
Adversarial Branch Architecture Search for Unsupervised Domain Adaptation

Luca Robbiano
Politecnico di Torino

Turin, Italy
luca.robbiano@polito.it

Muhammad Rameez Ur Rahman
Sapienza University of Rome

Rome, Italy
rahman@di.uniroma1.it

Fabio Galasso
Sapienza University of Rome

Rome, Italy
galasso@di.uniroma1.it

Barbara Caputo
Politecnico di Torino, CINI Consortium

Turin, Italy
barbara.caputo@polito.it

Fabio Maria Carlucci
Huawei Noah’s Ark Lab

London, United Kingdom
fabiom.carlucci@gmail.com

Abstract

Unsupervised Domain Adaptation (UDA) is a key issue
in visual recognition, as it allows to bridge different visual
domains enabling robust performances in the real world.
To date, all proposed approaches rely on human expertise
to manually adapt a given UDA method (e.g. DANN) to
a specific backbone architecture (e.g. ResNet). This de-
pendency on handcrafted designs limits the applicability of
a given approach in time, as old methods need to be con-
stantly adapted to novel backbones.

Existing Neural Architecture Search (NAS) approaches
cannot be directly applied to mitigate this issue, as they rely
on labels that are not available in the UDA setting. Fur-
thermore, most NAS methods search for full architectures,
which precludes the use of pre-trained models, essential in
a vast range of UDA settings for reaching SOTA results.

To the best of our knowledge, no prior work has ad-
dressed these aspects in the context of NAS for UDA. Here
we tackle both aspects with an Adversarial Branch Archi-
tecture Search for UDA (ABAS): i. we address the lack of
target labels by a novel data-driven ensemble approach for
model selection; and ii. we search for an auxiliary adver-
sarial branch, attached to a pre-trained backbone, which
drives the domain alignment. We extensively validate ABAS
to improve two modern UDA techniques, DANN and ALDA,
on three standard visual recognition datasets (Office31,
Office-Home and PACS). In all cases, ABAS robustly finds
the adversarial branch architectures and parameters which
yield best performances. https://github.com/lr94/abas.

1. Introduction
Unsupervised Domain Adaptation (UDA) enables the

transfer of domain knowledge from a source domain to a

target domain, for which possibly few data are available,
but no target labels. Performance has increased steadily in
recent years [4, 15, 48, 25, 47], but domain transfer remains
constrained to specific setups [10, 13, 24]. In other words,
whenever a new architectural backbone becomes available,
optimally adapting existing UDA methods to it requires a
manual and slow process of trial-and-error.

While Neural Architecture Search (NAS) has recently
made large progress [41, 20, 40, 33] in removing the heuris-
tic component of neural architecture design, it does not
directly apply to UDA for two main reasons: i. NAS re-
quires target labels for model validation when searching
for the optimal architecture, which are not available in
UDA; ii. the vast majority of UDA methods applied to vi-
sual recognition tasks, from classification to detection up
to segmentation, require the use of pre-trained (backbone)
models to reach state-of-the-art performance on real world
datasets [5, 4, 48, 47]. To the best of our knowledge, no
research has addressed these essential aspects in the context
of NAS for UDA.

We propose a novel Adversarial Branch Architecture
Search (ABAS - Fig. 1) for UDA to address both limita-
tions. Our work builds on most recent and robust UDA
methods which use auxiliary adversarial branches [8, 2,
4, 39]: a secondary network (the adversarial branch) is
attached to a main backbone (see Fig. 2 for an illustra-
tion). While the main network is trained supervisedly on the
source images and labels, the secondary branch reduces the
distributional gap between the source and target domains,
without target labels, by adversarially making the domains
indistinguishable. The architecture of the auxiliary branch,
which plays a huge role in the final accuracy of the method
(as shown in Fig. 5), has so far been hand-crafted.

