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Abstract

Due to the limited amount of available annotated data in
the medical field, domain generalization for applications in
computer-assisted surgery is essential. Our work addresses
this problem for the task of surgical instrument tip local-
ization in neurosurgery, which is a classical step towards
computer-assisted surgery. We propose an uncertainty-
based CNN approach that dynamically selects the most rel-
evant data source by incorporating its own uncertainty into
the inference. In addition, the estimated uncertainty can vi-
sualize and easily explain the network’s decision. Quantita-
tive and qualitative evaluations show that our method out-
performs state of the art approaches for large domain shifts
and results are on-par for in-domain applications. Further
increasing domain shifts by testing on different surgical dis-
ciplines, eye and laparoscopic surgeries, proves the gener-
alization capabilities of the proposed method.

1. Introduction

Medical computer vision algorithms form the basis for
several applications in computer-assisted surgery. Towards
a clinical routine, these algorithms must be robust and ef-
ficient and perform well on familiar data domains as well
as on data with typical domain shift, such as different types
of surgery. In the machine learning realm, such a generic
solution typically requires large amount of data, ideally
from various data sources. However, acquiring broad med-
ical datasets is very difficult due to legal/administrative re-
quirements and large annotation efforts for medical experts.
Thus, in practice, only small or medium-sized datasets from
few hospitals and/or single types of surgery are available.
Therefore, tackling the clinical need for generalization un-
der typical domain shifts is a major challenge for medical
computer vision applications [30].

In this work, we concentrate on the problem of localiz-
ing instrument tips in surgical video data as many compu-

Figure 1: Instrument tip localization with the presented uncertainty-based dynamic CNN. Row (a) shows a typical neurosur-
gical scene with (from left to right): single frame input image; reference localization encoded as saliency overlay; saliency
prediction using image information; saliency prediction using optical flow (OF); and our approach. Row (b) illustrates a
neurosurgical scene that does not fit into the domain of typical training samples: large areas of the image are covered by the
surgeon’s hands normally not present in the training data. The image-based network fails completely on this sample. By
incorporating uncertainty information, our approach ignores the incorrect parts of the prediction and relies more on OF. In
(a), the opposite is observed: the image-based network correctly predicts the instrument tip, whereas the OF-based network
is confused. Our approach correctly overbalances the image-based information and takes the best of both modalities (c).
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tational assistance features rely on known positions of the
instrument tips [1, 27]. A major challenge for instrument
localization are domain shifts, where input data is differ-
ent from what the algorithm saw during training [23]. By
domain shift, we refer to as type of surgery (e.g. tumor,
vascular, spine), illumination, level of blur, types and ap-
pearances of instruments. Collecting a large clinical dataset
that contains all possible conditions is unfeasible.

Therefore, domain generalization should be achieved by
algorithmic improvements. One approach to improve gen-
eralization given limited training data is to employ differ-
ent information, e.g. spatial and temporal data [3]. For the
problem of surgical instrument localization, previous work
[22] combined spatial and temporal information by using
image and optical flow modalities. While the presented
method performed well for small domain shifts, it could not
cope well with large domain shifts.

In this work, we also concentrate on using image and
optical flow features as source of spatial and temporal infor-
mation. Image data contains semantics about structures be-
longing to the instruments and the image background. Op-
tical flow features contain only information about moving
objects in the scene. Other static objects and background
are not present in this modality. Thus, image and optical
flow generalize dissimilarly on different domains. Our goal
is to optimally combine these two sources of information to
extend domain generalization.

Contributions. We propose an uncertainty-based dy-
namic convolutional neural network (CNN) for instru-
ment tip localization that combines image and optical flow
modalities. Our approach extracts relevant information
from both data sources, guided by the estimated uncertain-
ties. Given a new data sample, our network selects which
information and features are employed to compute the most
certain saliency map (see Fig. 1). Being trained on a single
dataset, our approach generalizes on unseen data domains
due the uncertainty-based fusion strategy. The estimated
uncertainties are easily visualized and enable explainabil-
ity of the network’s decision. Our quantitative and quali-
tative evaluations show that we outperform state-of-the-art
approaches and are on-par in-domain. We illustrate the su-
perior generalization capability for various neurosurgical
datasets. Furthermore, we observe good performance for
datasets from completely different surgical disciplines, such
as ophthalmology (i.e. eye surgery). This is the first ap-
proach for instrument localization that is capable of bridg-
ing such large domain gaps with a single network.

