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Abstract

Multimodal learning is an emerging yet challenging re-
search area. In this paper, we deal with multimodal sar-
casm and humor detection from conversational videos and
image-text pairs. Being a fleeting action, which is reflected
across the modalities, sarcasm detection is challenging since
large datasets are not available for this task in the literature.
Therefore, we primarily focus on resource-constrained train-
ing, where the number of training samples is limited. To this
end, we propose a novel multimodal learning system, MuLOT
(Multimodal Learning using Optimal Transport), which uti-
lizes self-attention to exploit intra-modal correspondence
and optimal transport for cross-modal correspondence. Fi-
nally, the modalities are combined with multimodal attention
fusion to capture the inter-dependencies across modalities.
We test our approach for multimodal sarcasm and humor de-
tection on three benchmark datasets - MUStARD [7] (video,
audio, text), UR-FUNNY [20] (video, audio, text), MST [3]
(image, text) and obtain 2.1%, 1.54% and 2.34% accuracy
improvements over state-of-the-art.

1. Introduction
With an abundance of user-generated multimodal content,

such as videos, multimodal learning has become an impor-
tant area of research [59, 47, 2]. Unlike traditional unimodal
learning on isolated modalities (such as vision, language, or
acoustic), multimodal learning aims to aggregate comple-
mentary sources of information into a unified system. Under-
standing sarcasm from multimodal dialogues is a specialized
form of sentiment analysis, where the speaker creatively ex-
periments with words (language), gestures (vision), prosody
(acoustic) to deliver incongruity across modalities. Humor
is also a closely related quintessential sentiment often mani-
fested using exaggeration or irony across modalities, such as
a sudden twist of tone or a funny gesture. These two forms
of subtle human sentiments are crucial to removing barriers

*denotes equal contribution

Figure 1: Sample sarcastic utterance from the MUStARD
dataset along with its transcript. Sheldon’s comment (text)
with a straight face (visual) and a clinical tone (acoustic)
makes the instance sarcastic.

in conversations, building trust [55] and creating a positive
impact on mental health [29]. However, existing deep neu-
ral systems often struggle to understand such fine-grained
multimodal sentiments.
Motivation: The most common form of sarcasm and humor
has traditionally been delivered using text. However, sarcasm
in multimodal data often requires precise inter-modal cues
to reveal the speaker’s intentions. For instance, it can often
be expressed using a combination of verbal and non-verbal
cues, such as a change of tone, overemphasis in a word,
a drawn-out syllable, or a straight-looking face. Consider
the example shown in Figure 1 - the seemingly applaud-
ing utterance "It’s just a privilege to watch your mind in
work" becomes sarcastic when delivered with a straight face
and clinical tone, overall expressing a negative connotation.
Humans can naturally integrate all this simultaneous infor-
mation subconsciously. However, building an algorithm that
can potentially do the same requires appropriate representa-
tion of all these disparate sources of information and thus,
gained immense research interest.
Challenges: Despite being regularly used in movies and
sitcom shows, sarcastic conversational utterances are hard
to collect, mainly because of the manual effort required in
detecting and annotating raw videos with sarcasm labels.
The only publicly available corpus, MUStARD, contains
690 video samples with an even number of sarcastic and
non-sarcastic labels. As a consequence, off-the-shelf mul-
timodal transformer-based systems [51, 37, 24, 47] with a
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large number of parameters often tend to overfit this dataset.
In this work, we propose MuLOT, which utilizes multi-head
self-attention and optimal transport (OT) - [57] based domain
adaptation to learn strong intra- and cross-modal dependen-
cies using a small number of training samples. In order to
embed asynchronous unimodal features in a common sub-
space, we use optimal transport kernel (OTK) Embedding
[34]. Lastly, the self and cross-attended features are fused
using an attention fusion module.
Contributions: In summary, our contributions are three-
fold. (i) We propose a new multimodal learning method that
uses multi-head self-attention and optimal transport (OT)
- [57] based domain adaptation to learn strong intra- and
cross-modal dependencies using a small number of training
samples. (ii) We evaluate the proposed system on three dif-
ferent multimodal sarcasm and humor detection datasets and
obtain 2.1− 2.4% improvements over the previous state-of-
the-art. (iii) We reduce the training corpus of two large mul-
timodal datasets and demonstrate the superiority of our sys-
tem over multimodal transformers in a resource-constrained
training setup. On limited training samples, the proposed
system outperforms state-of-the-art by an accuracy margin
of 4.2− 5.8%.

