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Abstract

When we humans recognize places from images, we not
only infer about the objects that are available but even think
about landmarks that might be surrounding it. Current
place recognition approaches lack the ability to go beyond
objects that are available in the image and hence miss out
on understanding the scene completely. In this paper, we
take a step towards holistic scene understanding. We ad-
dress the problem of image geo-localization by retrieving
corresponding aerial views from a large database of geo-
tagged aerial imagery. One of the main challenges in tack-
ling this problem is the limited Field of View (FoV) nature
of query images which needs to be matched to aerial views
which contain 360°FoV details. State-of-the-art method
DSM-Net [19] tackles this challenge by matching aerial im-
ages locally within fixed FoV sectors. We show that local
matching limits complete scene understanding and is inad-
equate when partial buildings are visible in query images
or when local sectors of aerial images are covered by dense
trees. Our approach considers both local and global prop-
erties of aerial images and hence is robust to such condi-
tions. Experiments on standard benchmarks demonstrates
that the proposed approach improves top-1% image recall
rate on the CVACT [9] data-set from 57.08% to 77.19% and
from 61.20% to 75.21% on the CVUSA [28] data-set for
70°FoV. We also achieve state-of-the art results for 90°FoV
on both CVACT [9] and CVUSA [28] data-sets demonstrat-
ing the effectiveness of our proposed method.

1. Introduction

Consider the ground view images in Figure 1 (Left). How
can we determine their true location? One promising way
to recognize their location is to use cross-view image geo-
localization. In this method the query image who’s loca-
tion needs to be determined is matched against a database
of geo-tagged aerial imagery. This is challenging due to

Figure 1. Given a field of view constrained query image (Left),
we retrieve corresponding aerial views (Right). Correct and in-
correct regions are indicated by green and red respectively. State-
of-the-art method DSM-net [19] matches the query images locally
in aerial views. We show that local matching is inadequate when
buildings are visible partially (Orange), dense trees cover a region
(Blue) and when the GPS center is set incorrectly (Yellow). Our
work considers both global and local properties of aerial views
and hence is robust to the above mentioned conditions.

large differences in visual appearance caused by extreme
change in viewpoint. In this work, we consider aerial views
for geo-localization of low FoV images. Images captured
from standard smart phone devices and hand-held cameras
have small FoVs, these devices cannot capture images with
FoV larger than 180°. Images captured in portrait mode too
have low FoV information. Targeting small FoV has appli-
cations in enabling geo-localization them. This paper looks
at effective aerial representations to enable low field of view
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Figure 2. Our Siamese Framework: We propose to leverage both global (Purple) and local (Blue) information present in aerial images
to enable Field of View constrained image geo-localization. Our aerial view representation consists of both global and local properties.
Original and attention [25] based features are extracted from intermediate layers of a ResNet-18 [5] module. For ground view features, an
off-the-shelf image segmentation module [30] is used to remove sky region from ground view images (Yellow). This is important since sky
region is not available in aerial images and can be ignored during matching. We use contrastive loss for learning these representations.

(i.e. 90°and 70°) cross-view image geo-localization.
Cross-view image geo-localization problem is posed as

an image retrieval task. Recently, deep-learning [16, 9, 20,
18, 19, 32, 24, 22, 21, 14, 11] has enabled high cross-view
image geo-localization rates for panoramic images. One of
the main challenges to use such frameworks is the limited
FoV nature of query images as opposed to the 360°FoV
nature of aerial view images. Existing methods such as
DSM-Net [19] solve for this challenge by matching locally
in aerial views within fixed FoV sectors. The quest for
perfectly aligned aerial views to the corresponding ground
view image involves a dense search along fixed FoV sectors.
Such a search demands significant compute and can be time
consuming. We show that relying just on local matching
is inadequate for recognizing places where complete infor-
mation is not present (See Figure 1). These involve places
which are covered by dense trees or landmark regions that
are partially visible. For successful geo-localization of such
cases one needs to look at scenes in a holistic manner. Here
information about neighbouring objects beyond fixed FoV
sectors must also be considered.

Our work uses 360°FoV information of aerial views to
infer global information and fuses it with local aerial in-
formation, the joint representation is then used for cross-
view image matching. To the best of our knowledge, this
is the first work that learns joint global-local representa-
tions effectively to enable field of view constrained image-
localization. We also propose a straight-forward data-
augmentation method for aerial images that eliminates the

compulsion to search perfectly aligned aerial views to geo-
localize images. Our data-augmentation method leads to
recall rates similar to dense search on CVACT dataset for
90°FoV by performing fewer search iterations. This saves
cross-view image retrieval time for FoV constrained image
geo-localization.