2. State of the art
Various approaches exist for surgical instrument local-

ization. Some of them are detecting bounding boxes [21] or
landmarks [2], others are segmenting the complete instru-
ment [13]. Here, we localize the instrument tips as a coarse

saliency map, due to advantages motivated in [7, 14, 22].
State-of-the-art methods towards the instrument local-

ization problem achieve good results on benchmarking
datasets [14], while domain generalization still remains a
challenging task [23]. The current methods address domain
generalization mainly with domain adaption techniques,
e.g. fine-tuning on subsets [16] or online fine-tuning [32].
These methods assume a known test domain with access
to the data. In a clinical setting, the test data is generally
unknown a-priori. Thus, we need to generalize on unseen
domains where no data is available.

A classical approach to improve generalization is data
augmentation [31]. However, it is challenging to design
augmentation operations that cover all possible variations
in the test domain [20]. Another method towards domain
generalization is learning domain-invariant representations,
which is the goal in domain alignment and meta-learning
[19, 15, 29]. These approaches are beneficial when one can
train on several datasets from different but related domains.
For more domain generalization methods, see survey [33].

Since in the medical domain typically a lack of available
datasets exists, we focus on exploring the information con-
tained in a single dataset. Assuming availability of video
data, one can extract both spatial and temporal informa-
tion from this dataset. In [22] these modalities are fused
by end-to-end learning to improve domain generalization.
Although the method performs well on small domain shifts,
it relies too much on spatial information and underperforms
when this information varies from the training domain.

In case of large domain shifts, optimal fusion of spatial
and temporal information for the prediction can improve
generalization. To avoid unilateral focusing on the modal-
ity that performs best on the training domain, we propose
to use dynamic neural networks. They are characterized
by the ability to adapt to the input samples such that only
relevant parts of the network are used for the prediction
[10]. Dynamic networks can be controlled by several mech-
anisms, which are confidence-based [11], policy-based [6],
or gating-based [5]. Our network dynamics are guided by
the pixel-level uncertainty that we compute individually for
spatial and temporal modalities. Furthermore, we use the
uncertainty map to visualize and explain the network’s deci-
sion. This addresses the need for transparency and explain-
ability in medical computer vision applications [26]. For
uncertainty estimation, most common techniques are based
on Monte-Carlo drop-out [8] and ensembles [17]. Here, we
utilize ensembles due to robustness and simplicity.

3. Methods
We propose a dynamic CNN, which fuses image and op-

tical flow modalities such that for each sample the most reli-
able information contributes to the prediction. Our network
consists of two ensemble networks, one for the image-based

3613



σIMGσIMG

σOF σOF

GTμIMG

μOF Prediction

μOF = (μi,j)

Uncertainty
masking

....

..
.

..
.

σIMG = (σi,j)

μIMG = (μi,j)

σOF = (σi,j)
Prediction

Optical flow-CNN ensemble

Image-CNN ensemble

..
.

..
.

(a)

σIMG

σOF 

(b)

IMG

OF

0 1Uncertainty masksSaliency (norm.) 0 0.02Uncertainty

Figure 2: Our method (a) dynamically combines the results from image and optical flow ensembles by means of an uncertainty
estimation mechanism. For image and optical flow data, one ensemble model at a time is used to return N predictions. From
these outputs, we calculate mean predictions µIMG, µOF and pixel-wise uncertainties σIMG, σOF . We then determine
uncertainty masks σ̂IMG, σ̂OF using σIMG and σOF . The final prediction is a linear combination of the outputs of the
ensemble models, weighted by the uncertainty masks σ̂IMG, σ̂OF . In (b) we show intermediate and final outputs from
our method for the scene in (a). At the highlighted location (see µOF and σOF ), the optical flow-based ensemble model
returns a false prediction but the uncertainty is increased. The third column shows the complementary uncertainty masks,
where the coloring indicates how our network combines the two modalities. The black color at the highlighted region in σ̂OF

indicates that our network ignores the optical flow information in the prediction. The last column shows ground truth and the
prediction. Our method successfully utilizes the ensemble with low output uncertainty.

