32],
zero-shot learning [17, 22], saliency prediction [33].

3. Approach
Our task is to convert a mono channel audio, x(t) to a

binaural audio with (yl(t), yr(t)) as the left and right chan-
nels respectively. To achieve this, we design a transformer
network based deep neural network with three input modali-
ties, ie., RGB image, depth and mono channel audio. Using
this multimodal network, we exploit inherent relationship
between the two channels of audio and the sound source’s
distance and relative location in the scene.

Consider a simple case of two sound sources in the scene
x1(t) and x2(t), at a depth d, with one in the extreme left of
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Figure 2. Block diagram of proposed architecture. The network takes mono audio and RGB image as input, and produces corresponding
binaural audio consistent with the visual scene. (a) Image and Depth network input the same RGB image producing image and depth
features, fI and fD respectively. Similarly, (b) audio encoder inputs mono audio producing audio features fA. (c) The image, audio and
depth features are fed into individual decoder blocks having individual subnetworks to predict magnitude, STFT and phase of the difference
of both channels. Each decoder has the same architecture. The detailed architecture of one such decoder is shown in (d). In each decoder,
cross modal attention is computed for both image-audio and depth-audio at each layer. Both the attention outputs are then concatenated
with audio features to obtain the final predicted binaural audio. We also use skip connections to concatenate features from audio encoder
layer to each layer of the decoder.

visual field and other in the extreme right as in Fig.1. The
mono audio, x(t), is the combination of two sources, i.e.
x(t) = x1(t) + x2(t). Now, when the sound is received at
each ear, there will be a time difference between the arrival
of x1(t) and x2(t). For the left ear, x1(t) will arrive earlier
than x2(t) and the reverse for the right ear. Assuming no
reflecting and absorbing materials in the scene, the direct
sound received at left and right ear can be modelled as

yl(t) = α1x1(t− t1) + α2x2(t− t2) (1)
yr(t) = α1x1(t− t2) + α2x2(t− t1), (2)

where, t1, t2 are the time delays with t1 < t2, and α1, α2

are the amplitude scaling factors. The time delays are sym-
metric wrt both ears because of the symmetric placement
of sound sources. Let the distance for the left and right
ear be d1 and d2 for source x1. Similarly, the distance
for right sound source will be d2 and d1 for left and right
ear. There is a direct relationship between t1 and d1, i.e.
ti =

di

vs
∀i = 1, 2, where vs is the velocity of sound in air.

The amplitude scaling factor, α1, α2, also have a direct re-
lationship with the distance as the wave attenuates more as
it travels longer distance. The ITD and ILD described in the
previous section are due to t1, t2 and α1, α2 respectively.

Hence, for the network to predict realistic binaural au-
dio it should effectively model ITD and ILD. This depends
upon the relative arrangement of sound sources and its dis-

tance from the recording device. Taking note of this fact,
we use both depth and image features of the underlying vi-
sual scene to infuse depth and position information of dif-
ferent sound sources in the prediction process. To achieve
this, we propose a network consisting of carefully designed
cross-modal attention mechanism to associate features from
RGB, mono channel audio and depth.

Following prior works [11, 39, 36], we use mix of both
channels, xm(t) = xl(t) + xr(t) as input. The mixing
of both channels looses spatial properties, and hence is a
mono audio signal. For the output instead of predicting
the individual left and right channels, we predict the dif-
ference between them, ie. xo(t) = xl(t) − xr(t). Finally,
we perform simple arithmetic manipulation to get back the
individual signals, where, x̂l =

xm+x̂o

2 and x̂r = xm−x̂o

2 .
We use data in frequency domain by performing STFT on
the time domain signal. We represent the STFT of in-
put as A = F(xm) ∈ R2×F×T and STFT of output as
O = F(xo) ∈ R2×F×T . Further, we obtain the magni-
tude (Omag) and phase (Ophs) of the complex output sig-
nal, where Omag = ∥O∥2 and Ophs = tan−1( Re(O)

Im(O) ).

