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Abstract

Reconstructing the 3D geometry of an object from an im-

age is a major challenge in computer vision. Recently in-

troduced differentiable renderers can be leveraged to learn

the 3D geometry of objects from 2D images, but those ap-

proaches require additional supervision to enable the ren-

derer to produce an output that can be compared to the in-

put image. This can be scene information or constraints

such as object silhouettes, uniform backgrounds, material,

texture, and lighting. In this paper, we propose an ap-

proach that enables a differentiable rendering-based learn-

ing of 3D objects from images with backgrounds without

the need for silhouette supervision. Instead of trying to ren-

der an image close to the input, we propose an adversarial

style-transfer and domain adaptation pipeline that allows

to translate the input image domain to the rendered image

domain. This allows us to directly compare between a trans-

lated image and the differentiable rendering of a 3D object

reconstruction in order to train the 3D object reconstruc-

tion network. We show that the approach learns 3D geom-

etry from images with backgrounds and provides a better

performance than constrained methods for single-view 3D

object reconstruction on this task.

1. Introduction

Inferring the 3D geometry of an object from an arbitrary

single image is an interesting and challenging task that is

easy for humans but still poses a hard computational prob-

lem. This problem is challenging because, by projecting a

3D shape onto a 2D image, depth information is discarded,

and occluded regions are inherently difficult to reconstruct.

Perhaps the most interesting and promising approaches

addressing this problem are those utilizing learning-based

methods. These can potentially exploit previously seen ex-

amples to overcome missing information such as partial vis-

ibility, unknown lighting conditions, etc. Some of these

methods rely on 3D shape supervision such as Mem3D [1],

DeformNet [2], Pixel2Mesh [3], and 3D-R2N2 [4], or key-

point correspondences between images [5].

Other, less supervised methods predict the geometry us-

ing a geometry reconstruction network and projecting it

back onto an image space using a differentiable renderer.

Such 3D representations can be based on meshes as in case

of SoftRas [6], DIB-R [7], and NMR [8], voxels [9], or dis-

tance fields as used in SDFDiff [10]. The idea here is to pre-

dict a 3D model from a single image, render the silhouette

of this model using a differentiable renderer, and impose a

loss function that ensures that the rendered silhouette again

resembles the silhouette input image. This strategy allows

learning the respective shape models without the need for

annotation of 3D shapes or key-point correspondences be-

tween images. An interesting problem arising in this con-

text is that renderings need to be compared to input images

for the loss function. Thus, the renderer has to produce im-

ages that look stylistically similar to the input images to al-

low for a meaningful comparison.

This can be challenging for differentiable renderers due

to the complexity of images: If the renderer does not have

enough degrees of freedom, it cannot produce a realistic,

matching image. However, if it has too many degrees of

freedom, trivial solutions such as a background filling the

entire image with the texture of the input image become

possible, and training becomes unstable. Therefore, current

approaches require additional supervision and constraints,

such as uniform background, known lighting conditions,

materials, textures, and supervision of silhouettes [6]–[10].

To alleviate those constraints and to deal with the chal-

lenge of complex image formation, we propose a frame-

work that combines differentiable rendering based 3D re-

construction with adversarial domain adaptation to bridge

the gap between rendered and input images as shown in

Fig. 1. Starting from a single input image, we predict the

3D shape of the object with a CNN that converts the image

input to a 3D mesh, and apply a differentiable renderer [6] to

produce a 2D rendering of the predicted mesh. To allow for

comparison between the rendered representation and the in-

put image, we propose to use an Adversarial Style-Transfer

Autoencoder (ASTA) pipeline, which converts the input im-

age to a representation that could have been generated by

the renderer. The encoder and decoder are locally restricted
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Figure 1: Overview of the framework. We extend the differentiable renderer-based 3D geometry reconstruction by an image-

to-image domain adaptation network (Fi2r ) to allow for training with arbitrary images. Fi2r translates input images into

images that could have been renderered. We train Fi2r using an adversarial style loss and a cycle-consistency content loss.

U-Net architectures such that the “latent space” is a grey-

scale image. Thus, the encoder first translates the input im-

age into a representation that resembles the rendered im-

ages and the decoder translates this back into its original

representation. Following the ideas of neural style transfer

and adversarial domain adaptation, we use an adversarial

disciminator to enforce the “latent” space to be stylistically

similar to images produced by the differentiable renderer.