modality and one for optical flow modality. The main idea
is to employ uncertainty-based criteria to assess the pixel-
wise prediction quality for each modality. We obtain the
final prediction as weighted linear combination of the indi-
vidual predictions from the image and optical flow modal-
ities. For each pixel, the weights are based on the uncer-
tainty. The complete workflow of our method is illustrated
in Fig. 2.

3.1. Ensembles

We describe the individual CNNs and how we organize
them in ensembles. The general architecture includes two
independent CNN types, following the identical architec-
ture as the single-stream network in [22], which is derived

from DenseNet [12]. The image-based network IMG takes
only image information as input and outputs a saliency map
qIMG , IMG : (r, g, b) → qIMG. The optical flow-based
network OF receives only optical flow and returns a saliency
map qOF , OF : (u, v) → qOF .

We independently train two ensemble models,
(IMGi)

N
i=1 and (OFi)

N
i=1, where in our experiments

N = 10. We use random weight initialization to achieve
diversity within an ensemble, which is superior to e.g.
bagging strategies [18] or Monte-Carlo dropout [17].
Figure 2(a) shows the arrangement of ensemble models,
implemented in our approach.
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3.2. Uncertainty estimation and masking

We combine the outputs for each ensemble by computing
the mean of the prediction maps,

µ = (µi,j) =

(
1

N

N∑
k=1

qi,j,k

)
, (1)

where i, j are the pixel coordinates in the predicted saliency
map and k is the index for the ensemble individual.

Following state of the art [9], we calculate the pixel-wise
uncertainty map as standard deviation along the ensemble
individuals:

σ = (σi,j) =


√√√√ 1

N

N∑
k=1

(qi,j,k − µi,j)2

 . (2)

Thereby we obtain pairs (µIMG,σIMG) and
(µOF ,σOF ) for image and optical flow ensembles,
respectively.

To compute the final prediction, one would ideally com-
bine the most certain parts from the image and optical flow
outputs µIMG, µOF in the final saliency map. To achieve
this, the uncertainty map for each modality should serve as
basis for a weighting function with entries between 0 and
1. The most confident areas should have values close to 1,
while the uncertain regions are 0.

To model this behavior, we compute uncertainty masks
by performing normalization of the uncertainty maps:

σ̂IMG =

(
1−

σIMGi,j
+ ϵ

σOFi,j + σIMGi,j + 2ϵ

)
, (3)

σ̂OF =

(
1−

σOFi,j
+ ϵ

σOFi,j
+ σIMGi,j

+ 2ϵ

)
, (4)

where we choose ϵ = 10−15. The uncertainty masks
have the following properties:

• The uncertainty masks are complementary, i.e.
σ̂IMG + σ̂OF = 1.

• If the image-based network is more uncertain than the
optical flow, then our network relies the optical infor-
mation, i.e. σIMGi,j ≫ σOFi,j ⇒ σ̂IMGi,j = 0,
σ̂OFi,j

= 1. For σOFi,j
≫ σIMGi,j

vice versa.

• If the image-based and optical flow-based networks
are equally certain, they are averaged, i.e. σIMGi,j

≈
σOFi,j

⇒ σ̂IMGi,j
= σ̂IMGi,j

= 0.5.

