
A Riemannian Framework for Analysis of Human Body Surface

Emery Pierson
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

emery.pierson@univ-lille.fr

Mohamed Daoudi
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Abstract

We propose a novel framework for comparing 3D human
shapes under the change of shape and pose. This problem
is challenging since 3D human shapes vary significantly
across subjects and body postures. We solve this problem by
using a Riemannian approach. Our core contribution is the
mapping of the human body surface to the space of metrics
and normals. We equip this space with a family of Rieman-
nian metrics, called Ebin (or DeWitt) metrics. We treat a
human body surface as a point in a ”shape space” equipped
with a family of Riemannian metrics. The family of metrics
is invariant under rigid motions and reparametrizations;
hence it induces a metric on the ”shape space” of surfaces.
Using the alignment of human bodies with a given template,
we show that this family of metrics allows us to distinguish
the changes in shape and pose. The proposed framework
has several advantages. First, we define a family of met-
rics with desired invariance properties for the comparison
of human shape. Second, we present an efficient framework
to compute geodesic paths between human shape given the
chosen metric. Third, this framework provides some basic
tools for statistical shape analysis of human body surfaces.
Finally, we demonstrate the utility of the proposed frame-
work in pose and shape retrieval of human body.

1. Introduction
Human shape analysis is an important area of research

with a wide applications in vision, graphics, virtual real-
ity, product design and avatar creation. While 3D human

shapes are usually represented as 3D surfaces, human bod-
ies vary significantly across two important properties: shape
(or subjects identity) and body postures (or body pose).
These variations make human body shape analysis a chal-
lenging problem. In this paper, we seek a framework for
human shape analysis which provides: (i) a shape metric to
quantify shape and pose differences (ii) a full pipeline for
generating deformations and shape interpolation; and (iii) a
shape summary, a compact representation of human shapes
in terms of the center (mean of human shapes).

2. Related Work
The main tasks in human shape analysis can be divided

into representing, comparing, deforming and summarizing
human shapes. A common theme in the literature has been
to represent human surfaces by certain geometrical features,
such as HKS [23], WKS [1] and ShapeDNA [20]. The
readers can refer to recent surveys [19, 15] for an extensive
review and comparison of such descriptors. Their structure
does not allow for more complex tasks such as interpolation
or statistical shape analysis.

Recent deep learning approaches try to tackle this prob-
lem. They use a deep neural networks to build ”disentan-
gled” latent spaces [2, 29]. However those approaches re-
quires training data, while our approach is using purely ge-
ometric information.
Our approach falls within the class of elastic shapes analy-
sis. In this section we cover methods from this family that
are more closely related to ours. Kurtek et al. [13]) and
Tumpach et al. ([24] propose the quotient of the space of
embeddings of a fixed surface S into R3 by the action of the
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orientation-preserving diffeomorphisms of S and the group
of Euclidean transformations, and provide this quotient with
the structure of an infinite-dimensional manifold. We can
then define and use Riemannian metrics on this manifold to
measure the distance between two given shapes as well as
to interpolate between them by computing a geodesic that
joins them. However, the computational costs of this ap-
proach are high. Another recent approach is that of square
root normal fields or SRNF in which different embeddings
and immersions of the surface S modulo translations are
described by points in a Hilbert space, and both rotations
in R3 as well as reparametrizations of the surfaces translate
into orthogonal transformations in the Hilbert space ([11]).
However, the SRNF map is neither injective nor surjective
and there exist different shapes having the same SRNF. In
addition, as observed by Su el al. [21], the resulting distance
can be viewed as an extrinsic distance obtained by embed-
ding the space of parametrized surfaces in a linear space.

Most of the above approaches use a spherical parameter-
ization of 3D objects, while we propose to use a human tem-
plate as a parametrization, and take some advantages of the
recent developments of static and dynamic human datasets
such as SMPL and FAUST.

