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Abstract

Superpixels serve as a powerful preprocessing tool in nu-

merous computer vision tasks. By using superpixel repre-

sentation, the number of image primitives can be largely

reduced by orders of magnitudes. With the rise of deep

learning in recent years, a few works have attempted to

feed deeply learned features / graphs into existing classi-

cal superpixel techniques. However, none of them are able

to produce superpixels in near real-time, which is crucial

to the applicability of superpixels in practice. In this work,

we propose a two-stage graph-based framework for super-

pixel segmentation. In the first stage, we introduce an ef-

ficient Deep Affinity Learning (DAL) network that learns

pairwise pixel affinities by aggregating multi-scale infor-

mation. In the second stage, we propose a highly efficient

superpixel method called Hierarchical Entropy Rate Seg-

mentation (HERS). Using the learned affinities from the first

stage, HERS builds a hierarchical tree structure that can

produce any number of highly adaptive superpixels instan-

taneously. We demonstrate, through visual and numerical

experiments, the effectiveness and efficiency of our method

compared to various state-of-the-art superpixel methods. 1

1. Introduction

Superpixel segmentation is the task of partitioning an

image into meaningful regions, within which the pixels

share similar qualities such as colour, texture, or other low-

level features. It is a powerful preprocessing tool for vari-

ous computer vision tasks. For example, image classifica-

tion [6, 27], optical flow [23, 18], object tracking [35, 38]

and semantic segmentation [14, 42]. Superpixels offer more

computationally digestible input data representations than

1The code is available at: https://github.com/hankuipeng/

DAL-HERS

the conventional pixel-level format. By using superpixels,

one can substantially reduce the number of image primi-

tives, whilst highlighting the discriminative information [1].

The aforementioned advantages have encouraged the

fast advancement of superpixel segmentation techniques

(e.g. [15, 1, 17, 16, 21, 34]) since the seminal work of Ren

and Malik [26]. For a superpixel segmentation method to be

useful, it should be computationally efficient and preserve

the structure of the objects well (i.e. adhere to the object

boundaries). With the advent of deep learning, it becomes

possible to explore more flexible representations in various

superpixel segmentation techniques. However, to the best

of our knowledge, there are only a few attempts to employ

deep networks for superpixels (e.g. [32, 12, 39]).

There are several reasons for this limited adoption.

Firstly, the conventional convolution operation in a neural

network is designed to work efficiently with a regular im-

age grid, whereas superpixel segmentations naturally give

rise to irregular grids. Secondly, there does not exist ground

truth superpixels in an image, but rather a delineation of the

object structure. Thirdly, several existing superpixel tech-

niques (e.g. [1, 17]) are non-differentiable, due to the near-

est neighbour assignment used in the pixel-superpixel asso-

ciation. This imposes a challenge in the network training

process which would be end-to-end trainable otherwise.

So far, there are only a few works that have addressed

these challenges in integrating deep networks within super-

pixel methods. One possible approach is to redesign a net-

work architecture to allow the computation of irregular su-

perpixel grids, e.g. [9, 30, 39]. This is still challenging, par-

ticularly, if one wishes to integrate subsequent tasks within

a single learning process. An alternative approach is to de-

couple the superpixel segmentation process from the deep

network training process. For example, one can use a net-

work to extract pixel-level features and then feed them into

a superpixel segmentation method [12]. Most of these ex-

isting attempts are based on building upon a modified ver-
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sion of SLIC [1], which is based on Lloyd’s algorithm for

k-means clustering, for its efficiency and simplicity. How-

ever, SLIC has a few limitations, such as the over-partition

in homogeneous regions of an image and high computa-

tional cost in texture-rich regions.

As an alternative to clustering-based techniques, a num-

ber of researchers have demonstrated the potential of graph-

based superpixel techniques [26, 32]. Under this frame-

work, the superpixel segmentation task is translated into a

graph partitioning one. The key challenge in this framework

lies in obtaining a good partition of the graph. In addition,

the problem of learning pixel-wise affinities from a stan-

dard deep network that can translate well into edge weights

of a graph is not trivial. With that said, the graph-based

framework provides several advantages such as computa-

tional tractability, natural representation of an image, and

desirable tree structure.

Figure 1: HERS produces superpixels that are highly adap-

tive to the homogeneous regions of an image. Left: the

original image. Right: segmentation by DAL-HERS.

