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Abstract

While self-supervised pretraining has proven beneficial
for many computer vision tasks, it requires expensive and
lengthy computation, large amounts of data, and is sensitive
to data augmentation. Prior work demonstrates that mod-
els pretrained on datasets dissimilar to their target data,
such as chest X-ray models trained on ImageNet, under-
perform models trained from scratch. Users that lack the
resources to pretrain must use existing models with lower
performance. This paper explores Hierarchical PreTrain-
ing (HPT), which decreases convergence time and improves
accuracy by initializing the pretraining process with an
existing pretrained model. Through experimentation on
16 diverse vision datasets, we show HPT converges up to
80x faster, improves accuracy across tasks, and improves
the robustness of the self-supervised pretraining process to
changes in the image augmentation policy or amount of pre-
training data. Taken together, HPT provides a simple frame-
work for obtaining better pretrained representations with
less computational resources.

1. Introduction

Recently, self-supervised pretraining — an unsupervised
pretraining method that self-labels data to learn salient fea-
ture representations — has outperformed supervised pre-
training in an increasing number of computer vision ap-
plications [5, 7, 4]. These advances come from instance
contrastive learning, where a model is trained to identify
visually augmented images that originated from the same
image from a set [14, 59]. Typically, self-supervised pre-
training uses unlabeled source data to pretrain a network
that will be transferred to a supervised training process on
a target dataset. Self-supervised pretraining is particularly
useful when labeling is costly, such as in medical and satel-
lite imaging [53, 8].
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Figure 1. Methods of using self-supervision. The top row are the
two common prior approaches to using self-supervised (SS) pre-
training. In Generalist Pretraining, a large, general, base dataset
is used for pretraining, e.g. ImageNet. In Specialist Pretraining,
a large, specialized source dataset is collected and used for pre-
training, e.g. aerial images. In this paper, we explore Hierarchical
Pre-Training (HPT), which sequentially pretrains on datasets that
are similar to the target data, thus providing the improved perfor-
mance of specialist pretraining while leveraging existing models.

However, self-supervised pretraining requires long train-
ing time on large datasets, e.g. SImCLR [5] showed im-
proved performance out to 3200 epochs on ImageNet’s 1.2
million images [51]. In addition, instance contrastive learn-
ing is sensitive to the data augmentation policies and many
trials are needed to determine the right settings [48, 60].

The computational intensity and sensitivity of self-
superivsed pretraining may lead researchers to seek self-
supervised models from model zoos and research repos-
itories. However, models pretrained on domain-specific
datasets are not commonly available. In turn, many practi-
tioners do not use a model pretrained on data similar to their
target data, but instead, use a pretrained, publicly available
model trained on a large, general dataset, such as ImageNet.
We refer to this process as generalist pretraining. A grow-
ing body of research indicates that pretraining on domain-
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specific datasets, which we refer to as specialist pretrain-
ing, leads to improved transfer performance [46, 35, 39].

Figure 1 formalizes this categorization of self-supervised
pretraining methods. Generalist and specialist pretrain-
ing are as described above, with one round of self-
supervised pretraining on a domain-general and domain-
specific dataset, respectively. Hierarchical Pretraining
refers to models pretrained on datasets that are progres-
sively more similar to the target data. HPT first pretrains
on a domain-general dataset (referred to as the base pre-
train), then optionally pretrains on domain-specific datasets
(referred to as the source pretrain), before finally pretrain-
ing on the target dataset (referred to as the target pretrain).
In all cases, pretraining is followed by supervised finetuning
on the target task.

Specialist pretraining presents the same core challenge
that transfer learning helps alleviate: a sensitive training
process that requires large datasets and significant computa-
tional resources [27]. While transfer learning has been care-
fully investigated in supervised and semi-supervised set-
tings for computer vision [55], it has not been formally
studied for self-supervised pretraining, itself. Furthermore,
several recent papers that apply self-supervised learning
to domain-specific problems did not apply transfer learn-
ing to the pretraining process itself, which motivated our
work [57, 1, 29].