2.1. Main Contributions

In this paper, we present a comprehensive Riemannian
framework for analyzing human bodies, in the process of
dealing with the change in shape and pose. Unlike some
past works, instead of using a general parameterization of
human body surfaces, we propose to use a human template
and to align the human surfaces to this template. The human
body surface is represented by the normal and the induced
surface metric. Using the metric on the space of normals
and the Ebin metric on the space of Riemannian metrics, a
family of metrics is proposed to compare shapes and poses
of a human body. To our best knowledge, this is the first
demonstration of the use of this metric in human body shape
analysis. We will show also for the first time, that this fam-
ily of metrics takes into account the intrinsic and extrinsic
geometry of human bodies. Additionally, we present an effi-
cient framework to compute geodesic between given human
body surfaces under the chosen metric. We provide some
basic tools for statistical shape analysis of human body sur-
faces. These tools help us to compute an average human
body. To evaluate our approach, we conduct extensive ex-
periments on multiple datasets. The experimental results
show that the proposed family of Riemannian metrics clas-
sifies correctly the shapes and the poses. The experimen-
tal results show also that our proposed framework provides
better geodesics than the state-of-the-art Riemannian frame-
work.

3. Mathematical Framework and Background
3.1. Notation

Given a reference human being T (also called a template
in the sequel), we will represent a human shape S with an
embedding f ∶ T → R3 such that the image f (T ) equals
S . The map f is an embedding onto a human shape f(T ).
The function f is also called a correspondence between the
template T and the human shape f(T ).

Recall that a map f ∶ T → R3 is an embedding when: (1)
f is smooth, in particular small variations on the template
T correspond to small variations on the human shape f(T )
(2) f is an immersion, i.e. at each point of the human shape
f(T ) one can define the normal (resp. tangent) space to the
surface of the human body as subspace of R3, and (3) f is
an homeomorphism onto its image, i.e. points on f(T ) that
look close in R3 are images of close points in T . We define
the space of all registered human shapes as

H ∶= {f ∶ T → R3, f is an embedding}.

It is often called the pre-shape space since human bod-
ies with the same shape but different correspondences with
the template may correspond to different points in H. The
set H is a manifold, as an open subset of the linear space
C∞(T ,R3) of smooth functions from T to R3. The tan-
gent space to H at f , denoted by TfH, is therefore just
C∞(T ,R3).

The shape preserving transformations can be expressed
as group actions onH. The group R3 with addition as group
operation acts on H, by translations : (v, f) ↦ f + v,
for v ∈ R3 and f ∈ H. The group SO(3) with matrix
multiplication as group operation acts on H, by rotations :
(O,f) ↦ Of , for O ∈ SO(3) and f ∈ H. Finally, the
group Γ ∶= Diff+(T ) consisting of diffeomorphisms which
preserve the orientation of T acts also on H, by reparame-
terization : (γ, f) ↦ f ○ γ−1, for γ ∈ Diff+(T ) and f ∈ H.
The use of γ−1, instead of γ, ensures that the action is from
left and, since the action of SO(3) is also from left, one can
form a joint action of G ∶= Diff+(T ) × SO(3) on H. In
this paper, the translation group is taken care of by using a
translation-independent metric. Therefore, in the following
we will focus only on the reparameterization group Γ and
on the rotation group SO(3).

3.2. Shape Space of aligned Human bodies

Given a group G acting on H, the elements in H ob-
tained by following a fix registered human body f ∈ H
when acted on by all elements of G is called the equiv-
alence class of f under the action of G, and will be de-
noted by [f]. In particular, when G is the reparameteriza-
tion group Γ ∶= Diff+(T ), the orbit of f ∈ H is character-
ized by the human shape f(T ) = S, i.e. the elements in
[f] = {f ○ γ−1 for γ ∈ Γ} are all possible registrations of
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S. The quotient space H/G is called shape space and is
defined as follows.

Definition 3.1 The shape space S is the set of (oriented)
human bodies in R3, which are diffeomorphic to T , modulo
rotation. It is isomorphic to the quotient space of the pre-
shape spaceH by the human motion-preserving group G ∶=
Diff+(T ) × SO(3) : S =H/G.

In this paper, each human body surface is aligned to a
given template T . This means that for any equivalence class
[f] ∈ H/G a preferred correspondence with the template is
chosen. This alignment is anatomically meaningful (for in-
stance the finger tips of the template correspond to the finger
tips of the other human bodies (See Figure 3 in the supple-
mentary material). The set of aligned human bodies will
be denoted by S0 and is the space of interest in the present
paper. Since the correspondance with the template is cho-
sen in a smooth way, the shape space S is diffeomorphic
to the manifold of aligned human bodies S0. Mathemati-
cally this alignment is called a section S0 of the fiber bundle
Π ∶ H → H/G. (More details are given in supplementary
material).