2. Related Work
The proliferation of multimedia data on the Internet has

resulted in multimodal systems gaining an increasing in-
terest in recent years. One of the fundamental challenges
in a multimodal framework is to fuse different unimodal
features, which are asynchronous and have varying dimen-
sions. Poria et al. [42] presented an outline of various fusion
techniques and potential performance improvements with
multiple modalities.
Multimodal Fusion: Similar to human behavior, multi-
modal frameworks aim to integrate and correlate simultane-
ous multiple resources, such as acoustic, visual, and textual
information [7, 21, 2, 45]. There are mainly three types
of fusion strategies – early, late, and hybrid. Early fusion
methods [43, 64] integrates different sources of data into a
single feature vector and uses a single classifier. On the other
hand, late fusion [4, 5] aggregates the outputs of different
classifiers trained on different modalities. However, none
of these techniques consider the interdependence among the
different modalities and hence perform poorly on real ap-
plications. In contrast, hybrid fusion [65, 1, 58, 41, 44, 46]
jointly learns from various modality-specific sources by em-
ploying an intermediate shared representation layer and has
been most prominent in the literature. Recently following
the success of transformers [56, 23, 40, 14, 63, 31], sev-
eral works have extended it to multimodal applications by
capturing both unimodal and cross-modal interactions via
fine-tuning [54, 33, 51, 37, 24, 25, 47]. For example, Rah-
man et al. [47] integrate acoustic and visual information in

pre-trained transformers like BERT [14] and XLNet [63].
However, all the multimodal transformers require a large
number of training samples for good performance.
Multimodal Sarcasm & Humor Detection: Humor and
sarcasm are two closely related sentiments - while hu-
mor is often expressed using exaggeration and irony, sar-
casm mostly generates from incongruity. Unimodal hu-
mor and sarcasm detection are well-studied in literature
[53, 60, 48, 62, 8, 30, 10, 28]. However, the multimodal
counterpart is more subtle as the irony or incongruity is
often present in different modalities. Hasan et al. [20] intro-
duced the first large-scale multimodal dataset (UR-FUNNY)
for humor detection. Castro et al. [7] collected a multimodal
conversational dataset (MUStARD) for sarcasm detection
from popular sitcom TV shows. Cai et al. [3] developed an-
other dataset to detect multimodal sarcasm in Twitter posts.
Recently, Han et al. [19] proposed an end-to-end network
that performs fusion (relevance increment) and separation
(difference increment) on pairwise modality representations
for humor detection. Another closely related work, MISA
[21] aggregates modality-invariant and modality-specific rep-
resentations and has been applied to predict humor in the
UR-FUNNY dataset. However, multimodal sarcastic video
samples are hard to collect, and the existing neural systems
struggle to perform well on MUStARD. In this paper, we
utilize self-attention to capture intra-modal correspondence
and optimal transport for cross-modal correspondence in a
low-resource training setup.

3. MuLOT: Proposed System

This section describes our proposed system, MuLOT for
sarcasm and humor detection in videos and images by lever-
aging multimodal signals. Each video consists of multiple
utterances1, where each utterance - a smaller video by itself,
is considered to contain sarcastic/humorous dialogues for
positive samples. These utterances are a multimodal source
of data - we preprocess the input utterances to extract fine-
grained unimodal features from three modalities - visual (v),
language (l), and acoustic (a). Additionally, every utter-
ance is accompanied by a context - which is also a short
video helping to discern the background of the utterance.
We concatenate the context with the utterance so that the
utterance can be modeled in light of the context and the
resulting video is treated as the input to the system. Conse-
quently, our system is generalizable to images. Each input
image is associated with a caption and a piece of text on
it2, which we consider as visual (v), caption text (tc) and
OCR text (tocr) modalities. Features corresponding to these
modalities are represented as Um ∈ RLm×dm , where Lm

denotes the sequence length for modality m and dm is the

1An utterance is a unit of speech bounded by breaths or pauses [36]
2We employ Google OCR Vision API to extract this text
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respective feature dimension. The details of these features
are discussed in Section 3.1. Given these unimodal feature
sequences Um∈{v,l/tc,a/tocr}, the task is to predict the affec-
tive orientation of the input in a binary classification setup -
sarcastic/humorous or non-sarcastic/non-humorous.