3.1. Overall Architecture

We show the overall architecture of our approach in
Fig. 2. The network consists of (i) audio encoder network,
(ii) image network, (iii) depth network and (iv) audio de-
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coder network. The audio encoder network is a convolu-
tional network that takes the mono audio as input and gives
audio features as output. Both the image and depth net-
work are self-attention transformer networks. Both the net-
works have the same architecture and take RGB image as
input to produce image and depth features respectively. The
audio decoder network further has three different sub net-
work, where one outputs directly the complex STFT of the
difference of both channels and other two predicts the mag-
nitude and phase of the difference independently. We per-
form cross-modal attention both for image-audio and depth-
audio features separately at each layer of all the subnet-
works of audio decoder network. The output of the network
is the difference between the right and left channel audios.
This difference prediction impedes the networks tendency
to copy the same audio to both the channels, as observed
first by [11]. We now describe each component below.

3.2. Image and Depth Network

For extracting image and depth features from RGB im-
age, I ∈ R3×H×W , we use the recently proposed vision
transformer (ViT) [6] backbone. We use ViT-Large ar-
chitecture consisting of 24 attention blocks for both im-
age and depth features. Following [26], we obtain features
from four different layers of the transformer network, i.e.
l ∈ {6, 12, 18, 24}, to get information at the varying level
of details. Finally to align the number of channels of depth,
image and audio networks, we perform a 1 × 1 convolu-
tion on features from each of the four layers resulting in d
channels. We then concatenate features from all the four
layers and obtain image and depth features fI ∈ R4d×h×w

and fD ∈ R4d×h×w respectively, where h × w represents
total number of patches in the image. We then use both the
features as input for hierarchical attention calculation in the
network. We initialize the image and depth network with
ImageNet [5] and MIX6 [27] respectively.

3.3. Audio Encoder Network

Similar to [11], our audio encoder network consists of
a UNet [30] style convolutional encoder architecture. We
convert the time domain audio signal xm(t) into a STFT
representation and concatenate both the real and imaginary
to be fed as input to audio network, i.e. A ∈ R2×F×T ,
where F and T are the no. of time-frequency bins in STFT.
We then pass it through successive layers of convolutions.
Finally, we obtain audio features, fA ∈ RdA×f×t as the
output of audio encoder.

3.4. Audio Decoder and Multimodal Fusion

Audio Decoder. We adapt and build upon the audio de-
coder proposed in [11]. The decoder is further divided
into three subnetworks and all share the same architecture
whereas the output is different for each of the network. Each

of the subnetwork in the decoder consists of 5 fractionally
strided convolutional layers, which increases the dimension
of input tensor successively at each layer. Each of the net-
work takes the input from all three modalities. The first
subnetwork, Mag subnetwork, predicts the magnitude of
STFT of the difference signal, |Õ| ∈ R1×F×T . The sec-
ond network, STFT subnetwork, directly predicts the STFT
of difference signal and produces a mask, M ∈ R2×F×T ,
with values in the range [−1, 1]. We obtain the final output
to be the difference between right and left channel audio,
Õ ∈ R2×F×T . We predict it by multiplying the mask, M
with the mixed input signal, A, i.e. Õ = M ·A. The final
subnetwork, Phs subnetwork, predicts the phase of the dif-
ference signal. Similar to STFT subnetwork, the Phs sub-
network predicts a mask with values in the range [−1, 1]
for each of the time-frequency bin in the spectrogram, i.e.
Mp ∈ R1×F×T . As the phase of any signal lie in the range
[−π, π], we multiply Mp with π to get the predicted phase,
i.e. Phs(Õ) = π × Mp. At the time of prediction, we use
the STFT subnetwork for obtaining the final output.