As the autoencoder needs to reconstruct the original image,

it preserves the content. With this, we can transfer the input

image to the differentiable renderer’s output space, rather

than forcing the renderer to reproduce the input image.

As only input images and no smoothly rendered images

are initially given, we cannot directly train the style-transfer.

We resolve this by adopting a co-evolutionary strategy to

train the networks in an interleaved way, such that the ren-

derings of previous reconstruction guesses are used.

We first evaluate the proposed framework on the

ShapeNet data set [11]. To demonstrate the proposed frame-

work’s abilities, we render objects of ShapeNet with and

without random background scenes. We show that, for both

cases, the proposed framework learns the 3D object shape.

For images with backgrounds, we outperform other meth-

ods even if they are provided additional silhouette super-

vision, e.g., by weakly-supervised segmentation. On the

ShapeNet data set with textured backgrounds, we achieve a

mean intersection-over-union (IoU) of 0.3816, whereas the

baseline with additional silhouette supervision achieves a

mean IoU of 0.2563. Second, we apply the model trained

on ShapeNet to photos of LEGO models of ShapeNet ob-

ject classes, demonstrating that the method can reproduce

the performance on the synthetic images also in this case.

Contributions. We present a framework for unsupervised

training of 3D reconstruction from a single image with ran-

dom background scenes. We propose using an adversarial

style-transfer autoencoder as image-to-image domain trans-

lator, which converts input images into images that could

have been rendered by a smooth differentiable renderer. We

train this domain translator to preserve the content while

changing the style and—by that—bridge the gap between

arbitrary images and the constraints of differentiable ren-

derers. As the rendering domain is initially unknown, we

leverage a co-evolutionary training of domain adaptation. In

particular, we can relax assumptions on and do not require

supervision of materials, colors, lighting, background, and

silhouette—they do not need to be controlled nor constant

across the data set.

2. Related Work

Since our goal is unsupervised learning of single-view

3D reconstruction, we first focus on related work based

on differentiable rendering. In addition, we present related

work on style-transfer, adversarial domain adaptation, and

image-to-image translation.

3D Object Reconstruction via Differentiable Renderers.

Over the past years, many differentiable renderers for 3D

meshes have been presented [6], [8], [12]–[21]. Those ren-

derers are differentiable with respect to lighting, geometry

[6]–[8], [10], [12]–[15], [19], [20], material [7], [16]–[18],

[20], or texture [7], [16], [18], [20]. Using a differentiable

renderer, a mesh optimization process can be performed
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to reconstruct a single 3D object [7], [8], [12], [13], [15],

[20]. For that, an initial mesh can be optimized iteratively

by adapting its geometry guided by back-propagated gra-

dients. With state-of-the-art deep learning techniques and

3D supervision, high-quality 3D object reconstruction can

be done via direct prediction [2]–[4], [22]–[24]. This ap-

proach is orders of magnitude faster than optimization and

allows transferring knowledge to unseen examples and oc-

cluded areas. For 3D unsupervised 3D object prediction,

state-of-the-art are encoder-renderer architectures where the

encoder is trained for 3D mesh prediction and the differ-

entiable renderer plays the role of a decoder. Thus, the

encoder-renderer network predicts the 3D model in the la-

tent space [6]–[8], [14], [19]. Zhang et al. [25] extend this

idea by integrating GANs to generate alternative views for

each input image, while also relying on silhouette supervi-

sion. These encoder-render methods are restricted to recon-

structing from images that look like images produced by

the integrated differentiable renderer or require additional

silhouette supervision, which limits their application.

The first to raise the idea of learning from 2D images

without silhouette supervision were Henderson et al. [26].

They performed textured 3D mesh generation from images

without silhouette annotation via a 2D VAE based frame-

work. The difference is that they focus on mesh generation,

while our focus lies on mesh reconstruction. To this end,

they focus on making the rendering equal to the input im-

age, while we focus on translating the input image into a

rendered image.

Style-Transfer and Adversarial Domain Adaptation.