In this paper, we investigate the HPT framework with a
diverse set of pretraining procedures and downstream tasks.
We test 16 datasets spanning visual domains, such as medi-
cal, aerial, driving, and simulated images. In our empirical
study, we observe that HPT shows the following benefits
compared to self-supervised pretraining from scratch:

e HPT reduces self-supervised pretraining convergence
time up to 80x compared to pretraining from scratch.

» HPT consistently converges to better performing rep-
resentations than generalist or specialist pretraining for
15 of the 16 studied datasets on image classification,
object detection, and semantic segmentation tasks.

* HPT is significantly more resilient to the set of image
augmentations and amount of data used during self-
supervised pretraining.

The following sections provide the background, method-
ology, and experiments used to reach these conclusion and
the appendix significantly broadens the scope of our anal-
yses. From this experimental effort, our key conclusion is
straightforward: self-supervised pretraining improves self-
supervised pretraining.

2. Background and Related Work

Transfer learning studies how a larger, more general, or
more specialized source dataset can be leveraged to improve

performance on farget downstream datasets/tasks [47, 44, 2,
10, 22, 20, 13, 15, 65, 18, 31, 45]. This paper focuses on a
common type of transfer learning in which model weights
trained on source data are used to initialize training on the
target task [63]. Model performance generally scales with
source dataset size and the similarity between the source
and target data [46, 35, 39].

A fundamental challenge for transfer learning is to im-
prove the performance on target data when it is not similar
to source data. Many papers have tried to increase perfor-
mance when the target and source datasets are not similar.
Recently, [43] proposed first training on the base dataset
and then training with subsets of the base dataset to create
specialist models, and finally using the target data to select
the best specialist model. Similarly, [37] used target data to
reweight the importance of base data. Unlike these works,
we do not revisit the base data, modify the pretrained archi-
tecture, or require expert model selection or reweighting.

Self-supervised pretraining is a form of unsupervised
training that captures the intrinsic patterns and properties of
the data without using human-provided labels to learn dis-
criminative representations for the downstream tasks [11,
12, 66, 17, 58]. In this work we focus on a type of self-
supervised pretraining called instance contrastive learn-
ing [14, 59, 20], which trains a network by determining
which visually augmented images originated from the same
image, when contrasted with augmented images originating
from different images. Instance contrastive learning has re-
cently outperformed supervised pretraining on a variety of
transfer tasks [20, 6], which has lead to increased adoption
in many applications. Specifically, we use the MoCo algo-
rithm [7] due to its popularity, available code base, repro-
ducible results without multi-TPU core systems, and simi-
larity to other self-supervised algorithms [30]. We also ex-
plore additional self-supervised methods in the appendix.

Our focus is on self-supervised learning for vision tasks.
Progressive self-supervised pretraining on multiple datasets
has also been explored for NLP tasks, e.g. see [19, 42]
and the citations within. In [19], the authors compare NLP
generalist models with models trained on additional source
and task-specific data. While our work is similar in spirit to
the language work of [19], our work focuses on computer
vision, includes a greater variation of pretraining pipelines,
and allows for adaptation with fewer parameter updates.

Label-efficient learning includes weak supervision
methods [34] that assume access to imperfect but related
labels, and semi-supervised methods that assume labels are
only available for a subset of available examples [6, 26, 61].
While some of the evaluations of the learned representa-
tions are done in a semi-supervised manner, HPT is comple-
mentary to these approaches and the representations learned
from HPT can be used in conjunction with them.
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3. Hierarchical pretraining

In this section, we formalize each of the HPT compo-
nents as depicted in Figure 1.

Base pretraining: We use the term base pretraining to
describe the initial pretraining step where a large, general
vision dataset (base dataset) is used to pretrain a model
from scratch. Practically, few users will need to perform
base pretraining, and instead, can use publicly available pre-
trained models, such as ImageNet models. Because base
pretraining, like many prior transfer learning approaches, is
domain agnostic, most practitioners will select the highest
performing model on a task with a large domain [25].