The contribution of this work are as follows:

• We propose to take advantage of 360°FoV information
present in aerial view images to learn joint global and
local aerial view representations for cross-view image
geo-localization. This leads to holistic scene under-
standing and enables cross-view image matching mod-
ule to infer beyond objects that are available.

• We also present a new data augmentation method to
facilitate faster inference during search and retrieval.
Our data augmentation enables reduction in search
time for geo-localizing 8884 images from 120 mins to
8 mins for 90°FoV, while maintaining similar top-1 re-
call rates.

• Experiments indicate that we improve top-1% image
recall rate on the CVACT [9] data-set from 57.08% to
77.19% and from 61.20% to 75.21% on the CVUSA
[28] data-set for 70°FoV. We also achieve state-of-the
art results for 90°FoV on both CVACT [9] and CVUSA
[28] data-sets demonstrating the effectiveness of our
proposed method.
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2. Literature Review
In this section we review some prior and concurrent

works on cross-view image geo-localization.
Cross-view image geo-localization has been researched

extensively before the existence of deep-learning. Methods
proposed by [4, 7, 17, 2] worked towards extracting mean-
ingful handcrafted features for this task. With the increasing
effectiveness of deep learning, end-to-end feature learning
is now considered as an effective approach. [26] made use
of a pre-trained CNN to discover location specific features,
it was discovered that deeper layer of pre-trained CNNs in-
clude location specific semantic information. [27] explored
the effect of fine tuning CNNs that were pre-trained on large
data-sets by imposing an objective function to place fea-
ture vectors of images that came from the same location to-
gether. [8] made use of contrastive loss function to train
Siamese networks for cross view image geo-localization
task. [6] used NetVlad [1] for place recognition task. [9]
made use of orientation priors by incorporating color coded
information. This color coded signal was fed as an input
to Siamese networks. Embedding orientation information
made cross-view image retrieval frameworks more robust as
it simplified the cross view image matching. [20] proposed
an optimal feature transport which lead to effective cross-
view image feature alignment. Geometric differences were
compensated in feature space by proposing a learn-able fea-
ture alignment. [18] proposed to reduce the geometric dif-
ferences between view points by proposing a polar transfor-
mation. It is interesting to note that this transform was not
leanable and just involved pixel reordering. [18] also intro-
duced a new spatial aware attention framework which lead
to higher recall rates. A new data-set was proposed by [32]
to handle miss-alignment across the two views. Authors
in [24] proposed an image feature extraction module for
capturing local properties effectively. [16] proposed a data-
augmentation method to facilitate cross-view image match-
ing across temporally varying scenes. They discovered that
cross-view image pairs were not captured at the same time,
leading to change in scenes. [16] also proposed an attention
mechanism for extracting cross-scale features. [13] reduced
the view point differences by using conditional GANs [12]
to bridge the domain gap between the two views. Approach
proposed by [13] could generate aerial views from ground
view images. Another approach that used GANs for cross-
view image generation was proposed by [22], here polar
transformed images [18] were also considered in the image
generation framework. GANs with geo-metric priors were
trained by [10]. Authors in [29] propose drone based image
geo-localization. This was considered as another valuable
data source for geo-localization task.

Our approach is different from the above mentioned
works as we look at the task of field of view constrained
image geo-localization. Particularly we target low FoV im-

ages (i.e. 90°FoV and 70°FoV). The work most relevant
to us in the literature is [19]. Authors in [19] proposed
a local approach to field of view constrained image geo-
localization. We introduce global aerial view features into
cross view image matching pipeline. This is useful to match
objects that are not visible in locally constrained fixed field
of view sectors and provides holistic scene understanding.
This makes image geo-localization systems more robust and
significantly increases image recall rates.

3. Approach
In this section we introduce our Siamese frame-

work (Figure 2). We later present our proposed data-
augmentation method and state its effectiveness for field of
view constrained image geo-localization.

3.1. Siamese framework for geo-localization

We use a Siamese network pipeline trained with a con-
trastive loss objective to facilitate cross-view image re-
trieval task. (Figure 2) The key idea of our framework is
to incorporate global aerial representation into the feature
extraction pipeline to aid field of view constrained image
geo-localization.