Multimodal Fusion. We perform similar multimodal fu-
sion for all three subnetworks. The fusion operation com-
bines the information from all three inputs at different
scales. We show the fusion approach in the right side of
Fig. 2. The image and depth features are already extracted
from different layers. For audio, each time-frequency bin in
the feature representation can be considered as an unique
audio concept.Each of the audio concepts can act as ba-
sic building blocks of different audio sources present in the
scene. These audio concepts represent different character-
istics sound of the source. This characteristic sound can
contain frequency variation within the source and a single
audio concept can also contribute to multiple sound sources.
E.g. the audio concept for a 7 string guitar can be the sound
produced by each of the strings. Similarly an audio con-
cept for acoustic guitar can also be shared by electric or
classical guitar or by any similar sounding object such as
piano or saxophone. So, our goal in multimodal fusion is
to effectively associate different audio concepts to different
object regions. Similar to the time-frequency bin in the au-
dio representation, each co-ordinate in the spatial domain
of the visual/depth features corresponds to certain region
in the image. If the region contains a sounding object then
the corresponding audio component should be weighted and
also the depth value in the region should be used for the fi-
nal output. We calculate two attention maps (i) between the
image and audio features, and (ii) between the depth and
audio features for fusing the information.

We design the network such that the output channels of
audio encoder network is equal to the output channels of
image and depth network, i.e. dI = dD = dA = 4d. The
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attention is calculated between every pair of points.

f img
att (i, j, k, l) =

fI(:, i, j)
T fA(:, k, l)√

∥fI(:, i, j)∥22
√

∥fA(:, k, l)∥22
∀i, j, k, l

(3)

fdepth
att (i, j, k, l) =

fD(:, i, j)T fA(:, k, l)√
∥fD(:, i, j)∥22

√
∥fA(:, k, l)∥22

∀i, j, k, l

(4)

where, f img
att , fdepth

att ∈ Rh×w×f×t are the image-audio and
depth-audio attention respectively. We then resize the 4D
attention tensors into a 3D tensors such that the resulting
attention maps are of size [(h × w) × fi × ti], where fi, ti
are the input spatial feature dimension in the ith layer of
decoder. For the first decoder layer fi, ti is exactly equal to
the dimension of the audio encoder output. After resizing
operation the number of channel dimension in the feature
map corresponds to all the distinct regions in the image. We
interpret this as the attention weight in all the regions of
the image for the particular audio concept. We obtain final
attention map at ith decoder level by concatenating both of
them over the spatial axis.

f i
att = Concat(Resize(f img

att , fdepth
att )) (5)

Next, we concatenate the attention map with the audio
features and feed the result to the next layer of the decoder.
We also use skip connection at each decoder layer and con-
catenate features from corresponding encoder layer except
for the first layer of decoder. As audio network increases
the feature dimension in each level, it also increases the
time-frequency bins in the feature representation and hence
the finer details in the audio comes successively with each
decoding layer. In order to account for the coarse to fine
representation of the audio we add the image and depth fea-
tures similar to first layer to obtain the attention map. To
perform the attention calculation at each layer, the feature
channel of the image and depth should align with the chan-
nels of audio features. To perform the alignment we use a
one-layer neural network followed by GELU non-linearity
to make the feature dimensions of both the modalities equal.
For matching the channels of audio and image feature, the
one-layer neural network used for every layer has weights
of dimension [dI , di] and [dD, di] for image and depth fea-
tures respectively. Please note that for first layer of decoder,
i.e. i = 1, we do not use one-layer network as the channels
are already aligned.

3.5. Loss Function and Training

We use three individual losses for each of the subnet-
works in the decoder. For the STFT subnetwork, follow-
ing earlier works [11, 39], we use an L2 loss between the
ground truth and network output, given as

L(Ô,O) = ∥Ô−O∥22 (6)

where, Ô,O are ground truth and predicted difference be-
tween the left and right channel audio. Similar to the STFT
subnetwork, we also minimize the L2 loss for magnitude
and phase, given as

Lmag(Ômag,Omag) = ∥Ômag −Omag∥22 (7)

Lphs(Ôphs,Ophs) = ∥Ôphs −Ophs∥22 (8)

where, Ômag, Ôphs are the predicted magnitude and phase
obtained from the respective network, Omag,Ophs are the
magnitude and phase of the ground truth signal. It is to be
noted here that minimizing STFT loss in eq. 6 also implic-
itly minimizes magnitude and phase. We have added indi-
vidual magnitude and phase loss possibly penalizing each
term twice as this was found to be helpful in prior work
[29]. Further to enforce the reconstruction of magnitude
and phase is correct, we add a reconstruction loss. Here, we
reconstruct back the real and imaginary part of the spectro-
gram and force it to be closer to the ground truth. We calcu-
late the reconstruction loss Lrec by estimating the real and
imaginary part of the spectrogram using ÔmagCos(Ôphs)

and ÔmagSin(Ôphs) respectively. We obtain the recon-
structed STFT, Ô by concatenating both the real and imag-
inary channels. The reconstruction loss is the L2 loss be-
tween the reconstructed STFT, Ô and original STFT O.