In this work, we present a two-stage graph-based super-

pixel segmentation framework, where an output example is

displayed in Figure 1. In the first stage, we propose a deep

network structure, Deep Affinity Learning (DAL), to learn

boundary-aware pixel-wise affinities. In the second stage,

we propose an efficient graph partitioning method called Hi-

erarchical Entropy Rate Segmentation (HERS). HERS pro-

duces highly adaptive superpixels that adhere well to the ob-

ject boundaries by maximising the entropy rate of the graph.

To summarise, our main contributions are:

• We propose DAL network that learns and aggre-

gates multi-scale information, produces boundary-

aware affinities, and can be trained efficiently.

• We propose an efficient superpixel segmentation algo-

rithm called HERS that produces highly adaptive su-

perpixels. It builds a hierarchical tree structure that al-

lows instant generation of any number of superpixels.

• We evaluate our proposal on superpixel benchmark

datasets that contain a range of indoor and outdoor

scenes. Extensive experimental results demonstrate

its effectiveness (numerically and visually) and ef-

ficiency against various state-of-the-art classical and

deep learning based superpixel methods.

2. Related Work

Superpixel segmentation methods have been extensively

studied in the literature, with the majority of existing tech-

niques designed from the classical perspective. Most re-

cently, a few works have reported the use of deep networks

for superpixels. We review the existing techniques in turn.

Classic techniques for superpixels. Since the pioneer-

ing work of [26], several techniques have been proposed

which can be roughly divided into patch-based models [8,

31], watershed techniques [10, 4, 20], clustering-based ap-

proaches [1, 16, 19] and graph-based techniques [26, 7, 17].

The last two categories are the most widely applied family

of techniques, which we will cover in the rest of this section.

One set of techniques have been proposed based on clus-

tering principles for superpixels. The most popular tech-

nique in this category is the Simple Linear Iterative Clus-

tering (SLIC) [1]. This technique partitions a given im-

age using a local version of the k-means algorithm. Whilst

this technique offers simplicity and efficiency, it has sev-

eral drawbacks. For example, it unnecessarily partitions

uniform areas and computes unnecessary distances in dense

areas. These issues motivated several improvements for k-

means based techniques including reducing the number of

distance calculations, improving the seeding initialisation

and improving the feature representation [19, 16, 2, 21, 41].

Another set of techniques treat superpixel segmentation

as a graph partitioning problem. The seminal paper of [26]

uses the Normalised Cuts algorithm, where superpixels are

subgraphs that are obtained as a result of the partitioning

based on edge similarities. This technique produced fair

results, with boundary adherence being the main issue. An-

other graph based technique was presented in [7], where

the main criterion for graph partitioning is based on the evi-

dence for a boundary between two regions. One of the most

competitive graph-based techniques is Entropy Rate Super-

pixel Segmentation (ERS) [17]. It considers edge weights

as transition probabilities of a random walk, and selects

edges to form a number of subgraphs / superpixels that max-

imises the overall entropy rate of the partition. The problem

is solved through a lazy greedy algorithm [25], which is not

very computationally efficient.

Deep learning techniques for superpixels. Given the

impressive results achieved by deep learning in recent years,

a few recent works have introduced the idea of deeply

learned features or edge affinities, in place of handcrafted

ones, in the context of superpixel segmentation. In [12], the

authors proposed the SSN model that uses a deep network

to extract pixel-level features, and then use the learned fea-

tures as input to a soft version of SLIC [1]. The key idea is

to enforce soft-associations between pixels and superpixels

to avoid the non-differentiability of SLIC. Although SSN

extends the capability of SLIC through learned features, it
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Figure 2: Illustration of our proposed superpixel framework. The left side of the scheme shows the flow of our proposed

DAL network, which learns an 8-channel pixel affinity map. The right side displays our proposed HERS algorithm, which

constructs a hierarchical tree structure that allows any number of highly adaptive superpixels to be generated instantaneously.

produces superpixels which mimics that of SLIC, which are

not very adaptive in sizes. The authors of [32] introduced

a graph-based model SEAL, where the key idea is to learn

the pixel affinities for superpixel segmentation. This work

is built upon ERS [17] along with a segmentation-aware

loss. Although it produces very impressive results quan-

titatively, there are a number of drawbacks in its network

training process and the resulting superpixels are not very

regular or adaptive in size. Most recently, [39] uses fully

convolutional network in an Encoder-Decoder structure to

learn the association between pixels and superpixels on a

regular image grid. As a result, it cannot produce the ex-

act user-specified number of superpixels. Additionally, this

method also requires a post-processing technique to remove

any unwanted superpixels that are tiny in sizes.