Input Representation: In Figure 3 we illustrate the
input images for field of view constrained ground view im-
ages and their corresponding global and local aerial views.
In particular, for 90°FoV we use an input resolution of 312
× 156 pixels. We maintain similar height for the case of
70°FoV, here we use an input resolution of 312 × 121 pix-
els. Image resolution for global aerial view is 200 × 200
pixels. Local aerial view resolution is set to 100 × 100 pix-
els. In order to mask out regions that do not correspond to
the local region, a 70°mask is used.

Figure 3. Input representation: Ground and aerial cross-view im-
age pairs considered in our geo-localization framework.

Objective Function We make use of a metric learning
objective to learn joint global-local aerial image represen-
tations. Contrastive loss is used to learn image representa-
tions such that positive matching pairs are brought closer
to each other and non matching negative pairs are at-least
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separated by a margin m. We employ the below objective
function:

L = (1−Y )∗ 1
2
∗(Dw)

2+(Y )∗ 1
2
∗max(0,m−Dw)

2 (1)

Dw = ||Fg(Ig)− Fa(Ia)||2 (2)

Fa(Ia) = Fal
(Ial

) + Fag (Iag ) (3)

here,m is a margin parameter. Fg is the feature extractor
for field of view constrained ground view image Ig . Fa is
joint global-local aerial view feature extractor which oper-
ates on aerial image Ia. It extracts features from local aerial
image Ial

using local feature extractor Fal
and global aerial

image Iag
using global feature extractor Fag

. Joint repre-
sentation of aerial image feature is the addition of Fal

(Ial
)

and Fag
(Iag

). Y is a binary indicator representing the in-
put pair as positive or negative. Dw is the squared error
distance computed between ground feature representation
Fg(Ig) and aerial representation Fa(Ia).

Multi-scale CNN backbone: In-order to capture fea-
ture representation from aerial and ground views at multi-
ple scales we utilize a Multi-scale CNN backbone (Figure
2). We use ResNet-18 [5] as our primary backbone network
and use attention mechanism from [25] to extract features at
multiple scales. Intermediate layers of the model are con-
sidered as features at multiple scales [15]. The attention
mechanism applies both channel and spatial attention. We
use one original feature and three such attentive features at
each scale. The learnable parameters of ResNet-18 are ini-
tialised from Image-net pre-taining, the parameters for the
learnable attention modules are randomly initialised.

3.2. Orientation robust data augmentation

Due to the miss-alignment between aerial views and im-
ages to be geo-localized (See Figure 5). Its common prac-
tice to extract features multiple times from the same aerial
view along different orientations (See Figure 4, Orange).
We notice the computation over-head [19] involved in ex-
tracting features from many orientations to perform cross-
view image geo-localization. This computational over head
can be substantially reduced by designing an orientation ro-
bust image geo-localization frame work. We intentionally
introduce controlled miss-aligned global and local aerial
views as positive samples during the training phase (See
Figure 4, Green). This enforces the matching network to
match non-aligned samples with partial objects that might
not be available for matching. In Figure 4 we explain the
steps to prepare positive and negative samples for our pro-
posed cross-view image geo-localization framework. We
use a zero mean Gaussian random variable with variance
parameter σ to control the strength of miss-alignment. The
parameter σ is FoV dependent and must be tuned separately

for each FoV. We show in Table 4,5 the effect the parameter
σ for varying FoV conditions.

Figure 4. Illustration of our proposed data-augmentation (Green).
We introduce controlled miss-aligned pairs as positive samples
during training. Data-augmentation is not performed on negative
samples. We also show aerial image feature extraction and re-
trieval process during testing (Orange).
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Figure 5. Ground images and their corresponding aerial views
from the CVACT [9] data-set. Examples shown correspond to the
case of 90°FoV. Note that its challenging to match the two since
the camera orientation is unknown and the images are not aligned.

4. Experiments

We show the effectiveness of our proposed approach
with qualitative and quantitative experiments. Qualitatively,
(See Figure 6) we show good and poor examples of our
method in comparison to DSM [19]. Our method infers
about neighbouring landmarks and is able to consider aerial
image features outside local regions successfully.

Data-sets: We evaluate our method using two standard
benchmarks i.e. CVUSA [28] and CVACT [9]. Each data-
set contains 35,532 training cross view image pairs and a
held out set of 8,884 validation image pairs. Here, the
ground views consist of full FoV panoramic images. In
order to evaluate for field of view constrained image geo-
localization, we create limited FoV images for training and
testing from panoramic view images following the protocol
defined by [19].

