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Abstract

This paper introduces an approach to simultaneously
match and recover 3D people from multiple calibrated cam-
eras. To this end, we present an affinity measure between
2D detections across different views that enforces an un-
certainty geometric consistency. This similarity is then ex-
ploited by a novel multi-view matching algorithm to clus-
ter the detections, being robust against partial observations
as well as bad detections and without assuming any prior
about the number of people in the scene. After that, the
multi-view correspondences are used in order to efficiently
infer the 3D pose of each body by means of a 3D picto-
rial structure model in combination with physico-geometric
constraints. Our algorithm is thoroughly evaluated on chal-
lenging scenarios where several human bodies are perform-
ing different activities which involve complex motions, pro-
ducing large occlusions in some views and noisy observa-
tions. We outperform state-of-the-art results in terms of
matching and 3D reconstruction.

1. Introduction

Human pose estimation is a quintessential computer vi-
sion problem which is experiencing a growing interest in
fields such as sports, surveillance, activity recognition or
motion capture. With the help of deep learning, astounding
advances have been achieved in 2D [12, 23, 40]. Never-
theless, recovering poses in 3D is still an unsolved issue,
especially in crowded scenes. In this work, we address the
problem of 3D multi-body pose estimation from multiple
calibrated views, which is a fairly common set-up in some
of the aforementioned applications. While remarkable re-
sults have been achieved in multi-view reconstruction for
a single body, the multi-body case represents a more chal-
lenging setting. In real applications, a set of people can
move, deform, or even interact between them, producing
complex motions which involve significant occlusions in
some views. In addition, the number of people in the scene
as well as their appearance are normally unknown.

A common way to tackle this problem is to split it in
two stages. In the first one, a 2D pose detector is applied

in every view to obtain body locations, which are then used
in a posterior stage to infer the 3D pose. Nowadays there
is a large collection of accurate methods that could be used
for the first stage [16, 18]. However, to infer the 3D loca-
tion of the body joints it is necessary to associate the detec-
tions across views as well as to the body they belong to. In
this context, a typical approach to obtain correspondences
is to use the epipolar constraint for each pair of views in
its different variants. Unfortunately, this constraint could
not be enough due to 2D noisy observations and artifacts
such as occlusions. Moreover, trying to match each pair of
images separately may produce inconsistency fails. Some
works have tried to directly solve the association problem
along with the 3D inference, by reasoning about all hy-
potheses in 3D that are geometrically consistent with 2D
detections [6, 7, 21, 30]. These approaches are based on
a 3D pictorial structure (3DPS) model, where the 3D body
can be treated as an undirected graph that allows the inclu-
sion of additional priors. Although these approaches can
produce good results, they normally are very inefficient in
terms of computational cost. More recently, other works
have suggested to match the detected 2D poses among mul-
tiple views at the body level [20], and then inferring the
3D pose in a reduced state space, decreasing drastically the
computational cost without sacrificing the accuracy.

We now move a step forward and tackle the problem of
jointly matching and recovering 3D people from multiple
views. Our approach exploits a set of 2D detections across
views to group them in different 2D poses of the same body.
To achieve that, we propose a robust multi-view matching
algorithm that uses affinities at the body level based on an
uncertainty geometric consistency, while it is robust to bad
detections, noisy observations and occlusions. Then, the 3D
pose of each body is efficiently inferred by using a 3DPS
model with physico-geometric constraints. A pipeline of
the whole method can be observed in Fig. 1. Furthermore,
the accuracy of the matching and the 3D reconstruction we
obtain improve those of state-of-the-art approaches.

2. Related Work

The problem of 3D human pose estimation from multiple
views is a challenging task and covers many different areas
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Figure 1. Overview of our approach to infer 3D people from multiple views. A set of calibrated RGB cameras from different point
of views are observing an unknown number of people that can move, deform, and even interact between them producing large occlusions
in some pictures. Our algorithm first obtains corrupted 2D pose detections in form of bounding boxes as well as the corresponding 2D
joint positions and heatmaps. This information is used to compute an affinity matrix with uncertainty geometric consistency to later group
bounding boxes by means of a robust multi-view matching algorithm. Once the bounding boxes of the same person in different images are
grouped, i.e., joint correspondences are solved, the physico-geometric 3D pose of every human person is recovered. Best viewed in color.