Neural Style-Transfer (NST) has been first proposed by

Gatys et al. [27], where the activations of a pretrained CNN

are used for the style loss, allowing to optimize the style-

transfer on a single image. Using a network to predict

the style-transferred image, Isola et al. [28] propose the

image-to-image translation architecture Pix2Pix, training it

through a Generative Adversarial Network (GAN). This al-

lows for fast inference as it shifts the process from optimiza-

tion to prediction. Zhu et al. [29] extend this idea by intro-

ducing two GANs, translating an image as well as back-

translating it, and thus including a cycle-consistency loss

(CycleGAN). Based on this idea, adversarial approaches to

unsupervised domain adaptation have been presented [30]–

[32]. Hoffman et al. [30] propose extending CycleGAN by

a semantic loss and a feature loss for adversarial domain

adaptation. We propose a variation of these ideas, where

an image-to-image domain adaptation network translates an

input image to an image from the domain of the encoder-

rendering pipeline’s outputs and preserves the content by a

cycle-consistency through autoencoding.

3. Style-Agnostic Unsupervised Reconstruction

To perform an unsupervised style-agnostic reconstruc-

tion, we need to bridge the gap between input images and

the output of the renderer. Our architecture is divided into

two main parts as shown in Fig. 1. The image-to-image

translation pipeline (top) translates input images into im-

ages which resemble those generated by the differentiable

renderer. The reconstruction-rendering pipeline (bottom)

consists of the 3D reconstruction network R and a smooth

differentiable renderer SDR, forming together the encoder-

renderer network. The reconstruction network translates an

image input into a 3D geometry representation, which is

then fed into the differentiable renderer to produce the re-

spective rendered representation of the 3D geometry. Both

parts are trained in an alternating fashion. In the remainder

of this section, we discuss both pipelines in detail, intro-

duce the necessary loss functions, and describe the overall

training strategy to tie the components together.

3.1. Loss Functions for the Domain Adaptation

The network for image-to-image translation aims to

translate images x drawn from the input image domain p

into images that look like they have been rendered by the

differentiable renderer SDR.

Training of this image-to-rendering network Fi2r , is

controlled by two loss functions, an adversarial style loss

arising from a discriminator between renderings and pseudo

renderings, and a cycle-consistency loss based on the in-

verse mapping of the pseudo-rendered image back to the

original image. Each sub-network is described in detail in

the following.

Adversarial Style Loss. To convert input images into

their rendered representations, we need to transfer the style

from rendered images to the input images. To this end, we

use the adversarial loss of a discriminator D , which dis-

criminates between images that have actually been rendered

and images created by Fi2r (x), where x is an input image.

Different from typical adversarial losses as, e.g., used in

pix2pix [28] or CycleGAN [29], we can not sample from

the domain of smoothly rendered images. Instead, we use

those images generated by the reconstruction network and

the differentiable renderer as examples of rendered objects,

as we do not know the geometry of the 3D objects in ad-

vance. Note that this requires a co-evolutionary training of

the reconstruction network R and the adversarial style trans-

fer, as detailed in 3.3.

Our loss function LD for the discriminator D and style

loss LS for the image-to-rendering encoder Fi2r are:

LD = Ex∼p

[

logD(Fi2r (x)) +

log(1−D(SDR(R(x))))
]

(1)

LS = Ex∼p

[

log(1−D(Fi2r (x)))
]

(2)
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Figure 2: Training procedure of the proposed framework. Left: in the first stage, we train the domain adaptation with the

cycle-consistency content loss as well as the adversarial style loss. Right: in the second stage, we train the reconstruction

network with the geometry reconstruction loss. The red arrows indicate back-propagation of gradients.

To ensure that, for each domain adaptation, the predicted

rendering does not differ too much from the current ren-

dered prediction, we include the loss term

LJ = Ex∼p

[

max(0, δ− J(SDR(R(x)), Fi2r (x)))
]

(3)

to encourage that the Jaccard similarity coefficient J is

larger than δ = 0.25. We relax the Jaccard similarity to

J(x, y) = xy
x+y−xy

as per probabilistic real-valued logic.