Source pretraining: Given a base trained model, we se-
lect a source dataset that is both larger than the target dataset
and more similar to the target dataset than the base dataset.
Many existing works have explored techniques to select a
model or dataset that is ideal for transfer learning with a
target task [49]. Here, we adopt an approach studied by
[27, 49] in a supervised context called a task-aware search
strategy: each potential source dataset is used to perform
self-supervised pretraining on top of the base model for a
very short amount of pretraining, e.g. ~5k pretraining steps
as discussed in Section 4. The supervised target data is then
used to train a linear evaluator on the frozen source model.
The source model is then taken to be the model that pro-
duces the highest linear evaluation score on the target data,
and is then used for additional target pretraining.

Experimentally, we have found that using a single, simi-
lar, and relatively large (e.g. > 30K images) source dataset
consistently improves representations for the target task.
Furthermore, we view source pretraining as an optional
step, and as shown in Section 4, HPT still leads to improved
results when directly performing self-supervised pretrain-
ing on the target dataset following the base pretraining. We
further discuss source model selection in the appendix.

Target pretraining: Finally, we perform self-supervised
pretraining with the target dataset, initialized with the final
source model, or the base model in the case when no source
model was used. This is also the stage where layers of the
model can be frozen to prevent overfitting to the target data
and enable faster convergence speed. Experimentally, we
have found that freezing all parameters except the modu-
lation parameters of the batch norm layers leads to consis-
tently strong performance for downstream tasks when the
target dataset is relatively small (< 10K images).

Supervised finetune: Given the self-supervised pre-
trained model on the target dataset, we transfer the final
model to the downstream target task, e.g. classification.

4. Experiments

Through the following experiments, we investigate the
quality, convergence, and robustness of self-supervised pre-

training using the HPT framework.

4.1. Datasets

We explored self-supervised pretraining on the following
datasets that span several visual domains (see the appendix
for all details). Dataset splits are listed with a train/val/test
format in square brackets after the dataset description.

Aerial: xView [28] is a 36-class object-centric, multi-
label aerial imagery dataset [39133/2886/2886]. RE-
SISC [8] is a 45-class scene classification dataset for re-
mote sensing [18900,/6300/6300]. UC-Merced [62] is a
21-class aerial imagery dataset [1260,/420/420].

Autonomous Driving: BDD [64] is a high resolution
driving dataset with 10 object detection labels and 6 weather
classification labels. We evaluate HPT performance over
the object detection task, as well as the weather classifica-
tion task [60k/10k/10k]. VIPER [50] is a 23-class simu-
lated driving dataset for which we perform multi-label each
object in the image [13367/2868/4959].

Medical: Chexpert [23] is a large, multi-label X-ray
dataset, where we determine whether each image has any of
5 conditions [178731/44683/234]. Chest-X-ray-kids [24]
provides pediatric X-rays used for 4-way pneumonia classi-
fication [4186/1046/624].

Natural, Multi-object: COCO-2014 [32] is an 81-
class object detection benchmark. We perform multi-
label classification for each object, and we further use the
2017 split to perform object detection and segmentation
[82783,/20252/20252]. Pascal VOC 2007+2012 [16] is a
standard 21-class object detection benchmark we use for
multi-label classification to predict whether each object is
in each image. We also use the object detection labels for
an object detection transfer task [13.2k/3.3k/4.9k].

Assorted: DomainNet [41] contains six distinct datasets,
where each contains the same 345 categories. The domains
consist of real images similar to ImageNet, sketch im-
ages of greyscale sketches, painting images, clipart
images, quickdraw images of binary black-and-white
drawings from internet users, and infograph illustra-
tions. We use the original train/test splits with 20% of the
training data used for validation. Oxford Flowers [38]: we
use the standard split to classify 102 fine-grain flower cate-
gories [1020,/1020/6149].

4.2. Evaluations

The features of self-supervised pretrained models are
typically evaluated using one of the following criteria:

* Separability: Tests if a linear model can differentiate
classes in a dataset using learned features. Good rep-
resentations should be linearly separable [40, 9].