of knowledge in computer vision and learning. The starting
point of any method usually is the estimation of 2D body
poses for each separate view, which nowadays achieves in-
credible results [40, 50, 57]. For single-human pose detec-
tion, a basic approach is to predict the position of the body
joints in the image, which usually comes in the form of a
heatmap for each joint [15, 39, 52, 56]. In contrast, dealing
with 2D pose estimation for multiple people requires more
sophisticated methods, which can be divided in two general
categories of approaches. On the one hand, there are top-
down approaches [16, 23, 25, 36, 46, 53], which first detect
the people in the scene and then apply a single-human pose
estimator for each detection separately. Later, these solu-
tions were extended to jointly incorporate the tracking and
improve the results over time [19, 22, 54]. On the other
hand, bottom-up approaches strive to extract all body joints
in the image at once, as well as the associations between
them to find human detections [12, 18, 26, 27, 34, 35, 45].
Other solutions like [32, 41] combined key-point detection
with human segmentation. In general terms, bottom-up ap-
proaches are faster –even real-time [12]–, since they only
need to process the image once, but they are normally less
accurate than top-down approaches.

There are methods that go beyond 2D pose detection
and infer the 3D pose from single images, either lifting
the detected 2D poses into 3D [38, 44] or directly regress-
ing 3D poses [42, 47, 49, 58]. Other approaches have di-
rectly inferred the multi-body 3D poses from a sequence of
RGB images in the context of non-rigid structure from mo-

tion [1, 3]. However, the reconstruction accuracy of these
approaches is not comparable with that based on multi-
view. Facing the problem of pose recovery from multiple
views allows to estimate accurate 3D poses with metric dis-
tances by combining deep-learning techniques with multi-
ple view geometry. In [30] it was proposed a voxel grid dis-
cretization of the space and then uses the scores of the 2D
part detector and reprojection error to obtain 3D joint posi-
tions, which then associates to different humans regarding
the distance to the head point. Similarly, in [21] was pro-
jected the 2D score maps from the 2D pose detector to a
shared 3D search space for clustering into different individ-
uals. Other works exploited volumetric triangulation [29] to
infer the 3D, or directly used the epipolar geometry [33].

In addition to multi-view geometry, most previous works
are based on 3DPS [5, 6, 8, 11] in which nodes represent
3D locations of body joints and edges code pairwise re-
lations between them. These works combined the confi-
dence of the part detector together with some geometrical
constraints. More recently, 3DPS-based models were used
to train a network to infer the 3D pose from a single im-
age [43]. These 3DPS approaches are often combined with
matching strategies, where before inferring the 3D pose, a
multi-view matching algorithm was performed to group the
bodies across views, like [20], that uses geometry and ap-
pearance, or [13], that performs people matching with feet
assignment. While these approaches are promising, the so-
lution can still fail in difficult scenarios where the quality of
the observations is not good. To improve upon that, there
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are works that leverage temporal consistency [2, 14, 48] as
an additional prior. Recent works are introducing neural
networks to address the whole pipeline, such as [24, 51].

Our Contributions. We depart from previous work in that
our solution simultaneously matches and recovers 3D peo-
ple from multiple views. We can tackle scenarios with com-
plex motions, where multiple people are performing differ-
ent activities while producing body-location patterns with a
high degree of overlapping. Our estimation is robust against
bad detections and artifacts due to lack of visibility, self-
occlusions, as well as noisy observations. To this end, we
propose a novel affinity measure with uncertainty geomet-
ric consistency to match the 2D detections at the body level.
After that, we group the 2D detections where every group
contains the 2D poses of the same body in different views,
thanks to our novel robust multi-view matching algorithm.
Finally, we infer the 3D pose for every body separately by
enforcing physico-geometric constraints.

3. Multi-view Matching

In this section, we propose our novel approach to
match correspondences of human observations from mul-
tiple views. To this end, we first apply a 2D human pose
detector. We have used the top-down method proposed
by [16], even though our method is potentially applicable
with any other. This detector provides a set of bounding
boxes per image, and estimates the 2D position of each body
joint with an associated heatmap. Ideally, every bounding
box correspond to a human person, but unfortunately, the
detection algorithm can still provide bad detections. Our
goal is to match the detected bounding boxes belonging
to the same body across views even when some detections
are corrupt, being robust against self-occlusions or lack of
visibility, and without assuming any information about the
number of people (some consistent and inconsistent corre-
spondences are shown in Fig. 2-right). To solve this prob-
lem, we first compute an affinity matrix between bounding
boxes by enforcing an uncertainty geometric consistency,
which is later exploited by an optimization algorithm to in-
fer the correspondences between bodies. Thanks to this type
of matching, we implicitly solve also the 2D body corre-
spondences along the views.