Cycle-Consistency Content Loss. We train the autoen-

coder with a cycle-consistency content loss to preserve the

content during the image-to-rendering transfer. For that, we

use the rendering-to-image decoder termed Fr2i , which is

trained to compute the inverse map of Fi2r . We find that,

as the autoencoder needs to preserve information, the eas-

iest path (and thus the path chosen) is to keep the con-

tents because it needs to reconstruct the input again from

the stylized image. As experiments by Chu et al. [33] in-

dicate, a cycle-consistency can be fulfilled even while the

inner image Fi2r (x) is almost constant because most in-

formation can be hidden in high-frequency detail. To rein-

force that the content is preserved in the “latent” / smoothly

rendered space, we apply random noise to the latent space

before feeding it into the decoder to prevent it from stor-

ing all information in high-frequency details. Thus, we

add the noise term ǫ to the input of the rendering-to-image

decoder Fi2r (x). We define the cycle-consistency loss,

which is applied to both, the image-to-rendering and the

rendering-to-image translation networks Fi2r and Fr2i , as

LC = Ex∼p

[

‖x− Fr2i(Fi2r (x) + ǫ)‖h
]

, (4)

where ‖ · ‖h denotes the (smooth) Huber norm and ǫ ∼
N (0, σ2

noise) where σnoise = 0.15.

In total, the style, content, and Jaccard losses for Fi2r

and Fr2i accumulate to

LFi2r
=LC + LS + LJ

LFr2i
=LC .

(5)

3.2. Loss Function for the Geometry Reconstruction

To train the reconstruction network, we consider the dif-

ference between the rendered predictions for the reconstruc-

tion and the stylized input images, as shown in Fig. 2. Fol-

lowing Liu et al. [6] and Kato et al. [8], we sample two

input images of the same object, using one of them as in-

put to the reconstruction network, whereas the second view

is only used to validate the result from an alternative view

point. The reconstruction loss is therefore defined as:

LR = Ex,y∼p

[

SDRx(R(x)) − Fi2r (x)‖h+

SDRy(R(x)) − Fi2r (y)‖h
]

(6)

Here x, y ∼ p are pairs of images of the same object, SDRx

renders the object from the view point of x, and SDRy ren-

ders the object from the alternative view point of y. To

guide the prediction towards non-degenerate and reasonably

shaped meshes, we also apply regularization losses as done

by Liu et al. [6].

3.3. Overall Training Strategy

The challenge in training is that, to train reconstruction,

we need to compare the smoothly rendered images of the

predicted shape to the input, which requires domain adap-

tation. But, to train the domain adaptation, we need to

know what a smoothly rendered image looks like. We re-

solve this problem by adopting a co-evolutionary strategy

and by training the networks in an interleaved way. For

each training cycle, we start with training the domain adap-

tation networks using the respective losses (see Eq. 2, Eq. 3

and Eq. 4) for a fixed number of iterations, and after that

train the reconstruction network R using the reconstruction

loss (see Eq. 6). Note that we start with a setting where the

reconstruction is a constant sphere, a basic domain adap-

tation is learned, which then initializes the reconstruction

network. For each new training cycle, we keep the weights

of the reconstruction network, but re-initialize the domain
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Figure 3: Examples of the domain adaptation in the tenth training cycle. The top row displays the input image x, the second

the RGB channels of Fi2r (x), the third the alpha channel of Fi2r (x), and the bottom row displays Fr2i(Fi2r (x)).

adaptation and continue the training as described above.

This re-initialization allows the domain adaptation to be

trained with the current optimal guesses for the domain of

rendered objects, and to recover from previous errors in-

duced by erroneous reconstructions. In the next training cy-

cle, training of the domain adaptation improves since the

rendered reconstructions are more representative samples

of the rendered image domain. Examples for the domain

adaptation in the tenth training cycle for various objects are

shown in Fig. 3.

4. Experiments1

4.1. Data Sets and Evaluation Metric

ShapeNet. We evaluate the proposed approach on the

ShapeNet [11] data set. ShapeNet is a 3D object data set

that allows us to render sample images with uniform as well

as textured background and to quantitatively compare the

resulting 3D reconstruction to the 3D ground truth shape.

For the comparison to state-of-the-art as well as the abla-

tion study, we use the 13 standard benchmark classes from

ShapeNet and which have been rendered by Kato et al. [8]

at a resolution of 64× 64 from 24 azimuths at an altitude of

30◦ using Blender and are publicly available.

To show that our method is style-agnostic, we add uni-

form as well as textured backgrounds to the input and train-

ing images of the data set. To this end, we render back-

grounds of 135 Minecraft scenes with each 3 lighting set-

tings and from 24 azimuths with Blender and combine them

with the rendered object views. Samples of these images

with backgrounds can be found in Fig. 3, 4, and 5. Note

that Fig. 3 and 5 are from the training sets and Fig. 4 is

from the test set.