In ABAS, as first main contribution, we address the lack
of target labels by a novel data-driven Ensemble approach
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Figure 1: The original DANN [8] paper proposed a specific implementation for each of the considered backbone architectures.
Later authors (e.g. ALDA [4]) empirically adapted the core idea to different architectures through a process of trial and error.
Whenever a new architecture is proposed, this tedious procedure needs to be repeated (note this issue is shared by any other
UDA method based on an auxiliary branch). To address this, in ABAS we propose to automatically search for the optimal
architecture of the auxiliary branch in a data driven way. Through ABAS, it is possible to seamlessly apply DANN to any
future architecture without the need for human supervision. What follows is a brief description, more details can be found in
Algorithm 1. At each iteration, the Bayesian Optimization (BO) acquisition function proposes a number of candidate branch
architectures. After training, we extract a number of supervised (source) and unsupervised (target) features which are fed
into our ensemble-based performance estimator. Its feedback is sent to BO, thus closing the loop.

for Model Selection (EMS), which directly applies to tar-
get data. Model selection in UDA is challenging and of-
ten overlooked. Only very few works have so far focused
on it [51, 26], but they only consider source features. By
contrast, considering the actual target features yields better
domain transfers, as we show.

As a second main contribution we propose using a
multi-fidelity Bayesian Optimization (BOHB) [7] method
to search for both the architecture and the hyper-parameters
of the auxiliary branch. ABAS exploits the backbone archi-
tecture and pre-training, which is key to surpass the current
state-of-the-art performance.

We conduct an in-depth performance evaluation on a
popular UDA technique, DANN [8], and on a more recent
state-of-the-art method, ALDA [4]. We test their ABAS
extensions on three computer vision datasets, PACS [14],
Office31 [35] and Office-Home [44]. Our study confirms
that the default DANN and ALDA branches perform well
on specific backbones and source-target cases, i.e. for Of-
fice31 and Office-Home, well above random architectures
(cf. Fig. 5 and Sec. 4). However, they underperform on
PACS, where ABAS also finds the best UDA architecture.

2. Related work
Unsupervised Domain Adaptation (UDA). Research

on UDA has been recently divided into four families of
methods [54]: discrepancy, adversarial discriminative, ad-
versarial generative and self-supervision based methods.
Adversarial discriminative approaches provide top perfor-
mance, but they are significantly influenced by the specific
architecture of the auxiliary branch, cf. Fig. 5: un-optimized
architectures may diverge and/or yield a wide span of accu-
racies. We find this strongly motivates research on architec-
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Figure 2: Many UDA methods fall under this general frame-
work. The auxiliary branch D can compute either a domain
discriminator [8, 4], or a self-supervised [2, 39] loss.

ture search for these approaches.
Starting from [8], UDA has been cast as the problem of

learning domain-agnostic features via an auxiliary branch
and an adversarial training. The extra branch is attached
to the backbone and tasked to learn to discriminate the do-
mains. Then its gradient is reversed to make the backbone
features indistinguishable between the source and the target
domain. A few recent improvements are notable: [12] con-
siders the cross-covariance between samples; [21] takes the
classifier prediction into account; [42] generalizes a similar
approach to the semi-supervised setting; [3] extends the dis-
criminative gradient reversal to the pixel level; and finally
[4] combines the adversarial training with self-training. All
of the above propose specific embodiments of the auxiliary
adversarial branch, but offer no guidelines on how to adapt
it to different backbones. To the best of our knowledge, this
is the first work proposing a data-driven pipeline to learn it.

Model Selection for UDA. Hyper-parameter and model
selection are extremely challenging in the UDA setting, as
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Figure 3: Left: overview of how the ABAS search space applies to the main architecture (BS is batch size). Right: explicit
search space definition. Being low-dimensional it can easily be optimized through BO; on the other hand (as shown in Fig.
6) each of these parameters has a strong effect on the final accuracy.

target labels are not available. In practice, many works
simply fix the hyper-parameters across a range of datasets
[43, 29, 36, 34].

A more principled approach based on importance-
weighted cross-validation (IWCV) was first proposed by
[38]: the more the source sample is similar to the target,
the higher the importance. The IWCV estimator is unbi-
ased, but has unbounded variance; Deep Embedded Vali-
dation [51], was proposed to reduce the variance and adapt
IWCV to deep features. Similarly, [26] proposes a reduced-
variance IWCV estimator for hyper-parameter optimization
in the context of multi-source DA. The current literature fo-
cuses on the source, only implicitly taking target features
into consideration. By contrast, we propose a performance
estimator which mostly uses the actual target features (see
Sec. 3.3).