3.1. Problem Statement

Let us assume the scene is observed by C RGB cameras
where bc bounding boxes are detected in the image Ic for
the c-th camera. For every pair of views (c, d), we can de-
fine a bc × bd affinity matrix Acd, whose elements indicate
the affinity scores and they should have higher entries for
pairs of bounding boxes of the same object. Our problem
consists in estimating correspondences between bounding
boxes by means of a bc × bd binary partial permutation

d

c

Figure 2. Multi-view bounding-box correspondences. Left:
Affinity scores extraction from multiple views. To establish robust
affinities between bounding boxes in views c and d, a novel view
f can disambiguate the problem, voting for the bounding box n
rather than the q as the best match for the bounding box m thanks
to an uncertainty geometric consistency. Right: A real case with
four views to be matched, and potential mistakes. Blue and green
boxes show an example of consistent correspondences even for
partial observations in some views (represented by dashed lines).
Red boxes represent an example of inconsistent correspondences,
since a bounding box is matched by two bounding boxes in one
single image (see the case on the left/bottom part). Yellow boxes
represent another example of inconsistent correspondences, since
a bad detection is also matched. Best viewed in color.

matrix Xcd. To this end, the partial permutation matrix
Xcd ∀{c, d} has to maximize the corresponding affinities
Acd ∀{c, d} while enforcing a cycle consistency along the
C views. Additionally, this process must be robust against
bad detections, since some of the bc bounding boxes may
not correspond to a person (an example with yellow box is
displayed in Fig. 2-right).

3.2. Affinity Estimation

To compute affinities, let us consider a set of J body joint
estimations for the bc-th bounding box. From the human
2D pose detector, we can obtain for the j-th joint its 2D
location as pj

c,b = [xj
c,b, y

j
c,b]

⊤. Similarly, we can denote as
Hj

c,b the corresponding heatmap of pj
c,b, which consists of a

matrix of the same size as the input image with the network
prediction scores of the 2D joint position. Since the network
is usually trained with 2D Gaussian profiles centered in the
ground truth joint position (in our case, using the MSCOCO
dataset [37]), the network predictions normally resemble a
Gaussian, where higher entries imply closeness to the joint
prediction and lower ones indicate farther distances. Next,
we propose to exploit this observation to obtain the affinity
scores between bounding boxes across views.

Affinity matrix from heatmaps. To compute the affinity
matrix Acd for views c and d, we use the multi-view projec-
tion matrices used to relate the 2D projection of a point with
its corresponding 3D location, denoted pj

c,b ≡ πc(P
j
c,b),

where πc denotes an operator to perform projection in the c-
th camera. Let m with m ∈ {1, . . . , bc} be a bounding box
observed in the c-th camera, and n with n ∈ {1, . . . , bd}
another bounding box in the d-th view. To obtain the affin-
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ity score in the location [m,n] within the matrix Acd, we
proceed as follows. First, for every j-th point, we use the
2D locations pj

c,m and pj
d,n to virtually hallucinate a 3D

point location that is projected back over the corresponding
heatmaps. Once the point is projected, the scores hj

c,m and
hj
d,n can be computed as:

hj
c,m = Hj

c,m(πc(T (pj
c,m,pj

d,n))), (1)

hj
d,n = Hj

d,n(πd(T (pj
c,m,pj

d,n))), (2)

where T (·) denotes an operator to intersect rays. In prac-
tice, the virtual 3D point is minimizing the 3D distance to
both rays. It is worth noting that if the re-projection lies
out of the heatmap Hj

c,m, for instance, the corresponding
affinity score hj

c,m will be null. Every affinity score is nor-
malized with the maximum value of the heatmap, obtaining
ĥj
c,m and ĥj

d,n, that finally are combined over the J points
in the bounding box as:

Acd [m,n] =
1

J

J∑
j=1

ĥj
c,m + ĥj

d,n

2
, (3)

where every entry is a value between 0 and 1 due to the
process of normalization.

Enforcing uncertainty geometric consistency. Until now,
we have taken only into account how the projection of a
point from two views is observed in those views. How-
ever, that two bounding boxes from different views have a
high similarity does not always mean that the match is cor-
rect (see an example in Fig. 2-left). When the system is
composed of more than two views C > 2, we can extend
our previous approach to handle more information, allow-
ing us to filter out a lot of false positives. Particularly, we
can apply Eq. (1) and check if the re-projection in a new
heatmap is consistent, increasing or decreasing the corre-
sponding affinity score accordingly.