Implementation Details: Our Siamese framework is
trained end-to-end with contrastive loss function as defined
in Eq.1. We use adam as optimizer with 10−4 as initial
learning rate for the first 30 epochs. After which, we re-
duce the learning rate by a factor of 5 every two epochs.
This is continued for another 10 epochs. The margin m
in our contranstive loss framework is set to 1. We make
use of large batch size for training B positive pairs and
B(B−1) negative pairs. B in our experiments is set to 128.
Large batch size is realised by accumulating gradients from
smaller batches and updating parameters of the network af-
ter effective batch size is attained. We make use of a sin-
gle RTX 8000 GPU for our experiments. Our model when
trained end to end takes 12 days to complete 40 epochs with
a learning rate schedule as discussed.

Evaluation metric: We follow top-k as our evaluation
metric similar to [16, 18, 9, 6, 20, 19] to measure loca-
tion estimation performance of our proposed method and
compare it with [6, 20, 19]. Here, for an input ground

view image we retrieve K corresponding aerial views with
the least L2 distance between the learned ground view and
joint global-local aerial feature representation. The ground
view is considered as correctly localized if the correspond-
ing aerial image is among the top-k retrievals. The fraction
of correctly localized ground views is considered as top-K.

4.1. Comparison with state-of-the-art methods

We compare our proposed method with [6, 20, 19] for the
task of field of view constrained image geo-localization on
the CVACT [9] and CVUSA [28] data-sets. Visual results
for DSM [19] (See Figure 6) are obtained by utilizing codes
open sourced by the authors. We report image recall rates at
Top-1, Top-5, Top-10 and Top-1% and enumerate it in the
Tables 1 and 2.

Quantitative results for CVACT: As shown in Table 1,
we compare the proposed method with [6, 20, 19] on the
CVACT [9] dataset for the evaluation conditions of 90°FoV
and 70°FoV. The proposed method achieves 26.05% Top-
1, 49.23% Top-5, 59.26% Top-10 and 85.60% Top-1% re-
trieval rates for 90°FoV and 14.17% Top-1, 32.96% Top-5,
43.24% Top-10 and 77.19% Top-1% rate for 70°FoV condi-
tions. Our method surpasses all existing work on the above
benchmark attaining the new state-of-the-art.

Quantitative evaluation on CVUSA: We report results
on the CVUSA [28] dataset in Table 2. Our method is
compared with [6, 20, 19] for 90°FoV and 70°FoV. We
achieve 22.54% Top-1, 44.36% Top-5, 54.17% Top-10 and
83.59% Top-1% retrieval rates for 90°FoV and 15.20% Top-
1, 32.86% Top-5, 42.06% Top-10 and 75.21% Top-1% rate
for 70°FoV conditions. The results show the effectiveness
of our method and achieves the new state-of-the-art on the
CVUSA [28] benchmark.

Table 1. Comparison of recall rates for localizing ground view im-
ages for 90°and 70°FoV on the CVACT [9] data-set.

CVACT [9] 90°FoV CVACT [9] 70°FoV
Method r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVM [6] 1.47 5.70 9.64 38.05 1.24 4.98 8.42 34.74
CVFT [20] 1.85 6.28 10.54 39.25 1.49 4.13 8.19 34.59
DSM [19] 18.11 33.34 40.94 68.65 8.29 20.72 27.13 57.08

Ours 26.05 49.23 59.26 85.60 14.17 32.96 43.24 77.19

Table 2. Comparison of recall rates for localizing ground view im-
ages for 90°and 70°FoV on the CVUSA [28] data-set.

CVUSA [28] 90°FoV CVUSA [28] 70°FoV
Method r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVM [6] 2.76 10.11 16.74 55.49 2.62 9.30 15.06 21.77
CVFT [20] 4.80 14.84 23.18 61.23 3.79 12.44 19.33 55.56
DSM [19] 16.19 31.44 39.85 71.13 8.78 19.90 27.30 61.20

Ours 22.54 44.36 54.17 83.59 15.20 32.86 42.06 75.21
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Figure 6. Examples of our results compared to DSM on the CVACT data-set for 70°and 90°FoV. Successful matching results are shown in
Yellow, Blue and Red. Since our aerial representation includes 360°FoV information our method understands symmetry in scenes (Yellow).
We enable cross-view image matching when landscapes are covered by trees (Blue). Successful retrievals are obtained when just a part of
landscape is visible (Red). Common failures occur when similar aerial regions exist in the search data-base (Grey).
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Table 3. Ablation Study: Effect of considering local and global aerial view representations along with sky removal from ground view for
90°and 70°FoV conditions on the CVACT [9] data-set.