We follow the evaluation metric proposed by Kato et

al. [8] and used by Liu et al. [6] and Chen et al. [7] and use

respective occupancy voxel grids of resolution 32×32×32
and 3D intersection-over-union (IoU). We report all results

based on mean 3D IoU averaged over 3 runs for 13 object

classes as well as the mean over all classes.

1Our implementation as well as our new data sets are openly available

at github.com/Felix-Petersen/style-agnostic-3d-reconstruction.

ShapeNet2Lego. To evaluate the model on camera-

captured photos, we built seven physical LEGO models and

their CAD 3D model from ShapeNet object classes. We

captured 12 photos from different angles as shown in Fig. 6

with backgrounds consisting of LEGO baseplates and walls.

We use this as a second test set and apply the models trained

on the synthetic ShapeNet images on those photos as well.

4.2. Implementation details

To allow comparability with previous works, we build on

the source code by Liu et al. [6]. This setting also follows

the setup by Kato et al. [8]. We use the same reconstruction

network topology and train with a batch size of 64, a learn-

ing rate of 10−4, and a uniform sphere with 642 vertices

as base model. We further use—wherever applicable—the

same hyperparameters, metrics, data set, and seeds to pro-

duce comparable results. During training of the reconstruc-

tion network, we follow the same strategy, i.e., we sample

two input images of the same object scene, using one of

them as input to the reconstruction network, whereas the

second view is only used to validate the result. This is pos-

sible as the camera position is given, such that the predicted

object geometry can be rendered from both perspectives.

Note that we demonstrate in Section 4.5 that, even under

strong perturbation of the given camera position by Gaus-

sian noise with a standard deviation of up to 5◦, the recon-

struction quality does not drop significantly.

The domain adaptation is re-trained at the beginning of

each training cycle. We weight the adversarial game in the

style loss with a factor of 1 and the cycle-consistency loss

of the transfer with a factor of 400. All reported accuracies

are averaged over three runs.

4.3. Comparison to StateoftheArt

First, we consider how our method improves existing dif-

ferentiable rendering pipelines under weaker supervision.

To this end, we present results of current methods with sil-

houette supervision and use the best performing differen-

tiable renderer, i.e., SoftRas [6], for our method. To show

the impact of our method, we consider two scenarios. In the

first case we render all objects with uniform backgrounds
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Table 1: Mean 3D IoU for 13 object classes from ShapeNet [11] averaged over 3 runs. We report baselines for silhouette

supervision, uniform backgrounds, and textured background. In both cases (of the latter), domain adaptation significantly

improves performance, and for uniform backgrounds our method outperforms older methods that require silhouettes.

Method Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

With silhouette supervision

Yan et al. [9] (retrieval) 0.5564 0.4875 0.5713 0.6519 0.3512 0.3958 0.2905 0.4600 0.5133 0.5314 0.3097 0.6696 0.4078 0.4766

Yan et al. [9] (voxel) 0.5556 0.4924 0.6823 0.7123 0.4494 0.5395 0.4223 0.5868 0.5987 0.6221 0.4938 0.7504 0.5507 0.5736

Chen et al. [7] (DIB-R) 0.570 0.498 0.763 0.788 0.527 0.588 0.403 0.726 0.561 0.677 0.508 0.743 0.609 0.612

Kato et al. [8] (NMR) 0.6172 0.4998 0.7143 0.7095 0.4990 0.5831 0.4126 0.6536 0.6322 0.6735 0.4829 0.7777 0.5645 0.6015

Liu et al. [6] (SoftRas (sil.)) 0.6419 0.5080 0.7116 0.7697 0.5270 0.6156 0.4628 0.6654 0.6811 0.6878 0.4487 0.7895 0.5953 0.6234

Liu et al. [6] (SoftRas (sil.+color)) 0.6670 0.5429 0.7382 0.7876 0.5470 0.6298 0.4580 0.6807 0.6702 0.7220 0.5325 0.8127 0.6145 0.6464

Without silhouette supervision

Uniform backgrounds

SoftRas (no sil. supervision) 0.1429 0.1112 0.2342 0.3341 0.1589 0.1713 0.0837 0.1916 0.0769 0.2125 0.0830 0.1918 0.1644 0.1659