3.3. Fusion method and explainability

Finally, we use the uncertainty masks to dynamically
join the ensembles for the two modalities. We compute the
prediction by weighted linear combination of the two en-
semble outputs,

qpredi,j = σ̂OFi,j
× µOFi,j

+ σ̂IMGi,j
× µIMGi,j

, (5)

where the weights are represented by the uncertainty masks.
We formulate our approach in pseudocode:

Algorithm 1: Dynamic, uncertainty-based CNN
Function predict saliency(image, optical flow):

compute ensemble individuals (IMGi)
N
i=1, (OFi)

N
i=1

compute (µIMG, σIMG) and (µOF , σOF )
compute uncertainty masks σ̂IMG, σ̂OF

qpred ← σ̂IMG × µIMG + σ̂OF × µOF

return qpred

Explainability. Based on the uncertainty mask prop-
erties, our fusion approach can be explained by assessment
of intermediate results of the ensembles and the estimated
uncertainty masks. Figure 2(b) illustrates the workflow for
combination of the outputs of the two ensembles. Image
and optical flow are fed into the separate ensembles and
mean predictions are computed. In the illustrated example,
the estimated uncertainty mask shows that the optical flow
fails locally and thus, presents large uncertain areas. The
image-based network shows higher confidence in most of
the areas. The final prediction ignores the false saliency ar-
eas in the optical flow-based output and relies on the image
information. Based on this decision, the final result matches
the ground truth.

4. Experiments
In the following, we describe our experimental set-up

and the base-line methods included in our comparison.

4.1. Base-line methods

For the remaining sections, we refer to the uncertainty-
based fusion approach as u-FUS. For the comparison, we
use two single-stream base-line methods. One uses image
information as input, IMG, and the other uses optical flow
as input, OF. We also consider a simple fusion approach,
p-FUS, where we average the output of IMG and OF,

qp-FUSi,j
= 0.5× qIMGi,j

+ 0.5× qOFi,j
. (6)

This approach assumes that both input modalities are
equally important irrespective of the situation. Furthermore,
we include an end-to-end fusion approach, l-FUS, where
the final prediction is learned by a single network. Accord-
ing to [22], l-FUS outperforms the single-stream base-line
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Dataset name Dataset type Domain shift
severity

Ground truth
data available

NeuroSurg-Tumor clinical in-domain yes
NeuroSurg-Vascular clinical low-medium yes
NeuroSurg-Spine clinical low-medium yes
NeuroSurg-Phantom phantom large yes
Cataract-101 clinical large no
SurgicalActions160 clinical large no

Table 1: Datasets used for evaluation.

methods on test data similar to the training domain, while it
underperforms in the presence of a large domain shift.

4.2. Datasets and evaluation metric

During experiments, we use various surgical datasets,
described in Tab. 1.

For training, we use eight tumor surgeries from the
neurosurgical dataset NeuroSurg, introduced in [22].
We refer to the remaining independent tumor surg-
eries as in-domain examples. Other clinical datasets,
NeuroSurg-Vascular and NeuroSurg-Spine, fea-
ture low to medium domain shift. These surgeries are vi-
sually similar to NeuroSurg-Tumor, but include dif-
ferences in instrument set, tissue type and visual appear-
ance. The phantom surgeries, NeuroSurg-Phantom, in-
troduce a large domain shift compared to the tumor cases.
This dataset is recorded on artificial tissue, while using
commercial surgical instruments. Figure 3, top row, illus-
trates example scenes from the NeuroSurg dataset.

To test the limits of our approach, we include datasets
from completely different surgical disciplines. We include
the domain of eye surgery (Cataract-101 [25]) and la-
paroscopy (SurgicalActions160 [24]). Both datasets
differ strongly w.r.t. surgical instruments and biological tis-
sue visible in the video data (for visual examples, see Sec-
tion 5.2, Fig. 5). We pre-processed both datasets from raw
video data by resampling and cropping (256 × 144 px). As
there are no saliency ground truth annotations for these two
datasets, we focus on qualitative observations.

For numerical evaluation we use the SIM score [4],

SIM =
∑
(i,j)

min(qGround truthi,j , qpredi,j ), (7)

whereas
∑

qGround truthi,j =
∑

qpredi,j = 1.