As shown in Figure 2, MuLOT consists of two modules,
the self-attention module and the cross-attention module,
shown in red and blue dashed blocks, respectively. First,
the modality-specific fine-grained features are fed into the
self-attention module which aims to learn intra-modality
correspondence by emphasizing the most relevant tokens in
the entire feature sequence. In parallel, the cross-attention
module maps pairwise unimodal modalities into a common
feature space, and thus learns inter-modality interaction. By
taking both intra-modality and inter-modality relationships
into consideration, the system gains the ability to synchro-
nize across different modalities over various time and learns
the correlation among them [59]. Finally, the self-attended
unimodal features and cross-attended shared features are
fused by using an attention fusion mechanism. It is impor-
tant to observe that MuLOT achieves the same objective as
multimodal transformers [54, 33, 51, 37, 24, 25, 47], but
has significantly fewer trainable parameters, and thus works
better in low-resource training setup.

3.1. Unimodal Feature Extraction

In the proposed multimodal learning setup, we leverage
three modalities, e.g., video, audio and text. Initially we
extract fine-grained unimodal features from these modalities
as described below.
Visual Features: The video features are extracted using a
pre-trained action recognition model, I3D [6] trained on
the Kinetics dataset [26] to recognize 400 different human
actions. All the frames, computed at a rate of 5 FPS, are
first preprocessed by resizing, center-cropping, and normal-
ization to have a resolution of 112 × 112. For every 16
non-overlapping frames in a video, I3D extracts a 2048
dimensional feature vector. Therefore, the final unimodal
feature dimension for every video is Lv × 2048, where Lv is
the number of sets 16 non-overlapping frames. For images,
we employ ResNet-101 [22] pre-trained on ImageNet [13].
Specifically, we extract 7× 7× 2048 feature maps from the
last pooling layer (pool5) of ResNet-101 and reshape it into
a dimension of 49× 2048. Hence, for the images, Lv = 49.
Language Features: Traditionally, language modality fea-
tures have been GloVe [39] or Word2Vec [35] embed-
dings for each token. However, following recent works
[7, 52, 21, 37], we utilize the pre-trained BERT [14] as the
feature extractor for textual utterances. In particular, we
input the raw text to a pre-trained uncased BERT-base model
to get a 768-dimensional dynamic feature representation for
every token in the utterance. Hence, the resulting language
feature dimension is Ll × 768, where Ll is the number of

tokens in the utterance.

Acoustic Features: The acoustic modality is expected to
contribute information related to pitch, intonation, and other
tonal-specific details of the speaker [53]. To achieve this,
we obtain low-level features from the audio stream for each
video. Following state-of-the-art, we use COVAREP [12] to
extract the audio features. These low-level features include
but not limited to 12 Mel-frequency cepstral coefficients,
Voiced/Unvoiced segmenting features (VUV) [15], glottal
source parameters [16]3. The resulting acoustic feature di-
mension is La × 81, where La depends on the length of the
video. Note that we use the OT kernel module in our system
to align all three temporal sequences within an utterance to
be of equal length, i.e. Lv = Ll = La.

3.2. Intra-Modality Attention

Now we introduce the self-attention module used to
model the intra-modal correspondence among three different
modalities. Typically, an attention module can be described
as a tuple of key, query and value, where the output is a
weighted sum of the values and the weight matrix is de-
termined by query and its corresponding key. In case of
self-attention, the key, query and value are equal. Following
the philosophy of [56], the recent trend is to apply trans-
formers for modeling self-attention. However, a transformer
module consists of multiple sub-layers and is often difficult
to train from scratch. In our low-resource training setup, we
simplify the structure of a transformer module by utilizing
the multi-head attention layers.

We compute the multi-head self-attention as follows.
Given the unimodal feature matrices Um ∈ RLm×dm , where
m ∈ {v, l/tc, a/tocr}, we aim to extract k distinct set of
relevant features corresponding to the input representation,
where k is a hyper-parameter denoting the number of at-
tention heads. The multi-head attention mechanism takes
Um as an input, and outputs an attention weight matrix
Wm ∈ Rk×Lm , respective to the modality-specific repre-
sentation as follows

Wm = softmax(Wh2 tanh(Wh1U
⊤
m)), (1)

where, Wh1 ∈ Rr×dm and Wh2 ∈ Rk×r are parameter
matrices to be learned during training. The softmax(·) is
performed along the second dimension of its input, and r
is a hyper-parameter we can set arbitrarily. The resulting
modality-specific embedding matrices Umm are computed
using their respective attention weights and unattended fea-
tures as follows

Umm = WmUm, (2)
where, Umm ∈ Rk×dm are the resulting self-attended fea-
tures for modality m.