Neural Architecture Search (NAS) and UDA-NAS.
There is a wealth of literature on NAS [56] leveraging di-
verse search strategies: Bayesian Optimization (BO), evo-
lutionary, reinforcement learning, and gradient-based, as re-
cently surveyed in [6, 30]. BO is one of the most ef-
ficient strategies for sample-based hyper-parameter tuning
[37], and has been recently applied to NAS [45, 50]. Multi-
fidelity BO (BOHB) [7], which further reduces the search
cost by performing partial evaluations, has also been suc-
cessfully applied to NAS [52, 33]. ABAS exploits pre-
trained backbones and efficiently fine-tunes the architec-
tures, enabling us to use a more accurate sample-based tech-
nique. In particular, we adopt BOHB for its sota perfor-
mance.

A recent pre-print [17] has proposed a DARTS-like [20]
method for UDA. While that shares similar motivations
with ABAS, it is unable to leverage pre-trained models and
as such it can only be applied to simple low-resolution
datasets. Furthermore model selection is performed by a
simple validation on the source domain, which we show to
be insufficient in the general case.

3. Method

We propose a data-driven pipeline to search for the opti-
mal architecture of the auxiliary branch in the context of un-
supervised domain adaptation. As mentioned in section 2, a
number of UDA approaches require the use of an auxiliary
branch: while we explicitly explore how this idea applies to
works based on domain adversarial learning, it is trivially
extendable to other methods (see section 5). Here we apply
ABAS to 1) the first UDA adversarial approach, DANN [8]
and to 2) the current state-of-the-art variation, ALDA [4].
In both cases, the auxiliary branch is adversarially trained
to reduce the distributional gap at the feature level.

3.1. Background

Due to space constraints, we provide here only a mostly
intuitive overview and refer to the referenced papers for a
formal presentation of background methods.

Adversarial branches for domain adaptation Let us
define a dataset Xs = {xi

s, y
i
s}

Ns
i=0 drawn from a labeled

source domain S, and a dataset Xt = {xj
t}

Nt
j=0 from a dif-

ferent unlabeled target domain T , sharing the same set of
categories. Our goal is to maximize the classification ac-
curacy on Xt while training on Xs. As it can be seen in
Figure 2, the overall architecture consists of 3 components:
the feature extractor G, the labeled classifier C and the ad-
versarial branch D. The basic intuition behind discrimina-
tive adversarial approaches for domain adaptation is that a
domain classifier is trained to distinguish between source
and target samples; as its gradient is reversed (Fig. 3), the
features in G are trained so that source and target have sim-
ilar representations. The model is trained by optimizing the
following objective function:

min
G,C,D

LCE(C(G(xs)), ys)+λLAdv(D(G(xs∪xt)) (1)

Where LCE is the standard cross-entropy loss, computed
on source samples only, and LAdv is the adversarial loss
trained to reduce the domain gap. In the case of DANN [8],
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LAdv(D(G(xi)), di) = di
1

D(G(xi))
+(1−di)

1

1−D(G(xi))
(2)

With di being a binary variable (domain label) indicating
whether the sample i belongs to the source or to the target.

ALDA [4], is a modern DANN variant, currently state-
of-the-art, which combines domain adversarial training
with self-training. While its overall loss contains multiple
terms, we focus here only on the adversarial loss:

LAdv(xs, ys, xt) =

LBCE(c
(xs), ys) + LBCE(c

(xt), u(ŷt))
(3)

LBCE is the Binary Cross-Entropy loss, c(x) is the cor-
rected pseudo-label vector generated by multiplying the
confusion matrix and the pseudo-label vector ŷ, and u(ŷt) is
the opposite distribution of ŷt. Intuitively, the authors pro-
pose to use a discriminator branch to predict the confusion
matrix instead of the domain probabilities. The confusion
matrix is then used to correct the pseudo-label vector ob-
tained by feeding target samples into the network, which is
then used as the target label for the training process. The
discriminator is trained to produce different corrected vec-
tors for each domain, while the feature extractor learns to
fool it. ABAS will be used to search for the best performing
architecture for D in both DANN and ALDA.