Lrec = ∥Ômage
iÔphs −O∥22 (9)

The final loss function used for training is weighted com-
bination of all the losses, given as

Ltot = L+ αmagLmag + αphsLphs + αrecLrec (10)

where, αmag, αphs, αrec are the hyperparameter denoting
weights of individual loss and are set empirically. We train
the whole network in an end-to-end manner.

4. Experiments
Dataset. We report results on two dataset FAIR-Play and
MUSIC-Stereo. For the FAIR-Play dataset [11], we use the
five new splits as proposed in [36] for our experiments. The
dataset of Music-Stereo was proposed in [36] by combin-
ing two existing datasets MUSIC-21 and MUSIC-duet pro-
posed in [38] originally for the task of source separation.
As the youtube IDs for MUSIC-Stereo is not publicly avail-
able, we select the binaural videos only from MUSIC-21
and MUSIC-duet as mentioned in [36]. In order to select the
binaural videos from both the dataset, we calculate sum of
the difference of left and right channel audio and then set a
threshold of 0.001 for selecting videos with binaural audio.
We considered those that have sum of difference more than
0.001 between both channels as binaural and discarded the
rest. We obtained 713 unique videos to have binaural audio.
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Modality STFT (↓) ENV (↓) Mag (↓) Phs (↓) SNR (↑)
audio 1.337 0.166 2.674 1.560 5.01

+image 1.332 0.161 2.665 1.499 5.102
+depth 1.334 0.165 2.668 1.553 5.036

+image+depth 1.158 0.155 2.316 1.487 5.670
Table 1. Audio binauralization by combining different modal-
ities. Using audio only (audio), audio with image features (+im-
age), audio with depth features (+depth) and combination of audio,
image and depth features (+image+depth). ↓ and ↑ indicates lower
is better and higher is better respectively.

We then divide the videos into 80-10-10 into train, valida-
tion and test. Following the setting of [36], we split the
videos into 10 second clips and we obtain a total of 15026
clips, around 8x more than FAIR-Play. For input data rep-
resentation and preprocessing, we follow the same settings
as described in earlier works [11, 39, 36].
Metrics. Following [36], we use five different metric for
evaluation. STFT distance measures the squared L2 dis-
tance between short time Fourier transform (STFT) of each
channels for ground truth and predicted audio. Envelope
(ENV) distance measures the L2 difference of the enve-
lope of ground truth and predicted audio for both chan-
nels, where we calculate the envelope from time-domain
audio signal using Hilbert transform. Similar to STFT dis-
tance, we obtain Magnitude (Mag) distance by calculating
the squared L2 distance between the magnitude of STFT
for both channels of ground truth and predicted audio. For
Phase (Phs), we measure the L1 difference between the
phase of ground truth and predicted difference signal. We
also report the Signal-to-noise ratio (SNR) for the predicted
binaural audio, where signal refers to the ground truth bin-
aural audio and noise refers to the distance between ground
truth and prediction.

4.1. Ablation Study

In this section, we give the ablation results of our ap-
proach to demonstrate following points. (i) Impact of depth
features over the image features. (ii)Contribution of each
term of the loss function on the performance.
Impact of adding depth. To analyse the effectiveness of
depth for the task of audio spatialization, we study the im-
pact of each modality on the performance of the network.
We add each of the modality (image, depth) one by one to
the network and then combine all the modalities to verify
the contribution of each modality. For a fair comparison,
we use exactly the same transformer architecture with equal
number of parameters for both image and depth. The results
are shown in Tab. 1. We report the performance in the split-
1 of modified FAIR-PLAY dataset for all the models.