4.3. Training and implementation

For training we use 22,315 samples (6 surgeries) from
the training surgeries in NeuroSurg-Tumor. The re-
maining 2 surgeries are used for validation (5,093 samples).
We use Adam optimizer with an initial learning rate = 0.01
and decay factor = 0.1. As loss function, we take MSE. We
employ an early stopping strategy based on the validation
metric (with max. 500 epochs). Training is performed on a
system with a NVIDIA T4, Intel Xeon Gold 6242R, 64 GB.

Run-time for prediction on this system ≈ 700 ms. Optical
flow is computed with PWC-Net [28].

5. Results
We present quantitative and qualitative evaluations for

in-domain and out-domain datasets.

5.1. Quantitative results

We compare base-line approaches, two single-stream
networks IMG and OF, and fusion approaches p-FUS and
l-FUS with our uncertainty-based u-FUS method. We
compute the mean values of the SIM (Eq. (7)) for all test
datasets with available ground truth and calculate statistics
(see Tab. 2). In-domain, when training and testing on tu-
mor surgeries, the performance of the uncertainty-based ap-
proach is on-par with the end-to-end network l-FUS and
outperforms all other methods (Tumor 1, Ml-FUS = 0.84
vs. Mu-FUS = 0.84). In case of a minor domain shift, when
testing on vascular or spinal surgeries, we observe similar
behavior to the in-domain scenario. In case of a large do-
main shift, when testing on phantom data, we observe a per-
formance improvement for our approach compared to other
networks (Phantom 2, Ml-FUS = 0.71 vs. Mu-FUS = 0.80).

In Tab. 2, one can easily select the best base-line method
for a particular dataset. However, among those methods
there is no clear winner that performs equally well in all sce-
narios. Our approach consistently shows competitive or su-
perior performance on all datasets, regardless of the amount
of domain shift.

To understand how our approach u-FUS reacts to the
domain shift, we analyze the correlation between the SIM
distribution and the distributions of the uncertainty masks
(see Fig. 3). In-domain, our network heavily prefers the
image-information (see Fig. 3, first column). With increas-
ing domain shift, our method starts to prefer optical flow-
information (see Fig. 3, remaining columns). This explains
the superior performance of u-FUS because it understands
which modality performs best in every particular situation.

Statistical analysis on the complete datasets shows that
our approach is superior to the base-line methods w.r.t. ex-
plainability and robustness. In the next step, we look closer
to the performance of u-FUS on individual examples.

5.2. Qualitative results

We compare fusion-based base-line networks with our
approach u-FUS. The end-to-end fusion approach l-FUS
performs better on the clinical cases than the single-stream
network. However, it could not benefit from both modal-
ities on phantom data. From Tab. 2 we conclude that the
simple averaging approach p-FUS performs better on large
domain shifts than the pure end-to-end solution.

Figure 4(a) illustrates the results for an in-domain sam-
ple, where our approach and end-to-end learning perform
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Figure 3: Quantitative evaluation of the SIM quantile distribution and uncertainty masks of test-surgeries, spanning from
in-domain to large domain shifts. The first row illustrates a sample image for each type of surgery. The second row shows a
comparison of the SIM distribution for all base-line methods and our approach u-FUS. Our method outperforms or is on-par
with all base-line methods for each surgical domain. In the third row, we illustrate how u-FUS combines image- and optical
flow-based predictions depending on the domain. For this, we compute the uncertainty masks for all video frames within
each test case. We then calculate the histogram w.r.t. the entries of all masks σ̂OF within a test case, where we choose
nbins = 3. The first bin (I) collects saliency pixels where our network is certain about the image-modality. For bin (II), our
network is approximately equally confident in both modalities. In (III), our network is more certain about the optical flow
modality. For the in-domain tumor surgery, we observe that our network is mostly certain about the image information, while
for the out-of-domain phantom surgery, the network is more confident about optical flow.

well, while the simple fusion underperforms due to false
positives in the optical flow prediction. Figure 4(b) shows
a sample from the phantom data (large domain shift).
Learning-based fusion l-FUS fails to predict a correct
saliency map, since it is provided unseen image content.
The simple fusion p-FUS and our approach u-FUS do not
fully rely on the image information and thus produce better
results. We observe that our approach adapts consistently
better to the input domain compared to base-line methods.