Ground View Aerial View Representations CVACT [9] 90°FoV CVACT [9] 70°FoV
Sky Remove Local Global Top-1 Top-5 Top-10 Top-1% Top-1 Top-5 Top-10 Top-1%

- X - 16.31 35.70 45.46 77.60 11.59 26.53 35.13 67.04
- - X 18.01 36.83 46.66 78.48 12.85 28.55 37.35 71.20
- X X 19.61 39.47 48.12 78.91 13.40 31.58 41.17 74.04
X X - 22.64 42.85 52.66 80.53 14.06 32.17 42.55 74.65
X - X 23.15 45.90 56.43 83.73 14.10 32.41 42.63 76.48
X X X 26.05 49.23 59.26 85.60 14.17 32.96 43.24 77.19

1 5 10 15 20
Search Angle Spacing for Aerial Image

360

72
36 24 18

13.02 11.75 10.07 8.29 7.59

26.05 25.5 25.3 25.27 25.16

Ablation Study: Effect of Aerial Image Augmentation

Aerial Image Augmentation
No Aerial Image Augmentation
Top-1 Retrival Rate
# Search Operations

Figure 7. Ablation Study: Effect of proposed data-augmentation
on Top-1 retrieval rate for 90°FoV on the CVACT [9] data-set.
Smaller angle spacing leads to higher search operations within the
aerial view. We compared Top-1 retrieval rates for with and with-
out data-augmentation. Our method maintains consistent Top-1
retrieval rates even for large angle spacing enabling faster search.

4.2. Ablation Studies

In this section, we provide ablation studies performed on
the CVACT [9] data-set for field of view constrained im-
age geo-localization. In particular, we study the of effect of
considering local and global aerial view features. We also
validate important design choices such as the choice vari-
ance strength (σ) for data-augmentation and sky removal
from ground view images.

Effect of sky removal: Top portion of all ground view
images include sky region, however this region does not ex-
ist in aerial views. We remove the sky region by blacking
out the pixels that correspond to sky. This is done by setting
pixel values belonging to sky region to zero. From Table 3
its evident that removing sky region improves recall rates.

Effect of global and local aerial features: It is interest-
ing to observe (See Table 3) that independent use of global
aerial features outperforms the use of only local aerial fea-
tures. Combining both local and global features further
improves recall rates, demonstrating that the two support

Table 4. Ablation Study: Effect of Variance level (σ) used in data-
augmentation for 70°and 90°FoV on CVACT data-set.

Variance CVACT [9] 70°FoV CVACT [9] 90°FoV
Level (σ) Top-1 Top-10 Top-1% Top-1 Top-10 Top-1%
σ = 0 8.03 28.75 63.24 13.02 38.11 72.02
σ = 15 14.17 43.24 77.19 23.33 54.87 83.68
σ = 20 13.91 41.15 73.73 26.05 59.26 85.60
σ = 40 3.42 17.06 48.45 10.51 22.40 61.34

each other for cross-view image matching. A further im-
provement in retrieval rate is observed when sky region is
removed. This increase is consistent across both 90°and
70°FoV.

Effect of variance strength (σ): We show in Table 4
that variance strength (σ) i.e the amount of misalignment in-
troduced in positive samples during training, has to be tuned
for each FoV separately. Best retrival rates for 90°FoV is
obtained when σ = 20 whereas for 70°FoV peak perfor-
mance is obtained for σ = 15. This is expected since a
large miss alignment can lead to little/no overlap between
the ground and local aerial view affecting retrieval rates.

Effect of search angle spacing vs data-augmentation:
It is evident from Figure 7 that the proposed data augmen-
tation leads to stable top-1 retrieval rates on the CVACT
[9] data-set for 90°FoV compared to the case with no data-
augmentation, here top-1 retrieval rates decrease as search
angle spacing increases. Our method is less sensitive to
change in angle spacing.