3For the full set of features, please refer to [66, 20]
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Figure 2: The architecture of the proposed model, MuLOT. The features from each modality are passed through multi-head
self-attention module (red dashed) and optimal transport-based cross-attention module (blue dashed). Finally, the attended
features are fused using Multimodal Attention Fusion (MAF).

3.3. Cross-Modality Attention

Although the self-attention module effectively exploits
the intra-modality correspondence, the inter-modality re-
lationship, i.e. the interdependence across three different
modalities is not deployed. Motivated by the success of
Transformers [56, 23, 40, 14, 63, 31], several recent works
have extended it to learn multimodal association by adding
additional vision and speech modules to the Transformer
framework [54, 33, 51, 37, 24, 25, 47]. Although multi-
modal transformers rely on a language-pretrained BERT
[14], which is fixed throughout, the vision and acoustic com-
ponents have to be trained from scratch, which often requires
hundreds of thousands of training samples. To this end, in-
stead of using a transformer-based cross-attention module,
we exploit a recently proposed technique viz., optimal trans-
port kernel (OTK) [34] for modelling the inter-modality
association. OTK combines the idea of kernel methods and
optimal transport to fuse the unimodal features with varying
dimension and dependencies into a same reference frame.
The complete cross-attention module consists of two steps
– unimodal feature transform and domain adaptation using
optimal transport.

Unimodal Feature Transform: Since the visual, language
and acoustic features have different dimensions with varying
sizes and dependencies, mapping those into a same reference
frame is necessary yet challenging. In the OTK approach, the
unimodal feature vectors are embedded into a reproducing
kernel Hilbert space (RKHS) and then a weighted pooling
operation is performed based on attention with weights pro-
vided by the transport plan between the set and a trainable

reference. The primary motivation for using kernels is to
provide non-linear transformation of the input features. Af-
terward, optimal transport aligns the features on a trainable
reference frame.

Suppose we want to compute an optimal transport plan
from x to x′. Let a and b be defined as a =

∑
i aiδi and

b =
∑

i biδi and C be the pairwise costs for aligning the
elements x to x′. Then the entropic regularized Kantorovich
relaxation of OT from x to x′ is [57]:

min
P∈U(a,b)

∑
ij

CijPij − ϵH(P ), (3)

where H(P ) = −
∑

ij Pij(log(Pij − 1)), is the entropic
regularization with parameter ϵ, which controls the sparsity
of P and U is the subspace of admissible coupling between
a and b defined as follows

U(a, b) = {P ∈ R+ : P1n = a and PT 1n′ = b}. (4)
Now, suppose x = (x1, x2, .., xn) be input feature vector
and z = (z1, z2, .., zk) be the reference set with k elements.
Let κ be a positive definite kernel and ϕ its corroespond-
ing kernel embedding. The κ matrix contains the values of
κ(xi, zi) before alignment and the transportation plan be-
tween x and z is denoted as P (x, z), which is defined by the
unique solution of Eq. (3) when choosing cost C = −κ. The
embedding is defined as: Φz(x) =

√
pP (x, z)Tϕ(x), where

ϕ(x) = [ϕ(x1), .., ϕ(xn)]
T . Φz(x) can also be represented

as a positive semidefinite kernel as follows [34]
Kz(x, x

′) =
∑

Pz(x, x
′)ijκ(xi, xj) = ⟨Φz(x),Φz(x

′), ⟩
where, Kz is the OTK. Using OTK, we transform Lm ×
dm dimensional unimodal features to a uniform reference
frame with length Luni and feature dimension duni, where
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Dataset #Samples Train Dev Test
#Sar #Non-Sar Total #Sar #Non-Sar Total #Sar #Non-Sar Total

MUStARD 690 275 275 550 35 35 70 35 35 70
MST 24635 8642 11174 19816 959 1451 2410 959 1450 2409

Tiny MST 7819 2000 2000 4000 959 1451 2410 959 1450 2409
#Hum #Non-Hum Total #Hum #Non-Hum Total #Hum #Non-Hum Total

UR-FUNNY 16514 5306 5292 10598 1313 1313 2626 1638 1652 3290
Tiny UR-F 8916 1500 1500 3000 1313 1313 2626 1638 1652 3290

Table 1: Statistics about the five datasets used in our experiments. We have reduced the training set of MST and UR-FUNNY
to generate Tiny MST and Tiny UR-F, respectively. However, the corresponding dev and test sets remain unchanged.