* Transferability: Tests the performance of the model
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Figure 2. Linear separability evaluation. For each of the 16 datasets, we train a generalist model for 800 epochs on ImageNet (Base). We
either train the whole model from 50-50k iters (HPT Base-Target) or just the batch norm parameters for 5k iters (HPT Base-Target (BN)).
We compare HPT to a Specialist model trained from a random initialization (Target). For each, we train a linear layer on top of the final
representation. HPT obtains the best results on 15 out of 16 datasets without hyperparameter tuning.

pretraining algorithms [33]. Unless otherwise noted, all
training is performed with a standard ResNet-50 back-
bone [54] on 4 GPUs, using default training parameters

when finetuned on new datasets and tasks. Better rep-
resentations will generalize to more tasks [20].

¢ Semi-supervised: Test performance with limited la-
bels. Better representations will suffer less perfor-
mance degradation [22, 5].

We explored these evaluation methods with each of the
above datasets. For all evaluations, unless otherwise noted,
we used a single, centered crop of the test data with no test-
time augmentations. For classification tasks, we used top-1
accuracy and for multi-label classification tasks we used the
Area Under the ROC (AUROC) [3].

In our experiments, we used MoCo-V2 [7] as the self-
supervised training algorithm. We selected MoCo-V2 as
it has state-of-the-art or comparable performance for many
transfer tasks, and because it uses the InfoNCE loss func-
tion [40], which is at the core of many recent contrastive

from [20]. We also explored additional self-supervised pre-

training algorithms and hyperparameters in the appendix.
In the following experiments, we compare implementa-

tions of the following self-supervised pretraining strategies:

* Base: transfers the 800-epoch MoCo-V2 ImageNet
model from [7] and also updates the batch norm’s non-
trainable mean and variance parameters using the tar-
get dataset (this uniformly led to slightly improved per-
formance for Base transfer).

* Target: performs MoCo-V2 on the target dataset from
scratch.

e HPT: initializes MoCo-V2 pretraining with the 800-
epoch MoCo-V2 ImageNet model from [7], then op-
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Figure 3. Semi-supervised evaluation. We compared the best semi-supervised finetuning performance from the (B)ase model, (T)arget
pretrained model, HPT pretrained model, and HPT-BN pretrained model using a 1k labeled subset of each dataset. Despite performing
10x-80x less pretraining, HPT consistently outperformed the Base and Target. HPT-BN generally showed improvement over Base model

transfer, but did not surpass HPT’s performance.

tionally performs pretraining on a source dataset be-
fore pretraining on the target dataset. The batch norm
variant (HPT-BN) only trains the batch norm param-
eters (v, ), e.g. a ResNet-50 has 25.6M parameters,
where only ~0.2% are BN parameters.

Existing work largely relies on supervised evaluations to
tune the pretraining hyperparameters [5], but in practice, it
is not possible to use supervised evaluations of unlabeled
data to tune the hyperparameters. Therefore, to emphasize
the practicality of HPT, we used the default pretraining hy-
perparameters from [7] with a batch size of 256 (see the
appendix for full details).

4.3. Pretraining Quality Analysis

Separability analysis: We first analyzed the quality
of the learned representations through a linear separabil-
ity evaluation [5]. We trained the linear model with a
batch size of 512 and the highest performing learning rate
of {0.3,3,30}. Similar to [27], we used steps rather than
epochs to allow for direct computational comparison across
datasets. For Target pretraining, we pretrained for {5k, 50k,
100k, 200k, 400k} steps, where we only performed 400k
steps if there was an improvement between 100k and 200k
steps. For reference, one NVIDIA P100 GPU-Day is 25k

steps. We pretrained HPT for much shorter schedules of
{50, 500, 5k, 50k} steps, and HPT-BN for 5k steps — we
observed little change for HPT-BN after 5k steps.

Key observations: From Figure 2, we observe that HPT
typically converges by Sk steps of pretraining regardless of
the target dataset size, and that for 15 out of 16 datasets,
HPT and HPT-BN converged to models that performed as
well or better than the Base transfer or Target pretraining
at 400k steps (80x longer). The only dataset in which the
Target pretraining outperformed HPT was quickdraw —
a large, binary image dataset of crowd-sourced drawings.
We note that quickdraw is the only dataset in Target pre-
training at S5k steps outperformed directly transferring the
Base model, indicating that the direct transfer performance
from ImageNet is quite poor due to a large domain gap — an
observation further supported by its relatively poor domain
adaptation in [41].