From Tab. 1, we observe that there is a improvement in
performance for all the metric with image + mono audio
as input over an audio only input (Tab. 1, row 1 vs row
2). The value of STFT, ENV, Mag, Phs decreases from
1.337, 0.166, 2.674, 1.560 to 1.332, 0.161, 2.665, 1.499

L Lmag Lphs Lrec STFT (↓) ENV (↓) Mag (↓) Phs (↓) SNR (↑)
✓ ✗ ✗ ✗ 1.206 0.158 2.413 1.488 5.418
✓ ✓ ✓ ✗ 1.185 0.157 2.401 1.481 5.497
✓ ✗ ✗ ✓ 1.190 0.158 2.411 1.487 5.435
✓ ✓ ✓ ✓ 1.171 0.156 2.342 1.478 5.573

Table 2. Contribution of different losses on performance. Per-
formance after applying different combination of losses. We ob-
serve that adding all the losses gives the best performance. ↓ and
↑ indicates lower is better and higher is better respectively.

whereas the SNR value increases from 5.01 to 5.102.
Similarly, we observe a decrease of STFT, ENV,
Mag and Phs to 1.334, 0.165, 2.668, 1.553, 5.036 from
1.337, 0.166, 2.674, 1.560 and increase of SNR to 5.036
from 5.01 by using depth + mono audio as input as
compared to audio input only (Tab 1, row 1 vs row 3).
This shows that both the image and depth features are
helpful towards a better audio binauralization. As both the
image and depth backbone contain exactly same number
of parameters, the improvement in performance can be
attributed to the information encoded in it. Adding image
results in a better performance in all the metrics over mono
audio only input as compared to depth. This could be
owed to the presence of semantic information in the RGB
images in the form of appearance and relative location
of different sound producing regions. Although adding
depth information alone doesn’t perform as good as to the
approach of adding image information only but it performs
better than the approach of using mono audio only as input.
This is possibly due to the fact that depth input has relative
distance information within the scene, and results in better
binauralization as compared to mono audio input. From
this observation, we hypothesize that combining depth with
RGB will provide more contextual information leading to
better localization of sound sources by the network and
in turn better performance in binauralization task. This
is also evident with the empirical performance of adding
both depth and image features along with audio, which
results in a significant improvement in performance in all
the metrics. There is an an improvement of 13% for STFT,
∼ 6% for ENV, ∼ 13% for Mag, ∼ 5% for phs and ∼ 13%
for SNR over mono audio input (Tab 1, row 1 vs row
4). This observation confirms that both image and depth
information are helpful for the task of binauralization.
Contribution of different Losses. In order to get
the contribution of individual losses in the final per-
formance of the network, we add various combina-
tions of the loss. We report the performance in split-
1 after 50 epochs in Tab. 2. From Tab. 2, we ob-
serve that all the losses contribute equally to the per-
formance. We observe that adding both magnitude and
phase loss improves all the metrics, i.e. STFT, ENV,
Mag, Phs, SNR from 1.026, 0.158, 2.413, 1.488, 5.418 to
1.185, 0.157, 2.401, 1.481, 5.497 respectively (row 1 vs
row2 in Tab. 2). This proves that minimizing explicit mag-
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FAIR-Play MUSIC-Stereo

Method STFT ↓ ENV ↓ Mag ↓ Phs ↓ SNR ↑ STFT ↓ ENV ↓ Mag ↓ Phs ↓ SNR ↑
Mono-Mono [36] 1.024 0.145 2.049 1.571 4.968 1.014 0.144 2.027 1.568 7.858
Mono2Binaural [11, 36] 0.917 0.137 1.835 1.504 5.203 0.942 0.138 1.885 1.550 8.255
PseudoBinaural (w/o sep.) [36] 0.951 0.140 1.914 1.539 5.037 0.953 0.139 1.902 1.564 8.129
PseudoBinaural [36] 0.944 0.139 1.901 1.522 5.124 0.943 0.139 1.886 1.562 8.198
Ours 0.909 0.139 1.819 1.479 6.397 0.670 0.108 1.340 1.538 10.754
Sep-Stereo [39, 36] 0.906 0.136 1.811 1.495 5.221 0.929 0.135 1.803 1.544 8.306
Augment-PseudoBinaural [36] 0.878 0.134 1.768 1.467 5.316 0.891 0.132 1.762 1.539 8.419