Luni and duni are chosen by experiments. The transformed
features are represented as Ũm ∈ RLuni×duni , where m ∈
{v, l/tc, a/tocr}.
Domain Adaptation using Optimal Transport: After
transforming the varying dimensional unimodal features into
a uniform reference frame, we finally embed pairwise uni-
modal features into a common subspace, using the OT-based
domain adaptation. To implement OT as part of a larger
learning model, we use the recently released Python optimal
transport library [17] in our experiments.

We transport among each pair of modalities, which can
be interpreted as domain adaptation across two modalities
and the transported features are then concatenated to obtain
the final adapted features. Un→m denotes the transported
features from modality n to modality m, i.e.

Un→m = OT (Ũn → Ũm). (5)
We then concatenate transported features to the self-attended
features Umm to obtain the final adopted features as follows

Um
shared = Umm ⊕ Un→m ⊕ Up→m, (6)

where, m,n, p ∈ {v, l/tc, a/tocr}, m ̸= n ̸= p, and ⊕
denotes simple concatenation.

3.4. Multimodal Attention Fusion (MAF)

MAF utilizes an attention-based mechanism to fuse three
set of features, Um

shared, corresponding to the three modal-
ities. For some samples, the visual modality is relevant,
while for others, the language or acoustic modality plays
more crucial role. Hence, the MAF module aims to model
the relative important of different modalities. Motivated
by [18, 44], we design our MAF module with two major
parts – modality attention generation and weighted feature
concatenation. In the first part, a sequence of dense layers
followed by a softmax layer is used to generate the attention
scores [wv, wl, wa] for the three modalities. In the second
part, the adopted features are weighted using their respective
attention scores and concatenated together as follows

Uv
final = (1 + wv)U

v
shared (7)

U l
final = (1 + wl)U

l
shared (8)

Ua
final = (1 + wa)U

a
shared (9)

Uv,l,a
final = WU ⊗ [Uv

final, U
l
final, U

a
final] (10)

We also use residual connections for better gradient flow.
The final multimodal representation, Uv,l,a

final, is fed into a
series of fully-connected layers for the final binary classifi-
cation.

4. Experiments
In this section, we present details of the datasets used,

unimodal feature extraction steps, baselines, and training
methodologies.

4.1. Datasets

We evaluate MuLOTon three different benchmark datasets
for multimodal sarcasm and humor detection. Additionally,
we access the effectiveness of MuLOT in a low-resource
setup by shrinking the large training sets of two datasets.
MUStARD: Multimodal Sarcasm Detection Dataset (MUS-
tARD) [7] is the only available resource to enable sarcasm
detection in conversational videos. This dataset is curated
from popular TV shows like Friends, The Big Bang The-
ory and consists of audiovisual utterances annotated with
sarcasm labels. Each target utterance in this dataset is asso-
ciated with historical dialogues as context, which is key to
understanding the backdrop of sarcastic remarks. The pri-
mary challenge in using MUStARD is its small size, which
limits the performance of heavy transformer-based systems
on this corpus.
MST: Multimodal Sarcasm in Twitter Posts (MST) [3] con-
sists of sarcastic and non-sarcastic image-text pairs collected
from Twitter. This dataset is primarily bimodal, as there is
no acoustic modality. However, we notice that a significant
amount of samples contains textual information on the im-
age. We employ Google OCR Vision API4 to extract this
text and treat this as the third modality. We further reduce
the training set of MST and name the resulting corpus Tiny
MST.
UR-FUNNY: For multimodal humor detection, we use the
UR-FUNNY dataset [20] which is collected from TED talk
videos and therefore has three modalities. Similar to MUS-
tARD, this dataset consists of context preceding the target
punchline. We further create a tiny variant of UR-FUNNY

4https://cloud.google.com/vision/docs/ocr
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by truncating its training set. The split statistics of all these
datasets are presented in Table 1.