4. Riemannian Analysis of aligned Human
Shapes

Next, we describe our approach to construct the metric
between two elements of S0 and the “optimal” deformation
from one human surface to another. Since human surfaces
are represented as elements of S0, a natural formulation of
“optimal” is to consider the two corresponding elements in
S0 and to construct a geodesic connecting them in S0.

4.1. Elastic Riemannian Metric

Consider a parameterized surface f ∶ T → R3. Denote
by g the pull-back of the Euclidian metric of R3 and by n
the unit normal vector field (Gauss map) on S = f(T ).

We consider the following relationship between parame-
terized surfaces on one hand and the product space of met-
rics and normals on the other :

Φ ∶ S0 Ð→ Met(T ) × C∞(T ,S2)
f z→ (g, n). (1)

It follows from the fundamental theorem of surface the-
ory (see Bonnet’s Theorem in [7] for the local result, The-
orem 3.8.8 in [12] or Theorem 2.8-1 in [5] for the global
result) that two parameterized surfaces f1 and f2 having the
same representation (g, n) differ at most by a translation
(and rotation for g). This theorem implies that we can rep-
resent a surface by its induced metric g and the unit normal
field n, for the purpose of analyzing its shape. We will not
loose any information about the shape of a surface f if we

represent it by the pair (g, n). The induced metric g cap-
tures the intrinsic shape, while the normal n captures the
extrinsic geometry of shape. The numerical computation of
the metric g is included in the supplementary material.

4.2. The Manifold of Metrics on T and its Geodesic
Distance

The space of positive-definite Riemannian metrics on
T will be denoted by Met(T ). Once we have selected a
Riemannian metric for a human body, it is a point in the
infinite-dimensional manifold Met(T ). We will equip the
infinite-dimensional space of all Riemannian metrics with
a diffeomorphism-invariant Riemannian metric, called the
Ebin (or DeWitt) metric [8, 6], as suggested by [21]. The
Riemannian metric on the tangent space is defined by:

((δg, δg))g = ∫
T

Tr(g−1δg0g−1δg0)+λTr(g−1δg)2µg (2)

where δg0 = δg − 1
2

Tr(g−1δg)g is called the traceless part
of δg, and where µg denotes the volume form defined by g.

The following theorem, from [21], presents the geodesic
distance between two metrics g1 and g2 in (the completion
of) Met(T ) for any choice of λ.

Theorem 4.1 Let g1, g2 ∈ Met(T ). The square of the
geodesic distance for the family of metrics is

dλ (g1, g2)2 = ∫T dλ,Sym (g1(x), g2(x))2 dx
where

dλ,Sym (g1(x), g2(x))2
= 16λ (s21(x) − 2s1(x)s2(x) cos(θ(x)) + s22(x))

with

s1(x) = 4
√
det (g1(x)), s2(x) = 4

√
det (g2(x))

θ(x) =min{π,
√

λ−1 tr(K2
0(x))

4
}

K(x) = { 0 if either g1(x) or g2(x) is degenerate
g1(x) log (g1(x)−1g2(x)) else

K0(x) =K(x) − tr (g−11 (x)K(x)) g1(x)

Theorem 4.2 Let a, λ, c, three positive real numbers. We
equip the space Met(T ) × C∞ (T ,S2) with the following
Riemannian metric:

(((δg, δn), (δg, δn)))g,n =
a (∫T Tr(g−1δg0g−1δg0) + λTr(g−1δg)2µg)
+c ∫T ⟨δn, δn⟩dx

(3)

Let f1, f2 ∈ S0 and Φ (f1) = (g1, n1) ,Φ (f2) = (g2, n2).
Define a distance function dS0 on S0 by

da,λ,c
S0
(f1, f2) ∶= d (Φ (f1) ,Φ (f2)) (4)
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where d is the geodesic distance in the space Met(T ) ×
C∞ (T ,S2). Then the square of the distance dS0 between
f1 and f2, with parameters a, λ, c, is given by

da,λ,c
H
(f1, f2)2 = adλ (g1, g2)2+c∫

T

dS2(n1(x), n2(x))2dx
(5)

where dλ is given by Theorem 4.1 and dS2(n1(x), n2(x)) =
arccos ⟨n1(x), n2(x)⟩ is the geodesic distance on S2.