Table 3. Comparison with existing approaches We report the results for existing approaches directly from [39]. ↓ indicates lower is
better and ↑ indicates higher is better. The method in the last two rows uses atleast 2x more data than ours and solve both task of audio
binauralization and source separation jointly. Our approach outperforms other approaches in similar setting in almost all the metric and
also performs comparably to superior approaches mentioned in the last two rows of the table for FAIR-Play dataset and even outperforms
for MUSIC-Stereo dataset.

nitude and phase loss improves the performance, also con-
sistent with the observation reported in [29]. When adding
only the reconstruction loss without magnitude and phase
loss in comparison to adding explicit magnitude and phase
loss performance drops to 1.190, 0.158, 2.411, 1.487, 5.435
from 1.185, 0.157, 2.401, 1.481, 5.497 for all the metrics
i.e. STFT, ENV, Mag, Phs and SNR respectively. This ob-
servation shows that minimizing individual magnitude and
phase loss is more relevant for the task as compared to us-
ing reconstruction loss. We conclude that as both the losses,
i.e. magnitude and phase are calculated from very different
mathematical function (magnitude is a quadratic function
of real and imaginary value where as phase is a trigono-
metric function) and are also in very different value range,
hence separating them into individual component helps in
the training process. Finally adding all the losses gives the
best performance in all the metrics with STFT, ENV, Mag,
Phs and SNR of 1.171, 0.156, 2.342, 1.478 and 5.573 re-
spectively.

4.2. Comparison to state-of-the-art

Baseline and prior approaches. We compare our approach
against various baselines and competitive approaches on
both the datasets. The baseline of Mono-Mono is a simple
approach where the input audio is copied for both the left
and right channel. The existing approach of Mono2Binaural
[11] uses only the image features along with audio fea-
tures as the input to the decoder and a simple concatena-
tion method for fusing both the features. In another exist-
ing approach of sep-stereo [39], a multi-task approach of
binaural prediction and source separation is trained jointly
using a single backbone. The data used for training is also
atleast 2x more than the amount of data used for training
our method or Mono2Binaural approach. Although this ap-
proach is not directly comparable to ours as it uses more
data and also solves multiple tasks jointly, this can serve as
an upper bound for us. In one of the recent self-supervised
approach, PseudoBinaural [36] generated from mono audio

were used for training instead of the recorded ones. There
are a number of variants to this approach, in PseudoBinaural
(w/o sep.) the generated audios were used for training the
binaural prediction task only whereas in PseudoBinaural the
generated binaural audio is used for training both binaural-
ization and source separation like sep-stereo [36]. Finally,
in Augment-PseudoBinaural both the real audios and the
generated ones were used for training both binauralization
and separation task jointly. This is the most superior method
as it solves both tasks and also uses 2x more data as com-
pared to sep-stereo and 4x more data than ours. Similar to
sep-stereo this method is not directly comparable to ours,
we report it here as an upperbound for our case.