HPT improved performance on RESISC, VIPER, BDD,
Flowers, xView, and clipart, infograph, and
sketch: adiverse range of image domains and types. HPT
had similar performance as Base transfer for the datasets
that were most similar to ImageNet: real, COCO-2014,
and Pascal, as well as for UC-Merced, which had 98.2% ac-
curacy for Base transfer and 99.0% accuracy for HPT and
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beat all baselines, with HPT-BN getting slightly better performance on UC Merced and B+S+T having the best performance elsewhere.

HPT-BN. The two medical datasets, Chexpert and Chest-X-
ray-kids had comparable performance with HPT and Tar-
get pretraining, yet HPT reached equivalent performance
in 5k steps compared to 200k and 100k, respectively. Fi-
nally, HPT exhibited overfitting characteristics after 5k
steps, where the overfitting was more pronounced on the
smaller datasets (UC-Merced, Flowers, Chest-X-ray-kids,
Pascal), leading us to recommend a very short HPT pre-
training schedule, e.g. 5k iterations, regardless of dataset
size (see appendix for additional experiments).

Semi-supervised transferability: Next, we conducted a
semi-supervised transferability evaluation of the pretrained
models. This experiment tested whether the benefit from the
additional pretraining is nullified when finetuning all model
parameters. Specifically, we selected the top performing
models from the linear analysis for each pretraining strat-
egy and fully finetuned the pretrained models using 1000
randomly selected labels without class balance but such that
each class occured at least once. We finetune using a combi-
nation of two learning rates (0.01, 0.001) and two finetuning
schedules (2500 steps, 90 epochs) with a batch size of 512
and report the top result for each dataset and model — see
the appendix for all details.

Key observations: Figure 3 shows the top finetuning
performance for each pretraining strategy. The striped bars
show the HPT pretraining variants, and we observe that sim-
ilar to the linear analysis, HPT has the best performing pre-
trained models on 15 out of 16 datasets, with quickdraw
being the exception. One key observation from this exper-
iment is that HPT is beneficial in the semi-supervised set-
tings and that the representational differences from HPT and
the Base model are different enough that full model fine-
tuning cannot account for the change. We further note that
while HPT-BN outperformed HPT in several linear analy-
ses, HPT-BN never outperformed HPT when finetuning all
parameters. This result indicates that some of the benefit
from pretraining only the batch norm parameters is redun-
dant with supervised finetuning. We also note that whether
Base or Target pretraining performed better depended on the
dataset, while HPT had uniformly strong performance.

Sequential pretraining transferability: Here, we ex-

plore HPT’s performance when pretraining on a source
dataset before pretraining on the target dataset and finally
transferring to the target task. We examined three di-
verse target datasets: Chest-X-ray-kids, sketch, and UC-
Merced. We select the source dataset for each of the tar-
get dataset by choosing the source dataset that yielded the
highest linear evaluation accuracy on the target dataset af-
ter 5k pretraining steps on top of the base model. This
selection yielded: ImageNet then Chexpert then Chest-X-
ray-kids, ImageNet then clipart then sketch, and Im-
ageNet then RESISC then UC-Merced.

Key observations: Figure 4 compares finetuning the
1000-label subset of the target data after the following pre-
training strategies: directly using the Base model (B), Tar-
get pretraining (T), Base then Source pretraining (B+S),
Base then Target pretraining (B+T), Base then Source pre-
training then Target pretraining (B+S+T), and Base then
Source pretraining then Target pretraining on the batch
norm parameters (B+S+T-BN). The full HPT pipeline
(B+S+T) leads to the top results on all three target datasets.
In the appendix, we further show that the impact of an inter-
mediate source model decreases with the size of the target.

Object detection and segmentation transferability:
For Pascal and BDD, we transferred HPT pretrained mod-
els to a Faster R-CNN R50-C4 model and finetuned the full
model; for COCO, we used a Mask-RCNN-C4. Over three
runs, we report the median results using the COCO AP met-
ric as well as AP5¢/AP75. For Pascal, we performed finetun-
ing on the train2007+2012 set and performed evalua-
tion on the test 2007 set. For BDD we used the provided
train/test split, with 10k random images in the train split
used for validation. For COCO, we used the 2017 splits and
trained with the 1x schedule (see appendix for all details).