Distinctions in our approach. Our technique is close in

philosophy to that of [32] and [17]. Both our work and [32]

seek to learn pixel-wise affinities, however our proposal has

several major advantages. Firstly, the work of [32] is lim-

ited by its own design – as it only allows the learning of

pairwise pixel affinities for one direction at a time. There-

fore, the network needs to be applied twice to obtain both

horizontal and vertical pixel affinities, which results only in

a 4-connected affinity map. By contrast, our work learns a

richer 8-connected affinity map within one training process.

Secondly, the loss design of [32] requires applying a super-

pixel segmentation method for each training epoch, which

is computationally costly. Additionally, it requires incor-

porating external edge information, which does not neces-

sarily generalise well on the training set. In comparison,

our work efficiently enforces boundary adherence by learn-

ing directly from the network without the need for super-

pixel segmentation or incorporation of external edge infor-

mation throughout training. Finally, we introduce an ef-

ficient graph-based technique called Hierarchical Entropy

Rate Segmentation (HERS). It can produce highly adap-

tive superpixels instantaneously without the need for any

parameter. Notably, we offer a computational complexity

of O(|V|), as opposed to O(|V|2 log(|V|)) [17].

3. The Proposed Methodology

In this section, we present the two core parts of our pro-

posed graph-based superpixel segmentation framework: i)

our proposed Deep Affinity Learning (DAL) neural net-

work architecture for obtaining deeply learned pixel affini-

ties, and ii) our proposed Hierarchical Entropy Rate Seg-

mentation (HERS) algorithm. An overview of our pro-

posal is displayed in Figure 2.

3.1. Deep Affinity Learning

In the first stage of our proposed framework, our goal is

to design an effective and efficient network training scheme

that produces an 8-connected affinity map A ∈ R
8×H×W

for any input image of height H and width W . The total

number of pixels in an image is given by N = W ×H . For

each pixel pi, we compute the affinities between pi and a

maximum of 8 surrounding pixels (horizontally and diago-

nally) that lie in its closest neighbourhood Ni.

Network design. Our proposed Deep Affinity Learning

network, DAL for short, consists of two parts. In the first

part, a 7 × 7 convolutional kernel is used in the first layer

to capture both the horizontal and vertical changes in an

image. This is followed by 3 standard residual blocks (Res-

Block) [11], each of which has a kernel size of 3 and there
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are 8 input and output channels. Using 3 ResBlocks would

expedite the decrease of the training loss without inducing

too much additional computational burden and extra model

parameters. Using 8 input and output channels allows us to

obtain an intermediate 8-channel affinity map that captures

pairwise pixel proximity towards all possible directions.

In the second part, we seek to enforce the preserva-

tion of fine details and scene structures. To achieve this,

we integrate the HED network structure from [37]. That

is, we incorporate five continuous blocks of convolutional

layers with increasing receptive field sizes (64, 128, 256,

512, 512) to capture neighbourhood information at varying

scales. Each of these five varying scale blocks produces

a side output of 8 channels through an additional convo-

lutional layer. Finally, a weighted fusion layer is used to

automatically learn how to combine the side outputs from

multiple scales. Concretely, the weighted fusion layer is a

convolutional layer with 40 (5×8) input channels and 8 out-

put channels to produce the final 8-channel affinity map A.

Loss function. Each image comes with a ground truth

segmentation mask M ∈ R
H×W , where mij ∈ {1, . . . , C}

denotes the pixel-specific class label, and C is the total num-

ber of classes in the image. By comparing the label of each

pixel pi with the labels of its maximally 8 surrounding pix-

els, we can transform M into an 8-channel binary segmen-

tation map T ∈ {0, 1}8×H×W
, indicating whether two pair-

wise pixels belong to the same class label or not.