4.3. Computation of Geodesics

As mentioned above, an important advantage of our Rie-
mannian approach over many past papers is its ability to
compute not only the distance between two human surfaces
but also the geodesics or the deformations between shapes.
The computation of geodesics requires the minimization of
an energy. In [24] the path-straightening method is used to
find critical points of the energy functional. Starting with
an arbitrary path, the method consists of iteratively deform-
ing (or “straightening”) the path in the opposite direction
of the gradient, until the path converges to a geodesic. The
problem would then be a problem of optimization on the set
of vertices of the shape. However, this can lead to numeri-
cal instabilities. We will use another, more stable approach
[22]. In this approach, after choosing a time step 1

T
, T ∈ N,

the path is set to the linear path (initialization) on which we
add a sum of deformations:

f (t0) = f0, f (tT ) = f1
f (ti) = (1 − ti) f0 + tif1 +∑

j

αijDj
(6)

Where Dj is an orthogonal basis of ND plausible de-
formations gathered beforehand. The computation of the
geodesic requires the minimization of the energy functional
E(α), defined by:

E(α) = ∫
1

0
((dΦ(f(t))

dt
,
dΦ(f(t))

dt
))

Φ(f(t))

dt (7)

with α ∈ R(T−2)∗ND the vector containing all αij presented
in equation 6, and ((., .))Φ(f(t)) being the pullback by Φ of
the Riemannian metric 3 on Met(T ) ×C∞ (T ,S2).

To find the optimal coefficients α, similar to [22], we
employ the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [9], implemented in the SciPy library [28] where
we calculate the gradient using the automatic differentiation
feature of PyTorch library [18].

Basis Deformations In [13], [14], [21], [24], spheri-
cally parameterization of 3D objects is used and spherical
harmonics are computed to define the set of deformations.
However, human surfaces will require a large number of

basis elements to achieve high accuracy and capture all the
human surface details. In addition, in the case of human
shapes, we are using a human template as a parametriza-
tion and there are several publicly available dynamic human
shapes that can be used to build a PCA basis of deforma-
tions.

In our case to build such real deformations, we use the
publicly Dynamic FAUST dataset [3], which contains mo-
tions registered to the template T . 10 individuals (5 males,
5 females) perform 14 different motions, sampled at the rate
of 60 frame per second. Given a set of motions, we collect
deformations by gathering differences from the sequences.
Let (m1, ...,mT ) ∈ S0 be a motion available in the dataset.
We define the small deformations that we collect from the
motions as the family (mnτ+τ −mnτ)n, with τ being a time
interval chosen manually, fixed to 10 frames (≃160 ms).
Thus, given a set of training samples, we can compute its
PCA basis. In our experiments, the number of PCA basis
elements required is of the order of 100.

Note that, by construction, adding a deformations of the
basis of deformation to a aligned human shape will not de-
stroy the alignment with the template.

Algorithm 1: Computation of Geodesics
Input : the source and target surfaces f1 and f2,

a, λ, c the parameter of the elastic metric
Output: fgeo: the geodesic connecting f1 and f2
1: Initialize αij = 0 and f(ti) by linear path;
2: Define the energy functional E(α) in an
automatic differentiation framework (PyTorch
here), that computes the gradient value ∇αE along
the functional value;

3: Minimize E with respect to α with a BFGS
implementation (SciPy BFGS or L-BFGS-B), that
uses the gradient ∇αE;

4: Set the geodesic to be:
fgeo(ti) = tif0 + (1 − ti)f1 +∑j αijDj ;

5: return the final geodesic fgeo

5. Statistical Analysis of Human Shapes

We are interested in defining a notion of “mean” for a
given set of human shape. Let f1, . . . fn be a set of human
shapes. The mean of a set of human shapes is the human
shape that is as close as possible to all of the human shapes
in the set of human shapes, under the distance metric de-
fined by Equation 5. This is known as the Karcher mean
and is defined as the human shape that minimizes the sum
of squared distances to all of the human shape in the given
human shape. In order to find the Karcher mean one can
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define the following functional:

V ∶ S0 → R,V(f) =
n

∑
i=1

d (fi, f)2 (8)

That is differentiable with the distance previously com-
puted. We initialize the Karcher mean as f1 and set it to
be the sum of f1 with a linear combination of deformations:

f̄ = f1 +∑
j

βjDi

The functional to minimize becomes:

W(β) = V(f1 +∑
i

βiDi)