Bayesian Optimization for AutoML Several optimiza-
tion strategies could be used to guide the search, but our
search space is compact and has low dimensionality (cf.
Sec. 3.2), which makes it particularly suitable for Bayesian
Optimization (BO). For efficiency, we adopt BOHB, a
multi-fidelity combination of BO and Hyperband [16].
While single fidelity BO evaluates all samples with full bud-
get, BOHB resorts to partial evaluations with smaller-than-
full budget, excluding bad configurations early in the search
process and reserving computational resources for the most
promising configurations. So, given the same time bud-
get, it evaluates many more configurations and it achieves
faster optimization than competing methods. Details of the
BOHB’s role in ABAS are reported in Sec. 3.4

3.2. ABAS Search space

UDA methods for visual object categorization require
the use of a pre-trained model (typically on ImageNet) to
be competitive. Hence, the architecture of G and C are usu-
ally fixed as a subset of the backbone: in practice the only
choice being made is where G ends and C begins (see Fig.
2). Our search space (Fig. 3) is a combination of hyper
and architectural parameters: the domain loss weight λ (eq.
1) and the dropout probability of the fully connected lay-
ers in D are hyper-parameters, while the number of fully

connected layers (#fc layers), size of the hidden units (fc h)
and of the bottleneck (fc b) fully characterize the width and
the height of the auxiliary branch D. Giving the bottleneck
layer a separate width allows to control the overall capacity
of the auxiliary branch by limiting how much information it
is fed.

3.3. Ensemble-based Model Selection (EMS)

Model selection in the context of UDA is extremely chal-
lenging, as target labels are not available. To overcome this,
we propose using an ensemble of weakly correlating predic-
tors. Experimentally, we show how a linear regressor over
these metrics, trained on one dataset, is capable of capturing
the ranking between models on a different unseen dataset,
thus highlighting the generalization power of this approach.

A description of the considered metrics follows ([S]
or [T] implies on which domain the metric is computed).
1. Entropy [T] [9] minimization is commonly used in
UDA methods as a regularizer for unlabeled samples [32];
intuitively a low entropy corresponds to well separated
classes. Mathematically the target entropy is defined as
H(C(G(XT ))) = − 1

Nt

∑
xi∈XT

C(G(xi))log(C(G(xi))).
2. Diversity [T], recently proposed by [46], measures the
diversity of class predictions in a batch. It is defined as the
entropy of the predicted category distributions, H(q̂(T )).
3. Silhouette and Calinski-Harabasz score [T] [31, 1]:
the most confident label is assigned to the target samples,
which are then clustered with K-Means using the predicted
class centroids. The Silhouette and Calinski score can then
be used to estimate how well separated are the different
classes. 4. Source (weighted) loss [S]: the cross-entropy
loss can be computed on the labeled source samples to
estimate the performance of the predictor. Additionally it is
possible to weight the samples according to their similarity
to the target, as in Importance Weighted Validation [38, 51].
We initially experimented with the source-weighted accu-
racy in EMS, but due to a number of practical drawbacks
we decided to adopt the vanilla source accuracy instead.
Specifically, the performance of Importance Weighting
methods heavily depends on how well the regression
model estimates the density ratio, which is not trivial to
successfully implement; secondly, it requires a separate
source validation set (not always available on small settings
such as Office31). 5. Time consistent pseudo-labels [T]:
inspired by [55], we propose to use the mode of all model
predictions during training (one prediction per epoch) as
target pseudo-labels, as the label predicted more often is
likely to be the true one. Once training has ended, we
compute these pseudo-labels and use them to retroactively
estimate the target accuracy at each epoch.