As such, the training loss can be quantified separately

for both boundary pixels and non-boundary pixels accord-

ing to T . The most common way of measuring the loss be-

tween the learned affinity map A and the ground truth map

T ∈ {0, 1}8×H×W
is through the following Binary Cross

Entropy (BCE) loss:

LBCE(A, T ) =−
1

8N

N
∑

i=1

∑

j∈Ni

(1− tij) log(1− aij)

−
1

8N

N
∑

i=1

∑

j∈Ni

tij log(aij),

(1)

where tij ∈ {0, 1} denotes the ground truth relationship be-

tween pixel pi and pj , and aij ∈ [0, 1] denotes the learned

affinity between pixel pi and pj .

It can be seen that (1) encourages the learned affinities

to be zeros for boundary pixels, and ones for non-boundary

pixels. However, the ground truth segmentations are often

given for object detection instead of superpixel segmenta-

tion. Therefore, there is potentially no supervision informa-

tion available in the heterogeneous regions within an object.

Motivated by this, we propose the following modified ver-

sion of (1):

LDAL(A, T ) =−
1

8N

N
∑

i=1

∑

j∈Ni

(1− tij) · log(1− aij)

−
1

8N

N
∑

i=1

∑

j∈Ni

tij · |gij − aij |,

(2)

where gij denotes the pre-computed pairwise pixel affin-

ity between pi and pj . We use the Gaussian similar-

ity to compute the pairwise pixel affinity gij as: gij =
− exp

{

d(pi,pj)/2σ
2
}

[5], in which σ is the bandwidth

parameter and d(pi,pj) denotes the distance between pixel

pi and pj . It can be computed as the ℓ2 distance between

the RGB pixel features. As such, the loss in (2) would

encourage the learning of boundary information just as in

the BCE loss, whilst learning additional local pixel affinity

information for the non-boundary pixels guided by Gaus-

sian similarity. Note that this is very different to the BCE

loss, in which all non-boundary pairwise pixel affinities are

treated as 1s. Since the majority of pixels in an image are

non-boundary pixels, training the network using (2) enjoys

a substantial advantage over the use of the BCE loss.

3.2. Hierarchical Entropy Rate Segmentation

After obtaining an 8-channel affinity map A ∈ R
8×H×W

from our trained network, the second part of our proposed

framework is to use the extracted rich information to gener-

ate superpixels. To achieve this, we introduce Hierarchical

Entropy Rate Segmentation (HERS) algorithm next.

The idea is to represent the extracted information as an

undirected graph G = (V, E), where V denotes the set of

nodes on the graph that correspond to the image pixels. The

adjacent nodes / pixels are connected by a set of edges E ,

whose weights reflect their pairwise similarities. We wish to

select a subset of edges E ⊂ E from the graph G = (V, E)
such that the entropy rate of the segmentation is maximised.

It has been shown in [17] that higher entropy rate corre-

sponds to more compact and homogeneous clusters. The

entropy rate is used to describe the uncertainty of a stochas-

tic process. By modelling a graph G = (V, E) as a first-

order Markov process, we can obtain the entropy rate of the

graph as a conditional entropy.

In this framework, the transition probability between a

pair of nodes vi and vj can be expressed as pij = wij/wi, in

which wi =
∑

k:eik∈E wik denotes the sum of edge weights

connecting to node vi. Here wij denotes the pairwise simi-

larity between vi and vj , which can be readily obtained from

the affinity map A as (aij+aji)/2. A stationary distribution

of the Markov process can be given as follows:

µ =
[

µ1, µ2, . . . , µ|V|

]

=

[

w1

wT

,
w2

wT

, . . . ,
w|V|

wT

]T

. (3)
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Then the entropy rate of the graph can be expressed as

H(E) = −
∑

i

wi

wT

∑

j

wij

wi

log
wij

wi

, (4)

where wT =
∑|V |

i=1
wi denotes the sum of weights across

all nodes. Our goal is to sequentially select edges, guided

by the entropy rate criterion in (4), in order to form bal-

anced superpixels that are adaptive in sizes. To this end,

we propose to use Borůvka’s algorithm to optimise solely

the entropy rate of the graph, whilst obtaining balanced and

adaptive superpixels.