Comparison on FAIR-Play dataset. We report the results
on FAIR-Play dataset for different existing and baseline ap-
proaches along with the proposed approach in Tab.3. We re-
port the results for all the methods by averaging over all the
five splits in the modified FAIR-Play dataset. We report the
results on baseline and all the prior approaches directly from
[36]. We observe that our method outperforms all the exist-
ing methods that is trained for a single task and dataset sim-
ilar to ours. We observe that our propose method obtains an
performance improvement of ∼ 11%,∼ 4%,∼ 11%,∼ 6%
and ∼ 29% for STFT, ENV, Mag, Phs and SNR respec-
tively over the baseline of Mono-Mono. Also, our method
outperforms the best performing method in similar setting,
Mono2Binaural in four metrics out of five. We obtain
STFT and magnitude value for our approach to be 0.909
and 1.819 respectively as compared to 0.917 and 1.835 for
Mono2Binaural. We also obtain the value of 1.479 and
6.397 for Phs and SNR outperforming Mono2Binaural as
well. We also observe that the performance of our approach
is also in the similar ball park of approaches that solves mul-
tiple tasks and uses multiple datasets. The performance of
our approach in the three metric of STFT, ENV, Mag is only
worse by ∼ 0.3%,∼ 2%,∼ 0.4% for Sep-Stero [39] where
as we outperform it on the rest two metrics Phs and SNR by
∼ 2% and ∼ 18% respectively. Finally, for the Augment-
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Pseudo we are worse in four metric STFT, ENV, Mag by
∼ 3% and Phs by ∼ 0.8%. But we outperform even this
method on SNR metric by ∼ 17%. This proves that our
method is competitive enough for the task of binaurlization
as it outperforms superior approaches in some of the met-
rics.
Comparison on MUSIC-Stereo dataset. We also re-
port the performance of our approach along with baseline
and existing approach in Tab. 3. Similar to the FAIR-
Play dataset, all the results of prior approaches and base-
line are reported directly from [36]. We observe that our
method outperforms significantly both baseline and other
approaches in similar setting. There is an improvement
of ∼ 34%,∼ 25%,∼ 34%,∼ 2% and ∼ 36% in the
metrics of STFT, ENV, Mag, Phs and SNR respectively
over the baseline. The proposed approach also outperforms
the best method in similar setting, i.e. Mono2Binaural by
∼ 29%,∼ 22%,∼ 29%,∼ 0.8% and ∼ 30% for all the
metrics STFT, ENV, Mag, Phs and SNR respectively. Fur-
ther, we observe that our method also significantly outper-
forms the mulit-task and larger data approaches, i.e. sep-
stereo and Augment-PseudoBinaural, in all the five met-
rics as well. The Music-Stereo dataset contains diverse in
the wild music videos from Youtube whereas FAIR-Play
dataset contains videos where all of them are recorded in-
side the same recording room with very minimal variation
in the background. Our proposed approach outperforms ex-
isting method by a higher margin in MUSIC-Stereo dataset
as compared FAIR-Play dataset, which suggests that our
method generalizes well to unconstrained setting.

4.3. Qualitative Results

We give qualitative results of visual and depth attention
map obtained from all layers of decoder in Fig. 3. We pro-
vide the input image in the first row for comparison. From
the visual attention map in first column, we observe that the
attention values are spread out over the entire image in the
first layer but in successive layers of 2,3, and 4 it produces
high values only to the sound sources. We also observe that
layer 3 produces high values for the source on the right side
of the image whereas layer 4 produces high values for the
source in the left side of the image. This region specific at-
tention map can be considered as the inherent association
between left and right audio channel with left and right re-
gions of the image, which is important for an effective bin-
auralization. For the depth attention maps, we observe that
instead of attending to the sound source location, it looks
at different structure of the rooms such as wall, ceiling and
floor in layer 1, 2, and 3 of the decoder. From these attention
maps, we make a general observation that the depth network
infuses information about the geometry of the room result-
ing in better binauralization. We also provide predicted bin-
aural results in our project page and request readers to listen

Figure 3. Attention Map Visualization Attention maps for both
visual and depth channel at each decoder layer on FAIR-Play
dataset. The first row shows the input image. We observe that
visual attention map progressively attends to the sound producing
regions in the image where as the depth attention maps attends to
the structure of the room, i.e. wall, ceiling and floor.

to the videos to have a sense of the reconstruction.

5. Conclusion

We proposed an end-to-end trainable multi-modal trans-
former network with hierarchical multi-modal attention, for
mono to binaural audio generation. We studied the im-
pact of image and depth inputs along with their combina-
tions on this task. We demonstrated that adding depth pro-
vides additional structural information which significantly
improves audio binauralization quantitatively and aids in
better source localization qualitatively, as visually analysed
from attention maps. The proposed method obtains state-of-
the-art results on two challenging datasets (FAIR-Play and
MUSIC-Stereo) for the task.
Acknowledgment. Kranti Kumar Parida gratefully ac-
knowledges support from the Visvesvaraya PhD Fellow-
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