Note how all of these metrics, with the exception of the
source accuracy, are computed on the target domain. These
metrics are all relatively cheap to compute and have good
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Figure 4: Different model configurations trained on Office31 (1st and 3rd) and Office-Home (2nd and 4th). The x and y
axes show two different unsupervised validation metrics we use in EMS, while the color represents target accuracy. Clearly,
by only using a single metric it is extremely hard to uniquely predict the performance, but the combined use of two metrics
makes it easier to distinguish between good and bad models. This shows how different metrics can be complementary and
employed to build a better estimator of model performance. The similarity between pairs of plots on different settings (1&3
and 2&4) suggests that an estimator built on one dataset can be successfully transferred on another. Further plots can be
found in the Supplementary.

correlation on their own with the target accuracy, but as we
show in Fig. 4 and in the Supplementary, they are all indi-
vidually vulnerable to degenerate cases. To overcome this,
we learn a simple least-squares linear regressor to predict
the target accuracy. Since it is not possible to use the tar-
get labels of interest we instead learn the regressor on one
experimental setting and then use it on a different one. It is
worth mentioning that although the output of the regressor
cannot be used to estimate the accuracy of a model on an
unseen dataset, its output has a strong correlation with the
ground-truth ranking, as we show in section 4.1. We use
this predictor to not only return the best sample, but also the
best snapshot during training.

3.4. Auxiliary branch optimization

A full overview can be found in Fig. 1 and Algorithm
1: ABAS combines BOHB [7] and an adversarial method
of choice (sec. 3.1), with our UDA specific search space
and model selection strategy. Given a fixed budget, ABAS
performs a number of rounds, alternating between sampling
and evaluating. At each step, we sample the Bayesian ac-
quisition function α(Θ|D) for B different configurations
{Θj

t}Bj=1. The configurations are used to build auxiliary
branches for method Q and the resulting network is trained
on the target setting. After training, supervised (from the
source) and unsupervised (from the target) features are col-
lated for our model selection module, as described in sec-
tion 3.3. The ensemble predictor finally gives feedback to
the BO process. This procedure is repeated for a given num-
ber of rounds and in the end the best performing model is
returned. The pipeline itself is relatively simple and, as
shown in the next section, capable of significantly improv-
ing over existing sota methods. Finally, while we decided
to use BOHB in this particular implementation, it would be
feasible to use a different search strategy.

Algorithm 1 BO auxiliary branch optimization

1: Input: Domain adaptation method Q, Performance es-
timator E, BO surrogate model p(f |Θ, D) and acqui-
sition function α(Θ|D)

2: for t = 1 to T do
3: Recommend {Θj

t}Bj=1 = argmaxαt−1(Θ|D)
4: for j = 1 to B in parallel do
5: Build the auxiliary branch and evaluate

E(Q(Θj
t )) to obtain its corresponding per-

formance metric f j
t

6: end for
7: Update D and thus p(f |Θ, D) with {Θj

t , f
j
t }Bj=1

8: end for
9: return The best model according to E(Q(Θ∗))

4. Experiments

Datasets. We evaluate our method on three publicly-
available multi-domain datasets. The Office31 dataset [35],
composed of 4, 652 images, is a standard benchmark for do-
main adaptation. The images depict objects belonging to 31
categories and taken from three different domains: Ama-
zon (A), DSLR (D), and Webcam (W). Webcam and DSLR
pictures were manually captured in the same office environ-
ment with a consumer webcam and a reflex camera. Ama-
zon samples are images of products downloaded from ama-
zon.com. The Office-Home dataset [44] contains objects
from 65 categories and a total of around 15, 500 images
from four domains: Art, Clipart, Product, and Real-World.
Like Office31’s Amazon domain, the Product domain fea-
tures product pictures taken from websites. Real-world im-
ages were captured with a regular digital camera. PACS
[14] is composed of 9, 991 images from four domains, each
containing objects from 7 categories. While PACS is com-
monly used for domain generalization, we employ it in our
single-source setting to explore a diverse test-bed.
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Figure 5: Accuracy histograms obtained by randomly sampling 40 architectures for ALDA’s [4] auxiliary branch and training
them on three settings (10% didn’t converge and were excluded). Contrary to many NAS search spaces [49], ours is large
enough to offer a significant impact on final performance (around 20%) on all settings. Equally important, while the default
ALDA branch performs well on Office31 and Office-Home (the datasets it was tested on), it performs significantly worse on
PACS. ABAS, on the other hand, can adapt itself to all settings, consistently outperforming the random sampling baseline.
See sec. 4.1 for full details.