Borůvka’s algorithm is one of the oldest algorithms de-

signed to identify the minimum spanning tree (MST) of a

graph G = (V, E). It simultaneously goes through the fol-

lowing steps for all currently formed trees in the graph: i)

identify the best edge for each tree, which consists of one

node or a set of nodes that are already connected by ex-

isting edges, and ii) add those identified edges to the for-

est until one minimum spanning tree is formed connect-

ing all nodes in the graph. Borůvka’s algorithm enjoys a

number of desirable properties. Firstly, instead of having

to sort all the edges globally as in the lazy greedy algo-

rithm adopted by [17], Borůvka’s algorithm finds the best

edges for all trees simultaneously. As a result, we can of-

fer a computational complexity of O(|V|), as opposed to

O(|V|2 log(|V|)) as in [17]. In addition, the parallel edge

selection process in Borůvka’s algorithm allows for the gen-

eration of very balanced trees. Finally, by recording the or-

ders in which the edges are added, a hierarchical structure

can be formed which allows any number of trees to be gen-

erated instantaneously.

The idea of using Borůvka’s algorithm for the purpose

of superpixel segmentation has been previously utilised

in [36]. However, [36] considers edge weights as dissim-

ilarities between pairs of nodes, whereas we associate edge

weights with their potential contributions to the overall en-

tropy rate of the graph. Concretely, the edge weight can

be interpreted in terms of its contribution to the overall en-

tropy rate of the graph, if it were to be added to the current

set of selected edges E. Using the learned affinities aij ∈ A
for the edge weight wij between node vi and vj , the edge

weight wij can be calculated as:

wij =H(E ∪ {eij})−H(E)

=(wij + µi) log(wij + µi) + (wij + µj) log(wij + µj)

− µi logµi − µj logµj − 2wij logwij .

We refer to our proposal of sequential edge selection

guided by entropy rate via Borůvka’s algorithm as Hier-

archical Entropy Rate Segmentation (HERS). The algo-

rithmic form of HERS is presented in Algorithm 1. Note

that the number of superpixels K is not necessarily required

as an input to the algorithm. Instead, a segmentation with

Algorithm 1: HERS Superpixels

Input: Graph: G = (V, E)
1 Output: A minimum spanning tree T ; A set of

selected edges E ⊂ E
2 Constructed tree: T = ∅; Selected edges: E = ∅;

Unselected edges: U = E
3 function Borůvka(G = (V, E))
4 do

5 - Identify the currently formed trees

T1, T2, . . . , Tk where k ≤ |V|
6 - Find the best outgoing edge for each tree

e⋆(Ti) = argmax
eij∈Ui

H(E ∪ {eij})−H(E),

where Ui denotes the unselected outgoing

edges for tree Ti

7 - Sort the best outgoing edges in descending

order: e∗(T1), e
∗(T2), . . . , e

∗(Tk)
8 for ℓ = 1, . . . , k do

9 Add the ℓ-th outgoing edge to E;

10 K ← K − 1;

11 end

12 while |T | > 1;

13 end

any number of superpixels can be obtained instantaneously

from the hierarchy that is constructed via Algorithm 1.

4. Experimental Results

In this section, we describe in detail the range of exper-

iments that we conducted to demonstrate the effectiveness

and efficiency of our proposed methodology.

Dataset Description & Evaluation Protocol. We evalu-

ate the performance of our technique using two benchmark

datasets for superpixels. We use The Berkeley Segmenta-

tion Dataset 500 (BSDS500) [3]. This dataset contains 500

images with provided ground truth segmentations. It pro-

vides a wide variety of outdoor scenes with different com-

plex structures. We also use the NYU Depth Dataset V2

(NYUv2) [29], which consists of 1449 images with pro-

vided ground truth segmentations. The NYUv2 dataset pro-

vides a range of different indoor scenes.

We first justify the model design and support the ad-

vantage of our technique through a set of ablation stud-

ies. We then compare our technique with the following

state-of-the-art techniques: i) classic techniques: ERS [17],

SH [36], SLIC [1], SNIC [2], SEEDS [33], ETPS [40]; and

ii) deep learning techniques: SSN [12], SEAL-ERS [32]

and SP-FCN [39]. The most commonly used performance

measures for evaluating superpixel segmentation algorithms

include: Under-segmentation Error (UE) [33], Achievable

Segmentation Accuracy (ASA) [17] and Boundary Recall
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(a) Original. (b) ERS. (c) SEAL-ERS. (d) SP-FCN. (e) SSN. (f) Ours.