To this end, we have to consider a new f -th view with
f /∈ {c, d}, for the o-th bounding box with o = {1, . . . , bf},
obtaining a score hj

f,o as:

hj
f,o = Hj

f,o(πf (T (pj
c,m,pj

d,n)). (4)

This process is repeated for every bounding box in the
f -th view, selecting the highest score, and normalizing it.
For simplicity, we assume the highest score is taken from
the o-th bounding box. However, since not all points are
observed by all cameras, the virtual 3D point could not be
reprojected in the image and then this camera should not
be taken into account. When the point is within the image,
the f -th view is included to a group V , which contains the
set of cameras that can observe the point. Considering that,
instead of taking a simple average as in Eq. (3), we now

consider the set of cameras V as:

Aj
cd [m,n] =

1

J

J∑
j=1

ĥj
c,m + ĥj

d,n +
∑

f∈V ĥj
f,o

2 + V
, (5)

where V denotes the number of cameras in the set V .
Thanks to this incorporation of priors, a potential match-
ing of bounding boxes that produces a low score in other
views it will see how its affinity is reduced. And backwards,
potential matches with high scores in other views will main-
tain their high affinity.

3.3. Bounding-box Matching

Let B =
∑C

c=1 bc be the total number of detected bound-
ing boxes in all views. The full correspondences can be
coded by a B ×B matrix X as:

X =


X11 X12 . . . X1C

X21
. . . . . . X2C

...
... Xcd

...
XC1 . . . . . . XCC

 , (6)

where every block Xcd codes the correspondences in the
views {c, d}. To constrain self-matching, every Xcc block
should be identity. As it was reported by [20], if the
correspondences are cycle consistent, this matrix will be
semidefinite X ⪰ 0 and low-rank, i.e., the matrix can be
factorized as X = QQ⊤ being Q a B × R matrix. For
clean detections, the value R ≡ N represents the number of
bodies N in the scene. However, in real scenarios bad de-
tections can appear becoming to be this value R ≡ N +D,
where D denotes the total number of bad detections. In any
case, neither N nor D are known in advance, but we can di-
rectly enforce the low-rank constraint by means of a nuclear
norm as a convex relaxation [17]. We also impose sparsity
in X since at most one value per row and column in Xcd

is non-null, by minimizing the sum of values in X. Finally,
our estimation has to be robust against noisy affinity scores
due to random corruptions. To this end, we directly model
a residual noise by a B × B matrix E, and applying a l1-
norm for estimation, and defining by W the affinity matrix
with clean scores. Considering all the terms, our cost en-
ergy A(X,W,E) can be written as:

−
C∑

c=1

C∑
d=1

⟨Wcd,Xcd⟩+β⟨1B ,X⟩+γ∥X∥∗+λ∥E∥1 , (7)

subject to A = W +E

where ⟨·, ·⟩ indicates an inner product, 1B is a B × B ma-
trix of ones, and ∥ · ∥∗ and ∥ · ∥1 denote the nuclear and l1
norms, respectively. A is the concatenation of all Acd, that
were computed in section 3.2. {β, γ, λ} represents the set of
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penalty weights. To make the previous optimization prob-
lem tractable, we incorporate some additional constraints
as it is standard in matching algorithms [55, 59], such that:

Xcc = Ibc , (8)

Xcd = X⊤
dc , (9)

X ∈ R[0,1] , (10)
0bc ≤Xcd1bd ≤ 1bc , (11)

0bd ≤X⊤
cd1bc ≤ 1bd , (12)

where Ibc is a bc × bc identity matrix, and 0bc/1bc are a
vector of bc zeros/ones, respectively. Equation (8) imposes
self-matching between bounding boxes in the same view,
Eq. (9) enforces a symmetry in X, Eq. (10) constrains the
values to be real in [0,1], and Eqs. (11)-(12) enforce the
doubly stochastic constraints. The set of matrices to satisfy
the previous constraints will be denoted by C.

The optimization problem in Eq. (7) in combination with
the constraints in Eqs. (8)-(9)-(10)-(11)-(12) is convex, and
it can be solved by various methods. For efficiently, in this
paper we adopt the alternating direction method of multipli-
ers [9], writing the equivalent problem as:

argmin
X,J,W,E

⟨β1B −W,X⟩+ γ∥J∥∗ + λ∥E∥1 (13)

subject to A = W +E
X = J
X ∈ C

where we introduce the auxiliary variable J. The equivalent
augmented Lagrange function to be solved is:

argmin
X∈C,J,W,E

⟨β1B −W,X⟩+ γ∥J∥∗ + λ∥E∥1 (14)

+ ⟨L1,A−W −E⟩+ ⟨L2,X− J⟩

+
α

2
∥A−W −E∥2F +

α

2
∥X− J∥2F ,

where {L1,L2} ∈ RB×B are the Lagrange multipliers,
∥ · ∥F denotes the Frobenius norm, and α > 1 is a penalty
coefficient to improve convergence. Primal and dual vari-
ables are alternatively updated in closed form until con-
vergence, while keeping fixed the rest of variables. The
weight coefficients are determined empirically as β = 0.4,
γ = 1.2, and λ = 1.4; but kept constant in all experiments
we describe later. After optimizing, the estimated permuta-
tion matrix X is quantized by a threshold of 0.5.