4.2. Baselines

For unified comparison across videos and images, we use
the following baselines. Furthermore, we remove various
modalities and modules at a time from the proposed MuLOT
system to observe the effect in performance. Baselines
on MUStARD and UR-FUNNY include - Support Vector
Machines (SVM) [11], DFF-ATMF [9], CIM-MTL [1],
Tensor Fusion Network (TFN) [64], Contextual Memory
Fusion Network (CMFN) [20], MISA [21], MAG-XLNet
[47]. MAG-XLNet introduced Multimodal Adaption Gate
(MAG) to fuse acoustic and visual information in pre-trained
language transformers, and is the SOTA on both MUStARD
and UR-FUNNY. Baselines on MST include- Concat BERT
(concatenates the features extracted by pre-trained unimodal
ResNet-152 [22] and Text BERT [14] and uses a simple
perceptron as the classifier), Supervised Multimodal Bi-
transformer (MMBT) [27], Vision and Language BERT
(ViLBERT) [33], Hierarchical Fusion Model (HFM) [3],
D&R Net [61], MsdBERT [37]. MsdBERT, which ex-
ploits a co-attention network to exploit intra- and inter-
modality incongruity between text and image, is the SOTA
method on the MST dataset. More details on the baselines
are provided in supplementary document.

4.3. Training

We train MuLOT using Pytorch framework [38] on Nvidia-
RTX 2080Ti GPUs, with 24 GB dedicated memory in each
GPU. As described in Section 3.1, we use pre-trained uni-
modal feature extraction models, and fine-tune them during
training. All other weights are randomly initialized with
a zero-mean Gaussian distribution with standard deviation
0.02.

Although MUstARD and UR-FUNNY are balanced
datasets, Table 1 shows label imbalance for the MST dataset.
Therefore, when training on MST dataset, we assign larger
weight ([wsar, wnon−sar] = [1.2, 1]) for minority class to
minimize label imbalance. We train our model using the
Adam [32] optimizer and the binary cross-entropy loss as
the objective function. The initial learning rate is 0.005
and the network is trained for 300 epoches. The detailed
hyper-parameters used for the training is provided in the
supplementary material.

5. Results, Discussion and Analysis
In this section, we compare the performance of MuLOT

system with different multimodal baselines, conduct a de-
tailed ablation study to demonstrate the importance of dif-
ferent modalities and modules in our system. Furthermore,
we visualize the interpretability of MuLOT using Grad-CAM
[49]. Since the test sets of MUStARD and UR-FUNNY are

Algorithm Context Target MUStARD UR-FUNNY Tiny UR-F
Acc ↑ Acc ↑ Acc ↑

SVM ✗ ✓ 73.55 - -
DFF-ATMF ✗ ✓ 64.45 62.55 56.35
CIM-MTL ✗ ✓ 67.14 63.20 56.71
TFN ✗ ✓ 68.57 64.71 57.23
CMFN (GloVe) ✗ ✓ 67.14 64.47 57.10
CMFN (GloVe) ✓ ✓ 70.00 65.23 59.25
MISA (BERT) ✗ ✓ 66.18 70.61 62.66
BBFN ✓ ✓ 71.42 71.68 63.20
MAG-XLNet ✓ ✓ 74.72 72.43 67.22
MuLOT ✗ ✓ 74.52 73.22 70.74
MuLOT ✓ ✓ 76.82† 73.97† 71.46†

∆MuLOT−baseline ↑ 2.10 ↑ 1.54 ↑ 4.24

Table 2: Performances of multimodal models on the MUS-
tARD, UR-FUNNY and Tiny UR-F datasets. Since the test
sets are balanced (c.f. Table 1), only binary classification
accuracy is reported. † indicates the results have experienced
paired t-test with p < 0.01 and demonstrate significant im-
provement over MAG-XLNet, the best baseline model.

Algorithm OCR MST Tiny MST
Acc ↑ F1 ↑ Acc ↑ F1 ↑

Concat BERT ✗ 81.08 79.56 76.21 73.48
HFM ✗ 83.44 80.18 77.80 74.07
D&R Net ✗ 84.02 80.60 79.43 76.72
MMBT ✗ 83.46 80.74 79.48 76.09
MMBT ✓ 84.87 82.66 80.57 77.20
ViLBERT ✗ 84.21 82.49 79.42 75.95
ViLBERT ✓ 86.90 84.22 80.68 77.24
MsdBERT ✗ 86.05 82.92 80.14 77.53
MsdBERT ✓ 88.75 86.18 82.30 79.90
MuLOT ✗ 87.41 86.33 84.46 82.62
MuLOT ✓ 90.82† 88.52† 88.04† 85.93†

∆MuLOT−baseline ↑ 2.07 ↑ 2.34 ↑ 5.74 ↑ 6.03

Table 3: Performance of multimodal models on the MST
and Tiny MST datasets. Since the test set is imbalanced (c.f.
Table 1), both binary classification accuracy and macro F1
scores are reported. † indicates the results have experienced
paired t-test with p < 0.01 and demonstrate significant im-
provement over MsdBERT, the state-of-the-art model.

balanced, we use binary accuracy as the evaluation metric.
However, since the test set of MST is imbalanced, we also
consider F1 scores when evaluating on this dataset.