We focus on large domain shifts and explainability
for datasets NeuroSurg-Phantom, Cataract-101,
SurgicalAction160 that are significantly different
from the training data. We investigate which type and
amount of information contribute to the final prediction
of u-FUS. Figure 5(a) illustrates another example from
the phantom data, where we observe that the most certain
and correct information are obtained from the optical flow-
based branch. Figure 5(b) shows a sample from a laparo-

NeuroSurg-Tumor NeuroSurg-Vascular NeuroSurg-Spine NeuroSurg-Phantom
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IMG 0.83(∗∗) 0.81(∗∗) 0.78(∗∗) 0.72(∗∗) 0.78(∗∗) 0.72(∗∗) 0.73(∗∗) 0.63(∗∗)

OF 0.71(∗∗) 0.73(∗∗) 0.70(∗∗) 0.65(∗∗) 0.73(∗∗) 0.67(∗∗) 0.81(∗∗) 0.79(∗∗)

p-FUS 0.80(∗∗) 0.79(∗∗) 0.76(∗∗) 0.71(∗∗) 0.77(∗∗) 0.73(∗∗) 0.79(∗∗) 0.74(∗∗)

l-FUS 0.84(∗∗) 0.83( ) 0.80( ) 0.74(∗∗) 0.81( ) 0.77(∗∗) 0.77(∗∗) 0.71(∗∗)

u-FUS (ours) 0.84 0.83 0.80 0.75 0.80 0.76 0.83 0.80

Table 2: Mean values (M ) of SIM score for clinical data and phantom data. Legend for Bonferroni-corrected pairwise t-test
(H0 : Mu-FUS = MX): p ≥ 0.05 = ( ), p < 0.05 = (∗), p < 0.01 = (∗∗)
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Figure 4: Qualitative results on individual scenes for the NeuroSurg dataset. (a) shows an in-domain example from a clin-
ical case, together with the estimated optical flow. The second column illustrates the ground truth (GT) and the results from
end-to-end fusion. The third column shows the results for the simple fusion by averaging and our uncertainty-based fusion
method. We observe that l-FUS and our method u-FUS perform well, while p-FUS produces false positive predictions.
(b) shows an example from the phantom data, where w.r.t. base-lines methods we observe opposite behavior compared to the
in-domain example. l-FUS fails, while p-FUS performs well. Our approach u-FUS copes well with both scenarios.

scopic surgery scene. Although the instrument set is differ-
ent from the neurosurgical domain, the visual appearance of
the scene seems similar to the training data. Thus, the most
certain information comes from the image-based branch.
Figure 5(c) provides a sample from a cataract surgery. Here,
the instrument set and the visual appearance is vastly dif-
ferent from anything the network saw during training. In
addition to this, eye motion is captured by the optical flow,
which is not present in other surgery types. Nevertheless,
our u-FUS method correctly finds the exact instrument tip
localization. From the uncertainty masks we conclude that
both modalities are utilized although the network is not cer-
tain in either of them. However, both networks are equally
certain about the areas where there are no instruments. This
suggests that our approach still focuses on the correct im-
age area while this area is slightly fuzzier than in the other
scenarios due to extremely large domain shift.

6. Discussion and conclusion
We investigated a dynamic and explainable CNN for sur-

gical instrument tip localization. This method is specifi-
cally designed for use in the medical domain, where only
few training datasets are available and explainability is of
high importance. While the network is trained with a lim-

ited amount of data, it generalizes on a variety of different
domains, ranging from in-domain data (tumor surgeries) to-
wards large domain shifts (phantom, laparoscopic and eye
surgeries). Our quantitative evaluation proves the superior
performance of our approach compared to state of the art
baseline-methods. Addressing explainability, our network’s
decision is based on the uncertainty masks, which is easy to
visualize and interpret. They clearly illustrate which part of
the input modalities contribute to the final prediction.