Baseline methods To highlight the improvements
brought by our ABAS pipeline, we apply it to two repre-
sentative UDA methods: DANN [8], the original domain
adversarial approach, still competitive to this day and base
on which all methods of this family build on, and ALDA
[4] the current state-of-art among discriminative adversar-
ial approaches. Training protocol ABAS is based on an
outer BOHB loop alternated with an inner loop in which
different networks are trained. For BOHB, we set η = 3,
minimum budget 2000 iterations, maximum budget 6000
iterations and run it for 24 iterations. Intuitively, the most
promising solutions evaluated at a lower budget will be re-
run at a higher budget. For each sample, BOHB indicates
a computational budget and an architectural configuration,
which are used to build the appropriate auxiliary branch in
the context of the adversarial method of choice.

In all experiments we use a ResNet50 [11] backbone pre-
trained on ImageNet; the adversarial branch (built accord-
ing to each specific sample, see sec. 3.2) is located imme-
diately after a bottleneck layer preceding the final classifi-
cation layer (Fig. 3). Each model is trained end to end,
using the same training code and protocol as [4]: on all
settings, we use SGD optimizer, batch size 36, momen-
tum 0.9, weight decay 0.0005 and initial learning rate of
0.001. We adjust the learning rate by µp = µ0

(1+α·p)β , where
p is the training progress linearly changing from 0 to 1,
µ0 = 0.001, α = 10 and β = 0.75, following [8], the
weight of the gradient reversal layer is gradually increased
from 0 to 1: ρ = 2

(1+exp(−γ·p)) − 1 where γ is set to 10
for all experiments. Since the bottleneck and the auxiliary
branch are trained from scratch, we use a higher learning
rate (10µp) and weight decay (0.001) for those parts of the
network. At each iteration, a source and target batch are fed
into the backbone. The cross-entropy loss is computed on
the source, while both source and target samples contribute
to the adversarial branch loss (DANN or ALDA loss, de-

pending on the setting). At the end of training, both source
and target features are then fed into the performance esti-
mator (as detailed in section 3.3) to provide feedback to the
Bayesian Optimization process.

To train our regressors, we randomly sampled 200 con-
figurations on each dataset and trained them while collect-
ing 100 snapshots for each run (total of 20, 000 data points).
At each snapshot we collected the metrics described in sec.
3.2 thus building a dataset to train our regressor on; note that
we only use the pseudo-label metric to assess the best snap-
shot in a single run, not to compare across runs. All input
features were standardized to zero mean and unit standard
deviation. For the regressor we used a linear least-squares
model as implemented in Scikit-Learn [27]. On Office31
we used a regressor trained on Office-Home and vice-versa.
The PACS regressor was trained on Office31.

4.1. Preliminary analysis

Search space expressivity and sensitivity. Given the
added cost of automatically searching for the optimal archi-
tecture, it is important to understand whether 1) the design
of the adversarial branch has an impact on the final accuracy
and 2) if a ”good” architecture is actually data-dependent.
To assess this, we followed NAS best practices [49] and ran-
domly sampled 40 configurations on each setting to evalu-
ate our search space. We observed the following: the de-
sign of the adversarial branch can make or break a training.
Even excluding a significant (10%) portion of models which
failed to converge, on average the design of the adversarial
branch accounted for at least 20% in absolute performance
(Fig. 5 - full results in the supplementary) - note that λ
was fixed to focus on the architecture only. Furthermore, as
shown in Fig. 6, the ”best” configuration heavily depends
on the specific setting being considered. Indeed, while the
adversarial branch proposed in ALDA performs well on Of-
fice31 and Office-Home (the datasets it was originally tested
on), it significantly lags behind on several PACS settings
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Figure 6: Search space sensitivity analysis. We randomly sampled 40 configurations and trained them on a representative
setting for each of the considered datasets (Office31, Office-Home, PACS). It is evident that the optimal value changes
significantly across tasks. X-axis represents the search space hyper-parameter with respect to which the plot is computed.