5.1. Comparison with Baselines

Multimodal Sarcasm Detection: Table 2 presents the
comparative classification performances on the MUStARD
dataset. Since this corpus is relatively small, complex neural
models with a large number of parameters often overfit when
trained from scratch. The authors of the MUStARD paper
reported the best accuracy of 71.60% when using a simple
SVM as classifier [7]. However, they used framewise ResNet
features as the visual modality, which does not consider the
temporal dynamics of the videos. We retrain an SVM using
I3D features and produce 73.55% accuracy to indicate the
effectiveness of I3D features for videos. Transformer-based
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Modality Algorithm MUStARD UR-FUNNY Tiny UR-F Algorithm MST Tiny MST
Acc ↑ Acc ↑ Acc ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑

Trimodal MuLOT 78.57 73.97 71.46 MuLOT 90.82 88.52 88.04 85.93

Unimodal
visual only 73.30 60.72 58.80 visual only 82.65 81.22 78.56 77.70
language only 73.54 69.58 67.32 caption only 83.40 82.14 80.06 78.85
acoustic only 64.00 64.35 55.44 OCR only 78.64 77.39 76.22 75.31

Bimodal
visual + language 77.18 70.40 69.40 visual + caption 87.35 85.93 83.94 82.45
visual + acoustic 75.54 69.23 69.82 visual + OCR 85.66 84.37 82.30 81.38
language + acoustic 75.72 72.10 69.12 caption + OCR 85.10 83.79 81.87 81.00

Trimodal
MuLOT w/o self-attn 71.60 64.46 63.22 MuLOT w/o self-attn 86.24 84.80 83.69 82.84
MuLOT w/o cross-attn 63.88 60.08 57.15 MuLOT w/o cross-attn 82.32 80.20 80.07 79.28
MuLOT w/o MAF 75.23 71.22 68.84 MuLOT w/o MAF 87.94 86.73 85.55 84.38

Table 4: Ablation Study. Role of different modalities and various modules in our proposed MuLOT system on five datasets.

inter-utterance contextual baselines, DFF-ATMF and CIM-
MTL, perform poorly on this dataset. We also observe the
role of historical context dialogues to model sarcasm. The
same CMFN baseline yields 2.86% better accuracy after us-
ing context. Nevertheless, baselines like MISA and TFN do
not improve from context. As described by the respective
authors, these models suffer in encoding the long sequence
and thus, lose crucial information during fusion.

MAG-XLNet, which is the current state-of-the-art model
in CMU-MOSI and CMU-MOSEI datasets for multimodal
sentiment analysis, also performs well on MUStARD. Un-
like other multimodal transformers, MAG-XLNet makes no
change to the original structure of XLNet, but rather comes
as an attachment to utilize multimodal information and hence
proves relatively more effectual in a low resource setup. Our
proposed system, MuLOT, improves on MAG-XLNet by
2.10%. It is important to note that, MuLOT has only 21M
trainable parameters, which is almost 8 times smaller than
MAG-XLNet. Domain adaptation using OT and low-number
of parameters helps MuLOT in achieving the best results.

Table 3 shows the performance of baselines and MuLOT
on the MST dataset. Since a significant amount of the image
samples of this dataset have text on it, the state-of-the-art sys-
tem, MsdBERT utilizes OCR extracted texts to improve its
F1 score by 3.26%. MMBT and ViLBERT also show a very
similar trend. Since the MST dataset has a large training cor-
pus, sophisticated transformer-based systems significantly
outperform simple models like Concat BERT and HFM. Our
proposed system, MuLOT beats the SOTA on MST by an
F1 score of 2.34%, demonstrating its effectiveness on large
corpus as well. Furthermore, in order to evaluate MuLOT
on a low amount of training data, we randomly reduce the
training set of MST to have only 2000 samples in each class
and call it Tiny MST. When trained on Tiny MST, the per-
formance of MMBT, ViLBERT, and MsdBERT drops dras-
tically. However, MuLOT is able to maintain an F1 score
of 85.93% and beats the best baseline by a substantial mar-
gin of 6.03%. The low number of trainable parameters and
optimal transport-based domain adaptation setup in MuLOT
again proves helpful when trained with limited data.
Multimodal Humor Detection: For humor detection, we
present the classification performances of baselines and

MuLOT in Table 2. Similar to MUStARD, MAG-XLNet
produces the best baseline performance on the UR-FUNNY
dataset. The inclusion of context also helps many baselines
to boost their performance by a few points. MuLOT beats
MAG-XLNet marginally on UR-FUNNY. However, when
the training corpus size is reduced, MAG-XLNet drops its
performance by 5.21% compared to MuLOT’s 2.51%. Thus,
on all three low-resource setups, MuLOT consistently outper-
forms all the baselines by a large margin, demonstrating that
multimodal transformers are not good enough in the absence
of ample training samples.