Being dynamic, our network successfully adapts to new
domains by selecting and utilizing the relevant information
from the input modalities. These properties are essential to-
wards application in a clinic, where the surgical conditions
and the setting of the operation are not a-priori known by
the algorithm.

To test the limits of our approach, we went beyond ex-
pected data variations. Normally, training and test surg-
eries are conducted under similar conditions (instruments,
tissue, recording conditions). To account for the possible
large variations, for instance change of instrumentation set
or illumination, we test our algorithm on completely dif-
ferent surgical disciplines. Even in these challenging con-
ditions, when neither instruments nor tissue has previously
been seen by the network, it successfully localizes the in-
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μIMG

μOF
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OF

IMG

OF l-FUSl-FUS

Figure 5: Qualitative results on single scenes from phantom data and other surgical disciplines, laparoscopy and cataract
surgery. (a) illustrates an example of the phantom data, where the first column depicts the input image and optical flow. The
second column shows the intermediate prediction of the image- and optical flow-based ensembles. The third column displays
the uncertainty masks. The last column shows ground truth (GT) vs. our result. (b) displays a scene from a laparoscopic
surgery (SurgicalActions160) with the same arrangement of figures as in (a). The ground truth for this dataset is not
available. Thus, we evaluate only qualitatively. (c) shows a scene from a cataract surgery (Caract-101). This is an edge
case since both content and visual appearance differ strongly from the neurosurgical data. In all cases, our network achieves
correct predictions, and its decision can be explained by assessing the uncertainty masks.

strument tips and remains explainable. Compared to state-
of-the-art end-to-end learning, our uncertainty-based net-
work presents a step towards clinical application given its
generalization and explainability properties.

In order to bring the algorithm to a level ready for clin-
ical routine, large-scale evaluations are required. Once the
algorithm is used in a clinical setting, an additional calibra-
tion step of the uncertainties can be performed to further im-

prove the localization performance. While we demonstrate
the applicability of our approach to the problem of instru-
ment tip localization, our method does not require any ex-
plicit domain knowledge. Instead, the domain knowledge is
purely gained by the uncertainty mask, which is generally
available through ensembling. Therefore, our method can
be applied to further computer vision tasks where multiple
input modalities are available for network training.
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Jääskeläinen. Gaze behaviour of expert and novice mi-
croneurosurgeons differs during observations of tumor re-
moval recordings. In Proceedings of the Symposium on Eye
Tracking Research and Applications, pages 377–380, 2012.

[8] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning, 2016.

[9] Ayana Ghosh, Bobby G Sumpter, Ondrej Dyck, Sergei V
Kalinin, and Maxim Ziatdinov. Ensemble learning-iterative
training machine learning for uncertainty quantification and
automated experiment in atom-resolved microscopy. npj
Computational Materials, 7(1):1–8, 2021.

[10] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A sur-
vey, 2021.

[11] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q. Weinberger. Multi-scale dense
networks for resource efficient image classification, 2018.

[12] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works, 2018.

[13] Mobarakol Islam, Daniel Anojan Atputharuban, Ravikiran
Ramesh, and Hongliang Ren. Real-time instrument segmen-
tation in robotic surgery using auxiliary supervised deep ad-
versarial learning. IEEE Robotics and Automation Letters,
4(2):2188–2195, 2019.

[14] Mobarakol Islam, Yueyuan Li, and Hongliang Ren. Learning
where to look while tracking instruments in robot-assisted
surgery, 2019.

[15] Xin Jin, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. Fea-
ture alignment and restoration for domain generalization and
adaptation, 2020.

[16] Xiaowen Kong, Yueming Jin, Qi Dou, Ziyi Wang, Zerui
Wang, Bo Lu, Erbao Dong, Yun-Hui Liu, and Dong Sun.
Accurate instance segmentation of surgical instruments in
robotic surgery: model refinement and cross-dataset evalua-
tion. International Journal of Computer Assisted Radiology
and Surgery, pages 1–8, 2021.