(Fig. 5 and Table 3).
Performance estimation. As discussed in sec. 2, and

recently highlighted by [10], strong model selection should
be a key element of any transfer learning approach; more so
when proposing a UDA method capable of explicitly tuning
the model hyper-parameters themselves. In our next experi-
ments we analyzed how well different metrics correlate with
the target accuracy. We sampled 40 configuration on each
setting and computed the metrics discussed in section 3.3
at each epoch of training. Full overview on the results can
be found in the supplementary, while representative plots
are shown in Fig. 4. Note how, individually, all metrics
perform as weak predictors, correlating with the target ac-
curacy but failing in specific instances. By considering a
linear combination we provide a much stronger estimate.

To assess our model selection strategy in isolation from
the NAS component, we retrained vanilla ALDA [4] and re-
ported the performance according to either the last epoch (as
done in the paper) or according to our model selection (Ta-
bles 1,2,3). It is worth mentioning that a) we could not repli-
cate their results (even though we used the official code) and
b) on Office-Home and PACS our model selection improved
average results by up to 2 full p.p.

4.2. Comparison with SOTA

Comparison with current sota methods can be found in
tables 1 to 3. ABAS significantly improves over the UDA
methods it builds on (even when they use our same model
selection strategy), with both DANN and ALDA and on
all three datasets. The smallest average improvement we
observe is 1.9% (Office31 - ALDA 87.5 vs ABAS-ALDA
89.4) while the largest is 3.1% (Office-Home - DANN 56.0
vs ABAS-DANN 59.1). With the exception of Office-
Home, where we couldn’t replicate the official ALDA re-
sults, ABAS-ALDA is the new sota on all settings. It is
worth mentioning that on one of the easiest Office31 set-
tings (D-W), ABAS-ALDA is outperformed by a few dif-
ferent methods; we speculate that, since DSLR and Web-
cam are very close, the adversarial branch fails to capture
meaningful differences. Indeed, ALDA similarly performs
poorly on this setting.

5. Discussion
The shift from hand-crafted to principled architecture

search is ongoing, as it is witnessed by the flourishing NAS
research and techniques. ABAS fills in two important re-
quirements of NAS for UDA: it provides a data-driven strat-
egy (EMS) for model selection, circumventing the lack of
target labels; and it focuses on searching the architecture of
auxiliary branches attached to a pre-trained backbone, es-
sential practise for state-of-the-art performance.

Only most recent research has stressed the importance
of model selection for UDA [10]. The lack of a validation
identically distributed as the test set, has led researchers
to indulge on selecting hyper-parameters on the test set.
Hopefully the propositions here (cf. EMS) would be initial
steps towards more methodologically sound model selec-
tion practises.