(Ours) Domain Adaptation (no sil. supervision) 0.5502 0.4441 0.6538 0.7097 0.4995 0.5756 0.4250 0.6337 0.6082 0.6543 0.4475 0.7178 0.5431 0.5740

Minecraft backgrounds

SoftRas (no sil. supervision) 0.0251 0.0409 0.1618 0.0885 0.1111 0.0999 0.0437 0.2481 0.0124 0.1233 0.0836 0.0542 0.0337 0.0866

SoftRas (sil. generated by SEAM) 0.2905 0.2032 0.0843 0.5195 0.1626 0.2732 0.1788 0.1558 0.2573 0.2257 0.2299 0.3778 0.3732 0.2563

(Ours) Domain Adaptation (no sil. supervision) 0.2994 0.2563 0.5002 0.6078 0.3222 0.4135 0.2480 0.4208 0.2551 0.4861 0.2455 0.5485 0.3569 0.3816

and compare the performance with and without domain

adaptation. For a second experiment we use images with

textured background as described in Sec. 4.1 and shown in

Fig. 3 and 4. The results of all settings are shown in Tab. 1.

As we use the same differentiable rendering pipeline as

Liu et al. (SoftRas) [6] but with weaker supervision, we

consider the performance with silhouette supervision as an

upper bound for learning without silhouette supervision.

We first compare the performance in the case of uniform

backgrounds. Comparing baselines with and without sil-

houette supervision shows that accuracy of the baselines

drops significantly when using uniform backgrounds and

thus no silhouette supervision, as it is not designed to op-

erate in this setting in general. With our domain adaptation,

we reach an accuracy of 57.4% compared to the 64.6% up-

per bound under stronger supervision and even exceeds the

voxel-based perspective transformer networks [9] as well as

the retrieval baseline method [9].

Second, we compare the performance in the case of tex-

tured Minecraft backgrounds to two baselines based on the

SoftRas [6] algorithm: For the first baseline, we apply

the algorithm as is without silhouette supervision, and for

the second baseline, we provide a silhouette based on se-

mantic segmentation. To this end, we leverage a state-of-

the-art weakly-supervised semantic segmentation method

(SEAM) [34] to generate silhouettes from the rendered im-

ages with textured backgrounds. We train the segmentation

model on all samples of each object class with the respec-

tive class label and apply the resulting model to all sam-

ples to get the final silhouettes. Examples of the resulting

segmentation are displayed in Fig. 5. The respective seg-

mentation map is then used as silhouette supervision for the

SoftRas algorithm. SoftRas (sil. generated by SEAM) is,

apart from not using ground truth silhouettes, equivalent to

SoftRas (sil.) [6].

Without silhouette information, the baseline achieves a

mean accuracy of 0.0866 on images with textured back-

grounds, which is a significant drop compared to silhouette

supervision. Compared to that, the baseline based on sil-

houettes generated by the weakly-supervised semantic seg-

mentation method achieves a mean IoU of 0.2563. With the

proposed domain adaptation for style-agnostic reconstruc-

tion, we achieve a mean IoU of 0.3816. Overall, the domain

adaptation outperforms supervision by weakly-supervised

silhouette predictions in eleven out of thirteen categories.

We show qualitative results in Fig. 4.

4.4. Ablation Study

We evaluate the impact of the different elements of the

network for images with textured background in an abla-

tion study shown in Tab. 2. As expected, without the cycle-

consistency content loss or the adversarial style loss, the ac-

curacy drops significantly. Note that the Jaccard loss has the

special role of preventing the domain-adapted image from

differing by a too large factor from the rendered reconstruc-

tion. We found that, without the Jaccard loss, the entire

architecture becomes less stable; e.g., one out of three test

runs without the Jaccard loss achieves a mean IoU of only

0.0166. Without the domain adaptation, i.e., assuming that

the rendered images should be the same as the input images,

the mean IoU is 0.0866.

4.5. Variation of the Azimuth

As the azimuth, in ours as well as previous methods, is

supervised, we perform an experiment challenging the re-

quirement of azimuth supervision. The motivation of this

experiment is to examine whether the proposed method

would also be able to work in settings where the camera
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Figure 4: Examples of the Geometry Reconstruction from

single images with Minecraft backgrounds. For further ex-

amples, see the supplementary material.

extrinsics are computed from point correspondences and

could be noisy. To simulate this setting, we add values

Figure 5: Examples of the weakly-supervised semantic seg-

mentation with SEAM [34]

Table 2: Ablation Study. We evaluate the impact of all pro-

posed losses as well as the entire domain adaptation.