4. 3D Pose Recovery
Once the 2D poses of the same person in different views

Ic are known, we solve the 3D reconstruction problem.
To this end, we adopt the widely used 3DPS model, since

thanks to its versatility, we can easily incorporate additional
priors that produce more accurate solutions.

In this context, the human body is considered as an undi-
rected graphical model, where the graph nodes represent
the body joints (elbow, knee, etc.) and the edges are the
body parts connecting joints, e.g., lower arm, upper leg,
and so on. Our aim is to retrieve a 3D body configuration
Y = [y1⊤,y2⊤, . . . ,yJ⊤

]⊤ with yj = [xj , yj , zj ]⊤, max-
imizing a posterior distribution of 3D poses p(Y|I) as:

C∏
c=1

J∏
j=1

p(Ic|πc(y
j
c))︸ ︷︷ ︸

data term

·
J∏

j=1

CY∏
c=1

p(Hj
c|H)︸ ︷︷ ︸

heatmap prior

(15)

·
∏

(i,j)∈B

p(yi,yj)

︸ ︷︷ ︸
bone length prior

·
∏

(i,j,k)∈L

p(yi,yj ,yk),

︸ ︷︷ ︸
joint angle prior

where CY denotes a subset of views used to generate Y, B
indicates the set of pairs the joints that form a bone, and L
is the set of joints that form a limb. The data term codes the
likelihood p(Ic|πc(y

j
c)) and it is given by the 2D heatmap

provided by [16]. This term characterizes the 2D spatial
distribution of each joint in each image.

The first prior term p(Hj
c|H) is to code the quality of

the observations via their heatmaps Hj
c, which implicitly

penalizes deviations with respect to a reference Gaussian
heatmap used for training, and that it is denoted by H.
In real applications, only accurate observations produce
a Gaussian-like heatmap, while unfocused predictions are
usually a matter of occlusions or bad detections. To pro-
vide a probability, we take the reference heatmap H, that
is computed based on the parameters of the ground truth
used for training the detection network [16], according to
our current image resolution. The probability of this term
is one for clean observations, and less than one for noisy
detections, after comparing Gaussian distributions via their
standard deviations.

The second prior term p(yi,yj) is to code the spatial
structural dependency between the adjacent joints yi and
yj , which implicitly constraints the bone length between
them. This term can be modeled by a Gaussian distribu-
tion p(dij ;µij , σij), where dij is the Euclidean distance
between the joints yi and yj . µij and σij represent the
mean and standard deviation, respectively; that are learned
from the Human3.6M dataset [28]. The probability of this
term is one for dij ≡ µij , and decreases towards zero as the
values move away from the mean according to σij .

The last prior term p(yi,yj ,yk) is to provide physical
consistency in limbs gijk composed of the joints yi, yj , and
yk, respectively. This term implicitly imposes constraints
in the angles that the bones physically can have, defining
the set of these configurations by F . To enforce this prior,
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we use the dictionary proposed by [4], where some joint
angle limits are established. In this case, we penalize 3D
human poses that are not physically possible by means of a
Kronecker’s delta generalization function as:

p(yi,yj ,yk) =

{
1 if gijk ∈ F
0 if gijk /∈ F

. (16)

Inference. The problem of estimating the 3D pose by max-
imizing p(Y|I) in Eq. (15) can become very complex in
terms of computational cost as the state space dimension
increases [11]. To solve this, some works have simplified
the process by setting the state space for each 3D joint to be
the 3D proposals triangulated from all pairs of correspond-
ing 2D joints [20], which are the only candidate points used
to find the solution. However, this approach does not con-
sider the accuracy gains that may come with having more
than two views. Here, we additionally include a set of in-
terpolated candidates from the initial proposals, obtained as
weighted centroids –via the heatmap quality term– from dif-
ferent combinations of candidate points. As the number of
views increases, in order to keep the computational cost low,
the candidate points with small data term are discarded from
the optimization at the beginning. Doing that, the complex-
ity is drastically reduced while being able to achieve more
accurate results at the same time.