Key observations: Tables 1-2 show the object de-
tection and segmentation results. For Pascal, we tested
HPT instantiations of Base-Target, Base-Target (BN), and
Base-Source-Target, where COCO-2014 was selected as the
source model using the top-linear-analysis selection crite-
ria. For the larger BDD and COCO datasets, we tested
Base-Target and Base-Target (BN). Overall, the results are
consistent across all datasets for image classification, ob-
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Table 1. Transfer Result: This table reports the median AP, APsg,
AP75 over three runs of finetuning a Faster-RCNN C4 detector.
For Pascal, the Source dataset is COCO-2014. A bold result indi-
cates a +0.2 improvement over all other pretraining strategies.

Pretrain APPD  Apbb  Apbb
Pascal VOCO7
Target 48.4 75.9 51.9
Base 57.0 82.5 63.6
HPT: Base-Target 57.1 82.7 63.7
HPT: Base-Target (BN) 57.5 82.8 64.0
HPT: Base-Source-Target 57.5 82.7 64.4
HPT: Base-Source-Target (BN) 57.6 82.9 64.2
BDD
Target 243 46.9 24.0
Base 27.1 48.7 25.4
HPT: Base-Target 28.1 50.0 26.3
HPT: Base-Target (BN) 28.0 49.6 26.3

ject detection, and segmentation: HPT: both Base-Target
and Base-Target (BN) lead to improvements over directly
transferring the Base model to the target task.

The Base-Source-Target Pascal results show an improve-
ment when pretraining all model parameters, but remain
consistent when only pretraining the batch norm parame-
ters. This indicates that while the batch norm parameters
can improve the pretrained model, sequentially pretraining
from the source to the target on these values does not always
yield an improved result. While the overall gains are mod-
est, these results indicate that HPT is not directly learning
redundant information with either the MoCo pretraining or
the finetuning task. Furthermore, it is surprising that only
tuning the batch norm parameters on the target dataset leads
to an improvement in object detection, and we note that pre-
training specific subsets of object detector backbone param-
eters may provide a promising direction for future work.

4.4. HPT Robustness

Here, we investigate the robustness of HPT to common
factors that impact the effectiveness of self-supervised pre-
training such as the augmentation policy [5, 48] and pre-
training dataset size [36]. For these robustness experiments,

Table 2. Transfer Result: This table reports the median AP, APso,
AP75 over three runs of finetuning a Mask-RCNN-C4 detector on
COCO-2017. A bold result indicates at least a 0.2 improvement
over all other pretraining strategies.

Pretrain APPP ApbP Apbb T pmk  zpmk  \pmk
Target 360 547 386 | 193 406 491
Base 380 574 413 | 207 433 514
HPT: B-T 384 580 413 | 216 435 522
HPT:B-T(BN) | 382 574 409 | 206 434 522

we used the BDD, RESISC, and Chexpert datasets as they
provided a diversity in data domain and size.

Augmentation robustness: MoCo-V2 sequen-
tially applies the following image augmentations:
RandomResizedCrop, ColorJitter, Grayscale,
GaussianBlur, RandomHorizontalFlip. We
studied the robustness of HPT by systematically removing
these augmentations and evaluating the change in the linear
evaluation for HPT and Target pretraining.

Key observations: Figure 5 shows separability results
across datasets after sequentially removing augmentations.
In all three data domains, HPT maintained strong perfor-
mance compared to Target pretraining. Unlike BDD and
RESISC, the Chexpert performance decreased as the aug-
mentation policy changed. This illustrates that changes to
the augmentation policy can still impact performance when
using HPT, but that the overall performance is more robust.
In turn, as a practitioner explores a new data domain or ap-
plication, they can either use default augmentations directly
or choose a conservative set, e.g. only cropping.

Pretraining data robustness: We pretrained with {1%,
10%, 25%, 100%} of the target dataset. For HPT we used
Sk pretraining steps. With 25% or 100% of the data, we
used the same number of steps as the top performing result
in Figure 2, and 1/10 of the steps at 1% and 10%.