Method IoU Acc.

Style-Agnostic Reconstruction 0.3816

Without Content-Loss (Eq. 4) 0.2293

Without Style-Loss (Eq. 2) 0.2439

Without Jaccard-Loss (Eq. 3) 0.1852

Without Domain Adaptation 0.0866

Table 3: Standard deviation of angles added to the azimuth.

Std. 0
◦

1
◦

5
◦

15
◦

25
◦

IoU Acc. 0.3816 0.3688 0.3726 0.2958 0.2786

drawn from a normal distribution to the ground truth az-

imuth values. We consider standard deviations of up to

25 ◦ . The results are shown in Tab. 3. We find that, up to a

standard deviation of 5◦, there is only a small performance

penalty indicating that an approximate azimuth is sufficient.

4.6. Behavior of the Domain Adaptation

In Fig. 7, we display the training process for the first

5 training cycles. In each training cycle, after training

the domain adaptation, the geometry reconstruction net-

work learns to work in harmony with the domain adapta-

tion. Over the course of many training cycles, the domain

adaptation gets closer to the correct solution because the

cycle-consistency loss always strives for a more expressive

overall system. (This process is displayed in Fig. 7 on the

right edge from top to bottom.)

In the initial training cycle, the rendered image is con-

stant because there are no known 3D objects and just the

initially guessed sphere is rendered. When the reconstruc-

tions improve, the data generating process for the smooth

renderings also improves, improving the style-transfer in re-

turn. In each training cycle, we train the domain adaptation

for 1 500 iterations and then the reconstruction network for
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0.3246 0.3397 0.5543 0.2506 0.3798 0.3333 0.3255 0.1859 0.2541 0.3346 0.4244 0.2725

Figure 6: 3D reconstructions from real photos of LEGO objects. The metric is 3D IoU and the average IoU is 0.3316.

2 000 iterations. We perform a total of 20 cycles.

The input, including background, can be reconstructed

by the autoencoder because it can be compressed into high-

frequency details as explained in detail by Chu et al. [33].

In Supp. Mat. A, we investigate the impact of variations

in image brightness to our method.

4.7. Reconstructions from ShapeNet2Lego

In Fig. 6, we show single-view 3D reconstructions from

photos of LEGO objects from a model trained on images

with Minecraft backgrounds with our method. Here, even

throughout different lighting conditions and backgrounds,

3D models can be reconstructed. We found that for the eval-

uated shapes, we achieve an average 3D IoU compared to

the ground truth CAD models of 33.16% which is lower

than the performance of the original ShapeNet test set of

38.16%, but still performs in a comparable range given the

domain gap compared to the training data. Comparing the

reconstructed models in detail, we find that conditions like

lightning or azimuth have an impact as can be seen in the

reconstruction from image two, three, and four. Here, espe-

cially, the legs appear thinner under one projection (image

two) than under another angle (image three).

5. Conclusion

We proposed an adversarial style-transfer autoencoder

pipeline to generalize state-of-the-art unsupervised single-

view 3D geometry reconstruction methods. To this end, we

employed image-to-image translation-based adversarial do-

main adaptation to translate from the input image domain

to the rendered image domain, which relieves the need for

a photo-realistic renderer, since it does not require the as-

sumption that the renderer can generate the input images.

Experiments demonstrate that our style-agnostic approach

can improve state-of-the-art methods in settings with uni-

form backgrounds and textured backgrounds.2

2Acknowledgements: This work was supported by the IBM-MIT Wat-

son AI Lab, the DFG in the SFB Transregio 161 “Quantitative Methods for

Figure 7: Training of the adversarial domain adaptation.

The top row is the input (repeated for visual unity.) For each

block, the top row is Fi2r (x), the middle row is the silhou-

ette of Fi2r (x), and the bottom row is the image translated

back to the original Fr2i(Fi2r (x)). Each of the five blocks

represents one of the first five training cycles (from top to

bottom). On the horizontal axis, training over 2 500 steps

is displayed (from left to right). For further examples, see

Supplementary Material D.

Visual Computing” (Project-ID 251654672), and the Cluster of Excellence

‘Centre for the Advanced Study of Collective Behaviour’.
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