5. Experimental Evaluation
We now provide our experimental evaluation, with quan-

titative results in terms of body matching and 3D pose es-
timation. To this end, we mainly use the datasets Campus
and Shelf [8], but also show some qualitative and quantita-
tive results from KTH Football II [31] and CMU Panoptic
[30]. Additionally, we show quantitative comparisons with
respect to competing techniques for all datasets. In the sup-
plementary material, a video shows the full sequences.

5.1. Multi-Body Matching Evaluation

We first evaluate our approach in terms of multi-body
2D matching. Unfortunately, no ground truth is provided
in the datasets we use for quantitative evaluation. To solve
that, we run the 2D part detector [16] over the datasets Cam-
pus and Shelf, and then the bounding boxes from different
views that correspond to the same person are manually an-
notated. It is worth noting that we match all human bound-
ing boxes, including partial views of the people due to oc-
clusions. Once the ground truth is available, we perform
a precision/recall analysis to find true and false positives.
As our algorithm to solve multi-body matching exploits an
affinity matrix by means of an optimization algorithm, we
also present an ablation study to show the effectiveness of
every part. To make the analysis more complete, we include
the partial affinities based on Geometry, appearance cues

Campus Shelf

Affinity Optimization Precision Recall F1-score Precision Recall F1-score

Geometry [20] 95.72 88.03 90.49 94.61 92.56 93.40
ReID [20] 98.86 90.90 94.10 90.67 74.34 80.79

Geom. + ReID [20] [20] 99.31 93.27 95.71 97.19 87.62 91.82

Geometry Ours 93.23 94.34 93.46 93.61 91.63 92.40
ReID Ours 98.26 92.97 95.04 90.48 76.14 81.92

Geom. + ReID [20] Ours 99.57 95.86 97.40 96.28 89.27 92.39

Ours [20] 99.94 97.83 98.71 99.71 91.34 94.95
Ours Ours 99.94 98.56 99.13 99.35 94.22 96.53

Table 1. Quantitative evaluation on multi-body matching. Mul-
tiple combinations are provided by considering the partial affini-
ties geometry and re-identification (ReID), as well as their com-
bination as it was done by [20]; and our proposal. Moreover,
it is also included the optimization algorithms provided by [20]
and ours. The table reports precision, recall and F1-score for the
datasets Campus and Shelf. In all cases, accuracy is in [%].

(ReID) and the combination of both, as proposed by [20],
as well as their optimization algorithm.

Table 1 summarizes these results. As it can be seen,
our combination provides the best solutions in both datasets
showing the superiority of our formulation, producing al-
most perfect solutions in Campus. While an affinity based
on ReID can produce better solutions than those based on
Geometry, this type of cues can fail in scenarios where the
subjects wear similar clothes or look alike, as it occurs in
Shelf. Thanks to our novel affinity in combination with the
robust optimization, we can produce more robust and stable
solutions than state-of-the-art approaches, being less likely
to propose an erroneous match (high precision), while be-
ing able to obtain most of the possible matches (high recall).
Moreover, our approach is able to find matches of isolated
body parts, as it occurs when a head or the limbs are oc-
cluded (see some examples in Fig. 3, matches highlighted
by green arrows), where the competing approaches fail; and
to avoid bad detections for matching, as it is displayed in
Fig. 3 by red arrows. As expected, incorrect matches will
produce worse 3D reconstructions (see 3D poses in Fig. 3-
right obtained by [20]).

5.2. Multi-body 3D Pose Recovery

We now evaluate our multi-body 3D pose estimation.
For quantitative evaluation, we provide several metrics de-
pending on the experiment. The most used one is the Per-
centage of Correctly estimated Parts (PCP) [11], that reports
the percentage of successful estimations of body parts, i.e.,
when the mean distance of the part joints is less than the
length of the bone multiplied by a threshold ϕ. Most of
approaches consider ϕ = 0.5, even though we will also in-
clude a more restrictive metric with ϕ = 0.2, denoting them
as PCP5 and PCP2, respectively. As many other works,
we also report the Mean Per Joint Position Error (Euclidean
distance between 3D joints and ground truth) measured in
mm. The MPJPE is only measured when the pose is cor-
rectly estimated (i.e., the MPJPE is less than 500mm). To
evaluate the missing or correctly estimated joints, we pro-
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3D reconstruction from [20]Match from our method Match from [20] Match from our method Match from [20] 3D reconstruction from our method

Figure 3. Partial-view matchings. Left: Multi-body matching in two instants (top and bottom, respectively) by using [20] and our
algorithm. Each row corresponds to a different camera view in the same frame (for simplicity, we only represent two of five images
per frame). Color bounding boxes and 2D poses show body associations across cameras. Our method can find correct matches even for
strong occlusions (green double arrows), whereas avoid wrong matches obtained by competing approaches and highlighted by red double
arrows. Right: Joint multi-body matching and 3D reconstruction in two novel instants by using [20] and our algorithm. Bad matchings
can hallucinate incorrect poses. Best viewed in color.