5.2. Ablation Study

Role of Modalities: In Table 4, we retrain our system after
removing one modality at a time to observe the effect in per-
formance. First, we see that the trimodal system produces
the best performance compared to all bimodal/unimodal sys-
tems, indicating that each modality contains complementary
information. In the case of MUStARD, we observe similar
drop in performance by removing either visual or language
modalities, while for UR-FUNNY, the removal of language
hurts the most. Since the cameras move a lot and seldom
focuses on the faces in the TED videos of UR-FUNNY, the
videos in this dataset carry a lot of noise.

Next, we retrain the MuLOT system using only one modal-
ity at a time to observe how much modality-specific informa-
tion our unimodal encoders can capture. Following previous
results, for MUStARD, both visual and language modality
performs equally well, and for UR-FUNNY, the language
modality proves to be the best. Audio modality alone can not
yield good results because the audio features only capture
the tonal-specific details of the speaker, such as pitch and
intonation, which only makes sense when the transcript is
present. For the MST dataset, the image and caption together
perform the best. The OCR text is only present in around
57.2% of the samples and thus contributes less than other
modalities. Figure 3 shows the complementarity of different
modalities in each dataset. We extract the predictions from
each unimodal encoder and calculate the Pearson correlation
among them. The low correlation values, shown in lighter
shades, indicate that each modality covers different aspects
of information. The trimodal MuLOT system integrates all
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Figure 3: Pearson correlation calculated among the prediction outputs (dev & test combined) of unimodal models.

these modalities in a unified framework and proves its effi-
cacy.
Role of Intra- & Cross-modal Attention: Incorporating
intra- and cross-modal attention significantly improves the
performance, as shown in Table 4. Since the incongruity,
irony, and exaggeration of sarcasm and humor can generate
from different modalities, cross-modal learning becomes the
key, as illustrated in Figure 1.
Role of MAF: Since the importance of three modalities
can vary for different samples, we utilize an attention-based
mechanism (MAF) to fuse three different sets of features.
As shown in Table 4, we observe that compared to a simple
concatenation of the modalities, MAF improves the perfor-
mance by 2 − 4% across the five datasets. We also find
that a 3-layer MAF network is sufficient to provide the best
performance.

5.3. Interpretability of MuLOT

In this section, we comprehend the interpretability of
MuLOT by generating the visual explanations over the videos
and images by using Grad-CAM [49] and visualize the at-
tention distribution over text. Figure 4 shows three different
frames of a sarcastic utterance (video id: 1_60) from the
MUStARD dataset. MuLOT focuses on the facial expression
(straight face) of the speaker for all frames. In the language
modality, the system focuses on words like "privilege" and
thus, can detect the incongruity across the modalities. Fig-
ure 5 shows a sarcastic tweet from the MST dataset. In
this sample, OCR successfully detects the text present on
the image and the system perceives the irony between the
OCR extracted text and the caption. Moreover, the class-
discriminative regions on the image are properly identified
by MuLOT, as shown by Grad-CAM.

Figure 4: Visual explanations and textual attention map for
a sarcastic utterance from the MUStARD dataset.

Figure 5: Visual explanations and textual attention maps for
a sarcastic tweet from the MST dataset.

6. Conclusion
In this paper, we deal with the task of detecting multi-

modal sarcasm and humor from conversational videos and
image-text pairs. Capturing the intra- and inter-modal dy-
namics for these actions, which are highly dependent on the
synchronization and aggregation of different modalities, is
quite challenging with limited training data. To this end,
we propose MuLOT, which captures intra-modal dynamics
using multi-head self-attention and cross-modal dynamics
using optimal transport. Finally, multimodal attention fu-
sion across the modalities has been performed, which further
improves the performance. Experimental results on three
benchmark datasets- MUStARD (video, audio, text), UR-
FUNNY (video, audio, text), MST (image, text) shows 2.1%,
1.54% and 2.34% performance improvements compared to
the state-of-the-art using our proposed method.
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