[17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles, 2017.

[18] Stefan Lee, Senthil Purushwalkam, Michael Cogswell,
David Crandall, and Dhruv Batra. Why m heads are bet-
ter than one: Training a diverse ensemble of deep networks,
2015.

[19] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M.
Hospedales. Learning to generalize: Meta-learning for do-
main generalization, 2017.

[20] Haoliang Li, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-
Qiang Li, and Alex C. Kot. Domain generalization for medi-
cal imaging classification with linear-dependency regulariza-
tion, 2020.

[21] Yeqing Li, Chen Chen, Xiaolei Huang, and Junzhou Huang.
Instrument tracking via online learning in retinal micro-
surgery. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 464–
471. Springer, 2014.

[22] M. Philipp, A. Alperovich, M. Gutt-Will, A. Mathis, S. Saur,
A. Raabe, and F. Mathis-Ullrich. Localizing neurosurgical
instruments across domains and in the wild. Proceedings of
Machine Learning Research, 143:581––595, 2021.

[23] Tobias Ross, David Zimmerer, Anant Vemuri, Fabian
Isensee, Manuel Wiesenfarth, Sebastian Bodenstedt, Fabian
Both, Philip Kessler, Martin Wagner, Beat Müller, et al. Ex-
ploiting the potential of unlabeled endoscopic video data
with self-supervised learning. International journal of com-
puter assisted radiology and surgery, 13(6):925–933, 2018.

[24] Klaus Schoeffmann, Heinrich Husslein, Sabrina Kletz, Ste-
fan Petscharnig, Bernd Muenzer, and Christian Beecks.
Video retrieval in laparoscopic video recordings with dy-
namic content descriptors. Multimedia Tools and Applica-
tions, 77(13):16813–16832, Jul 2018.

[25] Klaus Schoeffmann, Mario Taschwer, Stephanie Sarny,
Bernd Münzer, Manfred Jürgen Primus, and Doris Putzgru-
ber. Cataract-101: Video Dataset of 101 Cataract Surgeries,
page 421–425. Association for Computing Machinery, New
York, NY, USA, 2018.

[26] Amitojdeep Singh, Sourya Sengupta, and Vasudevan Laksh-
minarayanan. Explainable deep learning models in medical
image analysis. Journal of Imaging, 6(6), 2020.

[27] Kai-Tai Song and Chun-Ju Chen. Autonomous and stable
tracking of endoscope instrument tools with monocular cam-
era. In 2012 IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics (AIM), pages 39–44. IEEE,
2012.

[28] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume, 2018.

[29] Shujun Wang, Lequan Yu, Kang Li, Xin Yang, Chi-Wing
Fu, and Pheng-Ann Heng. Dofe: Domain-oriented feature

3620



embedding for generalizable fundus image segmentation on
unseen datasets. IEEE Transactions on Medical Imaging,
39(12):4237–4248, 2020.

[30] Ling Zhang, Xiaosong Wang, Dong Yang, Thomas Sanford,
Stephanie Harmon, Baris Turkbey, Holger Roth, Andriy My-
ronenko, Daguang Xu, and Ziyue Xu. When unseen domain
generalization is unnecessary? rethinking data augmenta-
tion. 2019.

[31] Ling Zhang, Xiaosong Wang, Dong Yang, Thomas Sanford,
Stephanie Harmon, Baris Turkbey, Bradford J. Wood, Hol-
ger Roth, Andriy Myronenko, Daguang Xu, and Ziyue Xu.
Generalizing deep learning for medical image segmentation
to unseen domains via deep stacked transformation. IEEE
Transactions on Medical Imaging, 39(7):2531–2540, 2020.

[32] Zixu Zhao, Yueming Jin, Bo Lu, Chi-Fai Ng, Qi Dou, Yun-
Hui Liu, and Pheng-Ann Heng. One to many: Adaptive in-
strument segmentation via meta learning and dynamic online
adaptation in robotic surgical video, 2021.

[33] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. Domain generalization in vision: A sur-
vey, 2021.

3621