Finally, we emphasize that ABAS provides tools (search
space, EMS, branch optimization), which comply with the
use of most other NAS methods and potentially all UDA
techniques based on an auxiliary branch. A notable example
is self-supervision-based UDA methods using an auxiliary
branch. Since they adopt the same exact macro-architecture
as in Fig. 2, then ABAS seamlessly applies there.
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A-W A-D D-W D-A W-D W-A AVG
ResNet-50 [11] 68.4±0.2 68.9±0.2 96.7±0.1 62.5±0.3 99.3±0.1 60.7±0.3 76.1
DANN [8] 82.0±0.4 79.7±0.4 96.9±0.2 68.2±0.4 99.1±0.1 67.4±0.5 82.2
ADDA [43] 86.2±0.5 77.8±0.3 96.2±0.3 69.5±0.4 98.4±0.3 68.9±0.5 82.9
JAN [23] 85.4±0.3 84.7±0.3 97.4±0.2 68.6±0.3 99.8±0.2 70.0±0.4 84.3
MADA [28] 90.0±0.1 87.8±0.2 97.4±0.1 70.3±0.3 99.6±0.1 66.4±0.3 85.2
CBST [57] 87.8±0.8 86.5±1.0 98.5±0.1 71.2±0.4 100±0.0 70.9±0.7 85.8
CAN [53] 92.5 90.1 98.8 72.1 100.0 69.9 87.2
CDAN+E [22] 94.1±0.1 92.9±0.2 98.6±0.1 71.0±0.3 100.0±0.0 69.3±0.3 87.7
MCS [18] 75.1 71.9 96.7 58.8 99.4 57.2 76.5
DMRL [47] 90.8±0.3 93.4±0.5 99.0±0.2 73.0±0.3 100.0±0.0 71.2±0.3 87.9
DM-ADA [48] 83.9±0.4 77.5±0.2 99.8±0.1 64.6±0.4 99.9±0.1 64.0±0.5 81.6
3CATN [15] 95.3±0.2 94.1±0.3 99.3±0.5 73.1±0.2 100±0.0 71.5±0.6 88.9
ALDA [4] 95.6±0.5 94.0±0.4 97.7±0.1 72.2±0.4 100.0±0.0 72.5±0.2 88.7
ResNet-50 67.0±1.9 76.4±1.4 94.8±1.3 56.2±1.0 98.7±0.1 58.3±0.9 75.2
ResNet-50 + EMS 70.4±2.0 77.1±2.0 95.6±0.6 58.2±2.6 99.1±0.5 60.1±1.1 76.8
DANN 85.0±0.5 82.5±0.5 96.7±0.2 63.9±1.1 99.2±0.3 64.7±0.7 82.0
DANN + EMS 85.5±2.1 82.8±2.2 97.1±1.0 64.1±0.5 99.8±0.2 64.5±2.0 82.3
ABAS-DANN 89.4 87.6 98.4 64.1 99.8 69.3 84.8
ALDA 94.8±0.6 91.6±0.9 98.3±0.4 69.6±0.9 99.9±0.0 70.8±0.7 87.5
ALDA + EMS 95.0±1.4 91.9±0.7 98.6±0.4 69.3±2.1 99.7±0.3 71.1±0.8 87.6
ABAS-ALDA 96.1 95.0 98.5 75.9 100.0 70.7 89.4

Table 1: Results of ABAS on Office31 with a ResNet-50 backbone. + EMS: experiments run with our model selection.

Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr AVG
ResNet-50 [11] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [23] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN+E [22] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
TAT [19] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
ALDA [4] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
ResNet-50 35.6 61.5 70.4 44.0 56.1 57.4 46.5 31.9 69.1 62.4 38.0 75.6 54.1
ResNet-50 + EMS 36.5 63.1 71.7 45.8 57.5 59.3 47.9 32.3 69.9 63.5 37.3 76.0 55.1
DANN 39.8 58.0 68.1 48.6 57.0 59.9 46.9 38.4 68.8 63.2 47.7 75.9 56.0
DANN + EMS 40.3 60.4 70.1 49.6 57.5 60.5 47.9 38.3 69.1 63.7 47.7 76.8 56.8
ABAS-DANN 44.9 61.1 71.2 52.7 60.4 62.5 50.1 43.1 70.0 65.4 50.9 77.1 59.1
ALDA 46.4 68.6 74.6 57.6 67.0 69.4 57.2 46.3 75.6 69.2 53.3 80.8 63.8
ALDA + EMS 47.5 70.1 75.2 58.8 67.5 69.7 58.1 46.6 76.2 69.9 54.0 81.0 64.6
ABAS-ALDA 51.5 71.7 75.5 59.8 69.4 69.5 59.8 47.1 77.7 70.6 55.2 80.2 65.7

Table 2: Results of ABAS on Office-Home, using a ResNet-50 backbone. Note we were not able to reproduce the official
ALDA numbers using the official code, + EMS: experiments run with our model selection strategy.

P-A C-A S-A A-P C-P S-P A-C S-C P-C A-S C-S P-S AVG
ALDA [4] 89.3 91.9 69.9 98.3 97.3 63.4 85.1 75.2 74.3 79.2 70.6 60.7 79.6
ALDA + EMS 90.2 92.0 72.3 98.4 97.8 69.5 86.0 82.1 72.1 80.7 75.1 66.1 81.9
ABAS-ALDA 93.1 91.8 78.1 98.7 97.8 70.8 88.7 84.9 69.7 79.8 69.5 64.9 82.3

Table 3: Results of ABAS on PACS, using a ResNet-50 backbone, + EMS: experiments run with our model selection strategy.
Due to space constraints, ResNet50 and DANN experiments are in the supplementary materials.
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