Campus Shelf

PCP5 PCP2 MPJPE PCP5 PCP2 MPJPE

Data term 95.88 56.64 79.5 96.40 64.82 58.1
+ bone length prior 95.94 57.48 80.5 96.23 64.53 58.5
+ heatmap prior 96.32 57.35 79.6 96.63 65.07 57.4
+ joint angle prior 95.80 57.59 80.6 96.39 64.86 58.1

+ all priors (Eq. (15)) 96.19 58.25 79.4 96.41 64.70 58.0
+ all priors and interp. 96.71 59.54 77.6 96.53 65.70 56.6

Table 2. Ablation study of our 3DPS-based algorithm. The table
shows the effect of every prior in Eq. (15) in combination with the
data term. Last rows report the full model we use in Eq. (15), with
and w/o the interpolation of new candidates in the inference. PCP5
and PCP2 are measured in percentage, and MPJPE in millimeters.

vide the 3D version of the Percentage of Correct Keypoints
(PCK), which considers an estimated joint as correct when
the distance w.r.t. the ground truth is within a certain thresh-
old (we provide results with 50mm, 100mm and 150mm).

First, we evaluate the full energy in Eq. (15). To this
end, we combine the data term with the priors one by one,
to finally consider all, see Table 2. In Campus, a dataset
with fewer views and farther distances, the bone length prior
and joint angle priors are much more helpful to improve on
accuracy due to enforcing physically-aware poses, as seen
with the PCP2 metric. The heatmap prior improves on all
PCP metrics in both datasets, showing the importance of
removing inaccurate joints (e.g. due to occlusions, as it oc-
curs in Shelf). The full energy generally improves on both
datasets, particularly when the interpolation of candidates is
also applied in the inference phase, which shows that simple
triangulation does not provide the most accurate results.

In Table 3, we also compare our multi-body 3D re-
construction accuracy for previous datasets with respect to
some baselines in literature. In this case, we provide the ac-

Campus Shelf

A1 A2 A3 Avg. A1 A2 A3 Avg.
[6] 82.01 72.43 73.72 75.79 66.05 64.97 83.16 71.39
[5] 85.00 76.56 73.70 78.42 72.42 69.41 85.23 75.69
[7] 93.45 75.65 84.37 84.49 75.26 69.68 87.59 77.51
[21] 94.18 92.89 84.62 90.56 93.29 75.85 94.83 87.99
[10] 91.84 92.48 92.83 92.38 99.28 91.59 97.58 96.15
[20] 95.51 93.17 94.20 94.30 98.57 93.78 97.89 96.75
[48] 90.00 90.00 89.00 89.67 99.00 87.00 98.00 94.67
[48]+ 98.00 91.00 98.00 95.67 99.80 90.00 98.00 95.93
[14]+ 97.10 94.10 98.60 96.60 99.60 93.20 97.50 96.80
[51]* 97.60 93.80 98.80 96.70 99.30 94.10 97.60 97.00
[24]* 97.96 94.81 97.39 96.71 98.75 96.22 97.20 97.39
Ours 98.37 93.44 98.33 96.71 98.85 92.97 97.76 96.53

Table 3. Quantitative evaluation and comparison on 3D pose
estimation. The table reports the 3D reconstruction accuracy in
terms of PCP5 for actors {1,2,3} in datasets Campus and Shelf.
The numbers are percentages. + includes temporal information,
and ∗ includes training from the target dataset.