Algorithm 2: Karcher Mean of Human Shapes
Input : f1, . . . fn a set of human body, a, λ, c the

parameter of the elastic metric
Output: f̄ : Karcher mean
1: Initialize α = 0 and f̄ = f1 by the first shape in

the set;
2: Define the Karcher mean functionalWa,λ,c(β) in
an automatic differentiation framework (PyTorch
here) that computes the gradient value ∇βW along
the functional value;

3: MinimizeW with respect to β with a BFGS
implementation (SciPy BFGS or L-BFGS-B), that
uses the gradient ∇βW;

4: Set the Karcher mean to be: f̄ = f1 +∑i βiDi;
5: return Karcher mean

6. Experiments
6.1. Assessment of the Family of Elastic Metrics

To further assess the pertinence of the family of elastic
distances defined in Equation 5 in human shape and pose
analysis, we measured pairwise distances of the metric on
the registrations present in the FAUST dataset [3]. It con-
tains 10 individuals (5 males, 5 females) in 10 different
poses. We present in Figure 1 and 2 2D visualizations of
the dataset using the t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) algorithm [25].

The Figure 1 clearly evidences that the 3D human with
similar poses belong to very close distributions. These re-
sults show the assumption that given a = 0, λ = 0, c = 1 (nor-
mal field L2 metric), the metric is preserved under shape
change, and could be used in pose and motion analysis ap-
plication [17, 27]. The figure 2 shows that 3D human with
similar shape belong to very close distribution. These re-
sults states the assumption that given a = 1, λ = 0.0001, c =
0, the metric is preserved under pose change, and could be
used in many shape analysis application approaches [19]
and [15].

Figure 1: 2D visualization of the FAUST dataset by our
method using t-SNE algorithm based on the metric from
equation 5. The metric parameters are set to a = 1, λ =
0.0001, c = 0. Each color represents a class of pose and a
class representative is also displayed.

Figure 2: 2D visualization of the FAUST dataset by our
method using t-SNE algorithm based on the metric from
equation 5. The metric parameters are set to a = 0, λ =
0, c = 1. Each color represents a class of shape and a class
representative is also displayed.

6.2. Geodesics and Karcher Mean

We performed a number of experiments using human
surfaces of same and different persons under a variety of
pose and shape, and studied the resulting geodesic paths.

Figure 3 shows the geodesic path between f1 (shown in
far left) and f2 (shown in far right). Drawn in between are
human surfaces denoting equally spaced points along the
geodesic path. In terms of the Riemannian metric chosen,
these paths denote the optimal deformations in going from
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the first human body to the second and the path lengths
quantify the amount of deformations. For this experiment,
we also provide a curve of the energy, available right to the
paths, which shows that the energy decreases smoothly with
time.

For the first path, the change in the pose induces small
changes in shape. We thus want to minimize the shape
change along the path, which would set the extrinsic pa-
rameters c = 0. We find that a = 1, λ = 1 gives the best
visual results.

The second path is a path with change in shape. We thus
want to minimize the pose change along the path, which
would set parameters a = λ = 0, and the normal parameter
c = 1.

The geodesic computation were made on a com-
puter setup with Intel(R) Xeon(R) Bronze 3204 CPU @
1.90GHz, and a Nvidia Quadro RTX 4000 8GB GPU. The
computation time of the different geodesics took less than 5
mins.

An example of Karcher mean is shown in Figure 4,
where five human bodies in the same pose but with different
shapes are averaged.

We also compare the results obtained with our method
to the results using linear geodesic path, SRNF and SMPL
descriptors.

1. The linear geodesic path defined by:

f (t0) = f0, f (tT ) = f1
f (ti) = (1 − ti) f0 + tif1

(9)

2. The SRNF geodesic path is also visualized. This repre-
sentation has been used to analyze human shapes with
interesting results [14, 22]. The SRNF is a pointwise
representation based on q =

√
An, where A = ∥fu×fv∥

is the area, and n the normal field. We compute the
geodesic for the SRNF representation with the same
method as presented in this section.

As shown in Figures 5(a) and (b), the linear interpola-
tion and SRNF lead to unnatural deformations for hu-
man paths. The deformation between surfaces contains
many artifacts and degeneracies.