Effect of search angle spacing vs retrieval time: A
smaller search angle indicates dense search inside aerial
views. For 1°spacing 360 search operations are performed
inside a single aerial view as compared to 20°spacing case
where only 18 search operations need to be performed.
Larger search angle spacing indicates coarser search. We
also report retrieval time for 8884 images for different an-
gle spacing’s. It takes 120 minutes to complete cross view
image matching for 8884 images on the CVACT data-set
for 90 FoV for the dense searching case of 1°angle spac-
ing. This time gets significantly reduced to 8 minutes when
a coarse search of 20°angle spacing is used. Time reported
was evaluated using a single RTX 8000 GPU.
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4.3. Large Field of View Image Geo-localization

Datasets: We consider FoVs greater than 90 de-
grees under the category of large FoV for image geo-
localization. We evaluate the performance of large FoV
image geo-localization using the above mentioned CVACT
and CVUSA datasets. We also make use of additional Vo’s
[23] dataset for evaluating image geo-localization under this
setup. Vo et al. [23] introduced a cross-view dataset which
consists of about one million image pairs from 11 cities in
the US. We follow the split specified in [23] using 8 cities
for training and Denver city as test set for evaluation. Vo’s a
challenging dataset in comparison to CVUSA and CVACT,
as it contains around 70k images for testing.

Large FoV Images: Since CVACT and CVUSA pro-
vide access to panoramic images 180 degree FoV crops are
obtained using strategy provided by [19]. Vo’s [23] dataset
on the other hand provide pre-cropped limited FoV images.
They donot provide the exact FoV details, visually the FoV
appear greater than 90 but less than 180 degrees.

Results for 180°FoV: In Table 5 we compare our
method with existing work on the CVACT [9] and CVUSA
[28] dataset. Our results for 180°FoV, are just marginally
high compared to the state of the art. One plausible reason
could be use of similar back-bone (i.e. ResNet-18) for both
large and low FoVs. Matching larger FoVs, might demand
a backbone network with higher capacity. As seen in Ta-
ble 5, Data-Augmentation strength (σ) needs to be carefully
tuned to obtain desired results. This indicates that our pro-
posed method is most effective for low FoV conditions such
as 70°and 90°FoV. For higher FoV local aerial view might
contain sufficient information, adding extra global informa-
tion improves recall rates slightly.

Table 5. Comparison of recall rates for localizing ground images
for 180°FoV on CVUSA and CVACT data-sets.

CVACT [9] 180°FoV CVUSA [28] 180°FoV
Method r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVM [6] 3.94 13.69 21.23 59.22 7.38 22.51 32.63 75.38
CVFT [20] 7.13 18.47 26.83 63.87 8.10 24.25 34.47 75.15
DSM [19] 49.12 67.83 74.18 89.93 48.53 68.47 75.63 93.02
O σ : 22 40.79 62.37 74.61 90.74 39.11 64.52 71.50 92.03
U σ : 24 44.52 66.09 76.26 92.88 45.63 65.76 75.32 93.18
R σ : 28 49.93 68.48 77.16 93.01 48.91 69.87 78.50 95.68
S σ : 30 41.35 65.78 75.72 92.21 40.03 64.96 76.50 94.68

Evaluation on Vo’s Data-set: We compare our method
with existing works using Vo’s dataset. The test set in Vo’s
data-set is large-scale with around 70k samples from Den-
ver city area. It consists of additional challenges such as
image examples from near by places and multiple crops
that are extracted from same region. Due to the large-
scale nature of this data-set we follow Top-1 % rate as our
evaluation criteria similar to [27, 23, 6, 3]. From the re-

Table 6. Comparison of Top-1% recall rate using Vo’s Dataset.

Method Top-1%
WideArea-Net [27] 15.4%
Triplet-eDBL [23] 62.4%

CVM [6] 67.9%
Reweight [3] 78.3%
Binomial [31] 88.3%

Ours 89.1%

sults we observe that our method achieves results compa-
rable to state-of-the-art. This validates that our proposed
approach is most suited for low FoVs and achieves com-
parable performance for the condition of large FoV image
geo-localization.

5. Conclusion
In this work we proposed a method to address the chal-

lenges of field of view constrained cross-view image geo-
localization. Leveraging 360°FoV aerial representation is
advantageous as it infers scenes holistically and improves
image geo-localization recall rates for low FoV conditions.
Our solution involves two proposals. We first propose
global satellite representations to leverage full FoV aerial
image information, this enables cross-view matching frame-
work to infer beyond objects that are limited to a fixed
FoV and also consider surrounding landmarks.We also in-
troduced a new data-augmentation approach where we in-
cluded controlled miss aligned cross-view pairs as positive
examples for training. This made the matching network ro-
bust to miss alignments and improved retrieval speed during
inference. Experiments on standard benchmarks confirm
that we boost recall rates for 70°and 90°FoV demonstrating
the effectiveness of our proposed solution.
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