Figure 3: Visual comparison of our technique against a number of state-of-the-art algorithms using 200 superpixels. The

selected images show variations in scenes from BSDS500 and NYUv2 datasets.

(BR) [22]. In particular, UE can be directly obtained from

ASA as 1-ASA. Thus, we report the ASA and BR mea-

sures in our experiments. Additionally, we also report the

Explained Variation (EV) [24] that quantifies the variance

within an image that is captured by the superpixels without

relying on any ground truth labels. Explicit definitions of

the metrics can be found in the supplementary material.

Implementation & Training Details. We learn an 8-

channel affinity map by training our proposed DAL network

on the BSDS500 training set. We implement the network in

PyTorch using the Adam [13] optimiser with β1 = 0.9 and

β2 = 0.999. The DAL network is trained for 5k epochs, in

which the input images are cropped to have size 200 by 200.

The initial learning rate is set to 1e− 4, and is reduced by a

factor of 10 after 3k epochs. For all the competing methods,

we use the code provided by the corresponding authors.

4.1. Ablation Study

Our proposed methodology contains two main building

blocks including the deeply learned affinities from the DAL

network and the proposed HERS algorithm. In this sec-

tion, we evaluate the contribution from each of these com-

ponents. The comparison across different variants are re-

ported in Figure 4 in terms of EV, BR, and ASA scores.

Benefit of the proposed DAL network. The benefit of

using learned affinities from the DAL network as opposed

to handcrafted ones can be observed by comparing the per-

formance of ERS (green) with that of DAL-ERS (pink) in

Figure 4. ERS computes the pixel-wise affinities using the

Gaussian kernel in which the RGB pixel values are used

as features. Whereas DAL-ERS directly uses the learned

affinities from the DAL network as input to the ERS algo-

rithm. It is clear that DAL-ERS (pink) largely outperforms

the baseline ERS algorithm (green) in all three measures.

Benefit of the proposed HERS algorithm. Next, we in-

spect the contribution of our proposed superpixel segmen-

tation algorithm HERS. It is worth pointing out that HERS

does not require any balancing term in the objective func-

tion and is therefore parameter-free. Whereas the balancing

term in ERS plays a crucial role in avoiding extremely un-

balanced superpixels.

By comparing DAL-HERS (cyan) with DAL-ERS

(pink), we can see that the former enjoys much higher EV

and BR scores at the cost of a lower ASA score. This

trade-off can be explained by the fact that the superpix-

els produced by HERS are highly adaptive, i.e. it keeps

large homogeneous regions of an image intact whilst over-

segmenting the texture-rich regions. Adaptive superpixels

are arguably more desirable than superpixels whose sizes

are agnostic to the semantics of the image. However such

adaptive behaviour has certain implications on the perfor-

mance measures. Since the superpixels produced by HERS

adhere strongly to the object boundaries and preserves the

homogeneous regions, it is to be expected that it enjoys very

good EV and BR scores. However, having adaptive super-

pixels also means that a small “leakage” in the boundary ad-

herence would incur a big under-segmentation error, which

negatively correlates with the ASA score.

Benefit of external edge information. For the purpose

of achieving a higher ASA score, we could compromise a

small amount of the performance gain in terms of EV and

BR scores. The ASA score can be improved by strengthen-

ing the adherence to object boundaries given by the ground

truth segmentations. Therefore, we additionally divide the

edge weight by HED edge probabilities, which corresponds

to DAL-HERS (HED) in Figure 4. As a result, we observe

a notable increase in the ASA score of DAL-HERS (HED)

as compared to that of DAL-HERS. The gain in the ASA
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Figure 4: Ablation study on the BSDS500 test set. We compare the components in our proposed framework, which includes

both the learned affinities from the DAL network and the HERS algorithm.
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score comes at a small cost of the EV and BR scores. This

is again to be expected, because highlighting more bound-

ary pixels would inevitably increase the false positives of

boundary pixels thus decrease the BR and EV scores.