3. SMPL body model [16] : The SMPL model is a hu-
man blend shape model. The human shape is presented
as a function of β, θ, with θ being the parameters of
human body pose, as a cartesian product of axis an-
gle rotation of skeletal joints (21 joints), in axis-angle
representation, which lives in R21∗3 = R63. β are
the parameters of the human body shape being the co-
efficients of linear combination of Principal Compo-
nent Analysis (PCA) shape decomposition (10 com-
ponents). After fitting SMPL model to the FAUST
dataset, we can compute the corresponding geodesic,

using the resulting shapes of the linear path in the
SMPL parameter space, see Figure 5. While the defor-
mation propose by the SMPL body model is in some
way plausible, we first argue that the pose deforma-
tion proposed by SMPL does not bend enough the el-
bow: this is due to the linear interpolation of the elbow
joint angle. In addition, one can observe that the target
and sources shapes are slightly different than for our
shapes: this is due to the fitting step of SMPL: the re-
sulting shape is the closest shape with plausible SMPL
parameters, not exactly the input shape.

In both examples, our approach provides better results.

7. Application to Pose and Shape Retrieval
Here, we demonstrate how the proposed metric can be

exploited for 3D human retrieval. Given a 3D human, we
look for the similar 3D human in a database.

7.1. Evaluation Metrics and Comparisons

We test the usefulness of the family of metrics (Equa-
tion 5) in 3D human shape and pose retrieval. We use Near-
est neighbor (NN), First-tier (FT), Second-tier (ST) as eval-
uations criteria.
Comparisons: We propose four methods for comparison
with our method. The first method GDVAE [2] is a point
cloud variational autoencoder which is trained to disanten-
gle the intrinsic and extrinsic informations of a given shape
in the latent space, and propose a latent vector that decom-
poses in an intrinsic and extrinsic part. We used the FAUST
meshes as input of their available trained network and gath-
ered their extrinsic latent vectors, which lives in R12, along
with their intrinsic latent vectors, which were for human
pose retrieval and shape retrieval respectively. The network
has been trained on the SURREAL dataset [26] .
The second method proposed by Zhou et al. [29] is a mesh
autoencoder based on Neural3DMM [4] graph neural net-
work structure. They disantengle the shape and pose in the
latent space. We apply the FAUST meshes on their avail-
able network, trained on AMASS dataset, and use the pose
latent vector, which lives in R112 as a descriptor for compar-
ison. For human shape, the Area Projection Transform [10]
which won the human shape retrieval challenge [19] is pre-
sented. It has been designed for a different goal here, since
it is parameterization invariant. We also compare to the
SRNF distance that showed reliable results for pose re-
trieval. Finally we use both shape and pose representa-
tion from the SMPL body model for the respective retrieval
tasks.

7.2. Experimental results

In this section, we perform evaluations of our method
in FAUST dataset. We evaluate on pose and shape re-
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(a)

(b)

Figure 3: Examples of geodesic path between f1 and far left and f2 far right: (a) with metric parameters (a=1, λ = 1, c=0),
(b) with metric parameters (a=0, λ = 0, c=1). The corresponding energy evolution during optimization are displayed on the
right. Computation time was respectively 3min31s and 10.6s.

Figure 4: Karcher mean (yellow) for a five different people
relatively to the distance with metric parameters (a = 0, λ =
0, c = 1).

trieval. The evaluation results in Table 1 demonstrate that
our method outperforms the previous state of the art shape
retrieval methods in term of NN criteria. The Table 2 shows
that the proposed approach provides the best results on pose
retrieval in term of FT and ST criteria. We also find that for
shape retrieval, the best parameters are a = 1, λ << a. The
computation times for each pairwise distance were ≃70 ms
and ≃80 ms for pose and shape retrieval respectively.

Repr. NN FT ST
GDVAE intrinsic [2] 27 24.8 46.2
Zhou et al. shape[29] 42 24.8 42.8
SMPL shape vector 98 72.4 86.7
APT [10] 96 86.5 96.2
Metric (1, 0.0001, 0) 100 94.8 97.1

Table 1: FAUST dataset results for shape retrieval

Repr. NN FT ST
GDVAE extrinsic [2] 60 38.0 54.2
Zhou et al. pose[29] 82 69.2 83.4
SMPL pose vector 80 84.4 95.2
SRNF 73 77.7 94.4
Metric (0, 0, 1) 85 88.3 97.6

Table 2: FAUST dataset results for pose retrieval

8. Conclusion
In this paper we have proposed a novel Riemannian

framework which allows not only to compute a metric be-
tween human bodies under pose and shape changes, but also
provides a geodesic path between human bodies, and statis-
tical tools (eg. mean of human shape). We have demon-
strated the utility of the proposed framework in pose and
shape retrieval of human body. The main limitation of our
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(a) Linear geodesic path

(b) Geodesic computed with SRNF

(c) Geodesic computed in SMPL space

(d) Geodesic computed with our approach, metric parameters are set to a = 1, λ = 1, c = 0. Computation time was 3min10s.