Key observations: Figure 6 shows separability results.
CheXpert has 3x more training data than BDD, which in
turn has 3x more training data than RESISC. While more
data always performed better, the accuracy improvements of
HPT increased as the amount of pretraining data decreased.
HPT-BN had minimal degradation in low data regimes —
outperforming other methods with <5k samples.
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Figure 6. HPT performance as the amount of pretraining data decreases. The top axis shows the number of images, and the bottom shows
the percentage of pretraining data. HPT outperforms Base model transfer or Target pretraining with limited data.

Table 3. Budget levels and test accuracy in target domain for semi-
supervised DA with and without HPT between real—clip and
real—sketch.

Budget levels in target domains
# of shots 1 11 16 22 32 46 68

Test accuracy (%) for real—clip
MME 49.7 61.1 639 667 680 700 71.1
MME+HPT 57.2 6436 667 682 69.7 715 724

Test accuracy (%) for real—sketch
MME 41.4 51.8 549 575 597 614 625
MME+HPT  50.2 564 588 60.7 628 639 649

4.5. Domain Adaptation Case Study

In this section, we explore the utility of HPT through a
realistic case study experiment in which we apply HPT in a
domain adaptation context. The training procedure is as fol-
lows: we performed HPT to train a model using both source
and target datasets on top of the standard MSRA ImageNet
model [21]. We used this model to initialize the feature en-
coder in a Minimax Entropy (MME) Domain Adaptation
(DA) method [52]. At the end of each budget level we eval-
uated accuracy on the entire test set from the target domain.
We perform two experiments on DomainNet datasets [41]
with 345 classes in 7 budget levels with increasing amount
of target labels: (i) from real to clip and (ii) from real
to sketchanduseaEfficientNet _B2 [56] backbone.

Table 3 shows the benefit of adding HPT to the DA ex-
periments. From the results, we observe that HPT consis-
tently outperforms the baseline on both domains by achiev-
ing a higher accuracy across all the budget levels. On the
extreme low data regime (one shot/class), HPT achieves
nearly 8% better accuracy in both clipart and sketch
domains in the extreme case of providing one shot per class
in the target domain. These results demonstrate HPT’s ef-
fectiveness in a realistic, end-to-end inference system.

5. Discussion

We have shown that HPT achieves faster convergence,
improved performance, and increased robustness across do-

mains. Here, we further reflect on the utility of the HPT.

What is novel about HPT? The transfer learning
methodology underlying HPT is well established in trans-
fer learning. That is, transfer learning tends to work in a lot
of situations, and our work could be perceived as a natural
extension of this general observation. However, our work
provides the first thorough empirical analysis of transfer
learning applied to self-supervised pretraining in computer
vision. We hope this analysis encourages practitioners to
include an HPT baseline in their investigations — a baseline
that is surprisingly absent from current works.

How should I use HPT in practice? We provide our
code, documentation, and models to use HPT and repro-
duce our results (see appendix). For existing codebases, us-
ing HPT is usually as simple as starting training from an
existing checkpoint. If working with a small dataset (e.g.
< 10k images), using HPT-BN is ideal.

Does this work for supervised learning? Yes. In the
appendix, we reproduce many of these analyses using su-
pervised ImageNet base models and show that HPT further
improves performance across datasets and tasks.

6. Conclusion and Implications

Our work provides the first empirical analysis of transfer
learning applied to self-supervised pretraining for computer
vision tasks. In our experiments, we have observed that
HPT resulted in 80x faster convergence, improved accuracy,
and increased robustness for the pretraining process. These
results hold across data domains, including aerial, medi-
cal, autonomous driving, and simulation. Critically HPT
requires fewer data and computational resources than prior
methods, enabling wider adoption of self-supervised pre-
training for real-world applications. Pragmatically, our re-
sults are easy to implement and use: we achieved strong re-
sults without optimizing hyperparameters or augmentation
policies for each dataset. Taken together, HPT is a simple
framework that improves self-supervised pretraining while
decreasing resource requirements.
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