Quantitative performance. Figure 6 shows the quanti-

tative comparison across all methods on both the BSDS500

and the NYUv2 test set. We include both DAL-HERS and

DAL-HERS (HED) in the comparison, and refer to them as

Ours and Ours (HED) for short. It can be seen that Ours out-

performs all other competing methods in terms of EV and

BR scores on both datasets. This means that the superpixels

generated by our method fully captures the semantically ho-

mogenous regions of images, and at the same time strongly

adheres to the object boundaries (see Figure 3). Due to the

highly adaptive nature of our superpixels, it does not lead to

a high ASA score by design. The ASA score measures the

overlap between the computed superpixels with the ground

truth, where the ground truth labels are provided for object

detection or semantic segmentation. As such, they do not

delineate the fine details that our method captures so well,

which results in the relatively low ASA score. To mitigate

this, we could further incorporate HED edge information

(as is explained in the ablation study). As a result, Ours

(HED) achieves competitive performance against the ma-

jority of the superpixel methods that are being compared to.

Qualitative performance. In addition to the quantita-

tive advantages exhibited by our proposed schemes, addi-

tional advantages can be demonstrated via visual compar-

isons of the segmentation results. In Figure 3, we observe

several advantages of our method over the compared ones.

Firstly, our technique prevents the over-segmentation of ho-

mogeneous regions in the scene. Clear examples of this ef-

fect can be seen in the grass on the first row, the sky on the

second row, and the walls on the third and fourth rows. In

all images, our method preserves fine details on the objects

by focusing on rich-structure parts rather than uniform re-

gions. Secondly, our technique displays the best boundary

adherence. That is, our technique is able to better capture

the object structures well. Examples of this property can be

found by inspecting the zoomed-in views of the book and

chair on the third and forth rows. We provide further visual

comparisons in the supplementary material.

4.2. Comparison to StateoftheArt Techniques

Computational efficiency. Another highly desirable

property of any superpixel technique, as a stand-alone pre-

processing tool, is the computational efficiency. We report

the runtime (in log seconds) of our proposed DAL-HERS

and HERS against other state-of-the-art methods in Fig-

ure 5. To highlight the advantage of HERS, we report the

cumulative runtime of each method for various numbers of

superpixels. For example, the time comparison at 400 on

the x-axis reports the time that a method requires to pro-

duce both 200 and 400 superpixels.

It is notable that the runtimes of both DAL-HERS and

HERS are constant across various numbers of superpixels.

This is because HERS constructs a hierarchical tree struc-

ture from which any number of superpixels can be extracted

instantaneously, whereas all other methods have to run sev-

eral times for multiple numbers of superpixels. When com-

paring HERS to other classical methods, it can be seen that

HERS has a noticeable computational advantage against

other methods. When comparing DAL-HERS to other deep

methods, it is clear that it still enjoys competitive perfor-

mance. A main strength of our technique is the constant
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Figure 6: Comparison of our approach (solid lines) against the state-of-the-art of classical approaches (dotted lines) and deep

learning based approaches (dashed lines) for superpixels. The performance of various methods are evaluated using EV, BR

and ASA scores over different numbers of superpixels.

(b) SLIC (c) DAL-HERS(a) Input

Figure 7: Visual comparison of saliency detection using

SLIC and DAL-HERS with 200 superpixels on selected im-

ages from the ECSSD dataset [28].

time required to produce any number of superpixels espe-

cially as the numbers of superpixels increase.

Superpixels for saliency detection. To further sup-

port the advantage of DAL-HERS, we report results for the

downstream task of saliency detection for a selection of im-

ages from the ECSSD dataset [28]. we used the Saliency

Optimisation (SO) [43] technique as backbone, which orig-

inally uses SLIC to preprocess an image [1]. We replace

SLIC with DAL-HERS and present a visual comparison in

Figure 7. One can see that DAL-HERS produces smoother

outputs whilst preserving better edges than SLIC. We pro-

vide a detailed explanation with metric and visual compari-

son in the supplementary material.

5. Conclusion & Future Work

In this paper, we present a graph-based framework con-

sisting of a network for obtaining deeply learned affinities,

and an efficient superpixel segmentation method for pro-

ducing adaptive superpixels. Through experimental results,

we show that our technique compares favourably against

state-of-the-art methods. Moreover, unlike existing meth-

ods demanding linear time with respect to various numbers

of user-specified superpixels, our technique exhibits con-

stant time which makes it appealing to be used as a prepro-

cessing tool. For future work, our method could be tailored

to various computer vision tasks such as semantic segmen-

tation, saliency detection, and stereo matching. In addition,

it would be interesting to combine our deeply learned affini-

ties with other graph-based superpixel methods.
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