Figure 5: Comparison of our approach with different frameworks. We observe that the linear initial path is challenging, while
the SRNF path induces distortion in the shape. Finally although the SMPL geodesic is able to keep the shape, we argue that
the path of our approach is the most natural path compared to the one proposed by SMPL: the natural deformations between
the source and target shape would indeed bend more the elbow.

method lies in the requirement of a template.

Acknowledgments

This work was supported by the ANR project Human4D
ANR-19-CE23-0020. This work was also partially sup-
ported by the French State, managed by National Agency
for Research (ANR) under the Investments for the future
program with reference ANR-16-IDEX-0004 ULNE. The
authors thank E. Klassen, M. Bauer and Z. Su from De-
partment of Mathematics, Florida State University, for the
discussion on the implementation of geodesic computation.
We are grateful to B. Levy from Inria Nancy Grand-Est re-

search center for the discussion about the computation of
induced metric g on a triangulated mesh.

References

[1] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers.
The wave kernel signature: A quantum mechanical approach
to shape analysis. In 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), pages
1626–1633, 2011. 1

[2] Tristan Aumentado-Armstrong, Stavros Tsogkas, Allan Jep-
son, and Sven Dickinson. Geometric disentanglement for
generative latent shape models. In Proceedings of the

2998



IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 1, 6, 7

[3] Federica Bogo, Javier Romero, Matthew Loper, and
Michael J. Black. FAUST: Dataset and evaluation for 3D
mesh registration. In Proceedings IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), Piscataway,
NJ, USA, June 2014. IEEE. 4, 5

[4] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis,
Michael Bronstein, and Stefanos Zafeiriou. Neural 3D Mor-
phable Models: Spiral Convolutional Networks for 3D Shape
Representation Learning and Generation. arXiv:1905.02876
[cs], Aug. 2019. arXiv: 1905.02876. 6

[5] P. G. Ciarlet. An Introduction to Differential Geometry with
Applications to Elasticity, volume 78-79. Kluwer Academic
Publishers, 2005. 3

[6] Bryce S. DeWitt. Quantum theory of gravity. i. the canonical
theory. Phys. Rev., 160:1113–1148, Aug 1967. 3

[7] M. P. Do Carmo. An Introduction to Differential Geometry
with Applications to Elasticity. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1976. 3

[8] D. G. Ebin. The manifold of Riemannian metrics, in : Global
analysis, berkeley, calif., 1968. Proc. Sympos. Pure Math.,
15:11–40, 1970. 3

[9] R. (Roger) Fletcher. Practical methods of optimization.
Chichester ; New York : Wiley, 1987. 4

[10] A. Giachetti and C. Lovato. Radial Symmetry Detection and
Shape Characterization with the Multiscale Area Projection
Transform. Computer Graphics Forum, 31(5):1669–1678,
2012. 6, 7

[11] Ian H. Jermyn, Sebastian Kurtek, Eric Klassen, and Anuj
Srivastava. Elastic shape matching of parameterized surfaces
using square root normal fields. In ECCV (5), pages 804–
817, 2012. 2

[12] W. Klingenberg. Eine Vorlesung in Differentialgeometrie.
Springer Verlag, Berlin, 1973. 3

[13] Sebastian Kurtek, Eric Klassen, John C. Gore, Zhaohua
Ding, and Anuj Srivastava. Elastic geodesic paths in shape
space of parameterized surfaces. IEEE Trans. Pattern Anal.
Mach. Intell., 34(9):1717–1730, 2012. 1, 4

[14] Hamid Laga, Qian Xie, Ian H. Jermyn, and Anuj Srivastava.
Numerical inversion of SRNF maps for elastic shape analysis
of genus-zero surfaces. IEEE Trans. Pattern Anal. Mach.
Intell., 39(12):2451–2464, 2017. 4, 6

[15] Zhouhui Lian, Afzal Godil, Benjamin Bustos, Mohamed
Daoudi, Jeroen Hermans, Shun Kawamura, Yukinori Kurita,
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