Campus PCP2 (1-3) PCP2 (4) MPJPE PCK50 PCK100 PCK150

[20] 56.95 - 79.5 25.99 72.25 91.79
Ours 59.42 - 77.6 26.82 75.55 94.45
Shelf PCP2 (1-3) PCP2 (4) MPJPE PCK50 PCK100 PCK150

[20] 64.40 24.24 58.0 50.24 89.31 97.38
Ours 65.70 35.15 57.0 51.27 90.48 97.80

Table 4. Quantitative evaluation on accurate metrics. 3D recon-
struction error in terms of an MPJPE, as well as the accuracy by
using PCP2 (actors 1-3 and 4, respectively) and PCK (with 50, 100
and 150mm threshold) in datasets Campus and Shelf, compared to
[20]. In millimeters and percentages, respectively.

curacy in terms of PCP5, as it was the only common metric
in all those works. As it can be seen, our approach out-
performs all methods in Campus, and achieves competitive
solutions in Shelf. Some of the approaches here compared
leverage temporal information, which we do not need in our
method. Moreover, some other methods estimate the 3D
pose using neural networks trained with the training frames
from the target dataset, while our method is not personal-
ized to any dataset in any way.
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Figure 4. Joint matching and 3D pose estimation in KTH Foot-
ball II and CMU Panoptic datasets. Top: Successful results
on the KTH Football II dataset [31], where our method faces odd
postures, motion blur, occlusions and high appearance similarity
between players. For each frame, three views are shown from left
to right, with the matched 2D detections on top and the 3D repro-
jection below. 3D reconstruction is shown in the middle. Bottom:
One frame on the CMU Panoptic dataset [30], including matchings
and 3D reconstruction from five cameras (up to seven people).

Additionally, we use the source code provided by [20] to
report a full analysis, including the remaining metrics de-
fined previously. These results are summarized in Table 4.
As this analysis is performed from scratch, we also include
the results for Actor 4 from Shelf, often omitted in the liter-
ature since it appears mostly occluded and it is not easy to
recover its pose. We can observe our method clearly outper-
forms [20] in all metrics, meaning that it is much more ac-
curate since estimated joints are closer to the ground truth,
especially in highly occluded instances (e.g. Actor 4).

We now show some experiments in KTH Football II [31]
and CMU Panoptic [30] datasets. First, soccer players move
quickly and perform drastic motions at a very far distance,
representing a challenging scenario for the matching algo-
rithm due to motion blur. In the second one, the scenario
is theoretically controlled but a large number of people ap-
pear, producing strong occlusions in many views, as it is
shown in the images. As it can be seen in Fig. 4, our al-
gorithm produces robust and physically-aware joint 2D/3D

Method UA LA UL LL Average

[11]* 60.0 35.0 100.0 90.0 71.3
[31] 89.0 68.0 100.0 99.0 89.0
[6] 68.0 56.0 78.0 70.0 68.0
[7] 98.0 72.0 99.0 92.0 90.3

[21] 97.5 94.9 100.0 99.0 97.8
[48] 99.0 99.0 98.0 93.0 97.3

[48]+ 100.0 100.0 99.0 99.7 99.7
[43] 100.0 100.0 100.0 100.0 100.0

Ours 100.0 98.1 99.1 98.4 98.9
Ours (PCP2) 79.0 67.5 89.1 92.8 82.1

Table 5. Quantitative evaluation on KTH Football II dataset
(Sequence 1, Player 2) with three cameras. Following previous
works, we report the accuracy by PCP5 –excepting the last row–
in percentage for some limbs: UA = upper arms, LA = lower arms,
UL = upper legs, and LL = lower legs. ∗ only uses several frames
to compute PCP5. + includes temporal smoothing.

solutions even for strong occlusions and noisy observations.
Quantitatively, we consider the sequence #1 of player #2

on the KTH Football II dataset [31] to compare to other
methods. Our results are reported in Table 5. It is worth
noting that our solution outperforms all comparable meth-
ods, and it is very close to that reported by [48], that used
tracking of human poses and temporal smoothness priors,
an extra information that is not required by our approach.
We observe that [43] reported perfect results here, but it is
important to point out that said method only works for one
single human. It is, therefore, incapable of handling multi-
ple humans as our method does, and thus it solves a different
and more constrained problem needing strong assumptions.
In contrast, our method is able to generalize to much more
complex situations. In the supplementary material we show
some additional quantitative results from CMU Panoptic.

6. Conclusion
In this paper we have presented a novel solution to jointly

match and recover 3D people from multiple views. Our ap-
proach can efficiently handle noisy observations as well as
cope with large occlusions, and without assuming any in-
formation about the number of people in the scene. For this
purpose, we have proposed a strategy to define similarities
between 2D detections by enforcing an uncertainty geomet-
ric consistency. This measure is then exploited by a robust
multi-view matching algorithm that groups the detections
in terms of body similarity. Once the correspondences are
known, we apply a 3DPS-based algorithm to infer the 3D
poses, enforcing physico-geometric constraints. We have
thoroughly evaluated the approach on challenging scenarios
involving interacting people performing complex motions.
In the future we aim at extending our research to perform
recognition of human activities.
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