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Figure 1: Shadow art sculptures generated using differentiable rendering casting the shadows of (a) WACV acronym on one
plane and fishes on the other resembling an aquarium of floating objects, (b) dropping Heart, Duck, and Mickey (all on the
same plane), and (c) face sketches using half-toned images. (d) 3D reconstruction of a car from hand drawn sketches.

Abstract

While recent learning-based methods have been ob-
served to be superior for several vision-related applica-
tions, their potential in generating artistic effects has not
been explored much. One such exciting application is
Shadow Art - a unique form of sculptural art that produces
artistic effects through 2D shadows cast by a 3D sculp-
ture. In this work, we revisit shadow art using differen-
tiable rendering-based optimization frameworks to obtain
the 3D sculpture from a set of shadow (binary) images and
their corresponding projection information. Specifically, we
discuss shape optimization through voxel as well as mesh-
based differentiable renderers. Our choice of using differ-
entiable rendering for generating shadow art sculptures can
be attributed to its ability to learn the underlying 3D ge-
ometry solely from image data, thus reducing the depen-
dence on 3D ground truth. The qualitative and quantita-
tive results demonstrate the potential of the proposed frame-
work in generating complex 3D sculptures that transcend
the ones seen in contemporary art pieces using just a set
of shadow images as input. Further, we demonstrate the
generation of 3D sculptures to cast shadows of faces, an-
imated movie characters, and the applicability of the pro-
posed framework to sketch-based 3D reconstruction of the
underlying shapes.

1. Introduction

The very art of painting originates from trailing the edge
of shadow, said Pliny the Elder, an ancient Roman author.
Shadow art showcases the author’s imaginative and techni-
cal skill in playing with shadows. Many of us have seen or
at least heard of “someone” making “something” interest-
ing out of shadows. Remember creating shadows of rabbits
or horses on the wall by playing with our fingers around a
lamp. In this work, we show how differentiable rendering
can generate some amazing 3D sculptures that cast mind-
boggling shadows when lit from different directions.

Figure 2 (a) shows the cover of the book Gödel, Escher,
Bach by Douglas Hofstadter that features blocks casting
shadows of different letters when seen from different sides.
Kumi Yamashita - one of the most prominent contemporary
artists - demonstrated that simple objects arranged in a cer-
tain manner cast amazing shadows or silhouettes when lit
from an appropriate direction. An exclamation sign trans-
forms into a question mark (Figure 2 (b)) and a bunch of
aluminum numbers form an image of a girl looking down
the building (Figure 2 (c)). These and several other art
pieces by Kumi Yamashita not only please our eyes, but
also inspire emotion and pose intriguing questions. Tim

1This work is supported by SERB IMPRINT-2 grant. Code,
data, and results are available at kaustubh-sadekar.github.io/
ShadowArt-Revisited/
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Noble and Sue Webster have presented such artworks since
1997, projecting shadows of people in different positions
(Figure 2 (d)). This specifically arranged ensemble shows
how readily available objects can cast the clearest of illu-
sions of clearly recognizable scenes (Figure 2(e)). Figure
2 (f) shows the aquarium of floating characters by Shigeo
Fukuda where the shadows of the fish reveal their names
in kanji characters. Even after such fascinating effects, the
current state of shadow art seems to be well described by
Louisa May Alcott, who says “Some people seemed to get
all sunshine, and some all shadow. . . ”. Mitra and Pauly
[10] first introduced shadow art to the vision and graphics
community by formally addressing the problem in an op-
timization framework. Since then, no significant progress
has been observed in this direction.

(a) Godel, Esher, Bach (c) City view

(b) Question mark (d) Wild mood swings

(e) Sunset over Manhattan

(f) Aquarium of swimming characters

Figure 2: Examples of shadow art sculptures by (a) Douglas
Hofstadter, (b, c) Kumi Yamashita, (d, e) Tim Noble and Sue
Webster, and (f) Shigeo Fukuda.

The question: Can we develop a method that learns
to create or optimize 3D sculptures that can generate such
artistic effects through their shadows? In this work, we at-
tempt to answer this question through the use of Differen-
tiable Rendering. Here, instead of trying to render a scene
of our creation realistically, we try to reconstruct a repre-
sentation of a scene from one or more images of a scene
[2]. Our work is mostly inspired by examples of shadow
art shown in Figure 2. Specifically, our objective is to gen-
erate 3D shadow art sculptures that cast different shadows
(of some recognizable objects) when lit from different di-
rections using a differentiable renderer.

Why differentiable rendering? Most learning-based
methods for 3D reconstruction require supervision through
precise 3D ground truths for training. However, all we have
is a set of desired shadow images in our case. Differentiable
rendering-based methods estimate the 3D shape under 2D
supervision using single or multi-view images, thus, elimi-
nating the need for any 3D data collection and annotation.

Contributions. The following are the major contribu-
tions of this work.

• We introduce a differentiable rendering-based frame-
work to create 3D shadow art sculptures that cast dif-
ferent shadows when lit from different directions using
just the input shadow images and the corresponding
projection information.

• We demonstrate the efficacy of deploying a differen-
tiable rendering pipeline over voxel and mesh-based
representations to generate shadow art sculptures.

• We show that the proposed framework can create artis-
tic effects beyond the ones seen in contemporary art
forms by generating 3D sculptures using half-toned
face images and sketches drawn from multiple view-
points.

• To the best of our knowledge, ours is the first work to
address shadow art using differentiable rendering.

2. Related Work
Shadows provide essential cues in the way we perceive

the world around us and have been central in capturing
the imagination of many artists, including stage perform-
ers. Several artists have typically used manual and trial-
and-error style approaches to create 3D shadow sculptures.
However, with the advent of digital design technology, the
need for an automated framework is inevitable.

Shadow Art. Shadows in many computer graphics
and computer vision applications have been studied from
both perceptual (artist’s) and mathematical (programmer’s)
points of view. It started by understanding how shadows
effect the perception of spatial relationships in computer-
generated images [22, 23]. Pellacini et al. developed an
interactive user interface for cinematic shadow design. By
imposing constraints on the desired shadows, it allows the
users to modify the positions of light sources and shadow
blockers [17]. Then evolved the idea of shadow volume - a
visual hull used for 3D reconstruction [4]. Sinha and Pol-
leyfeys [19] used min-cuts and strict silhouette constraints
to study the reconstruction of continuous surfaces from
multiple images.

Relation with the state-of-the-art method. The work
closest to ours is by Mitra et al. [10]. They described
shadow art more formally by introducing a voxel-based op-
timization framework to recover the 3D shape from arbi-
trary input (shadow) images by deforming them and han-
dling inherent image inconsistencies. This work demon-
strates the potential of differentiable rendering in generat-
ing 3D shadow sculptures all from arbitrary shadow images
without any explicit input image deformation. Although the
associated 3D object might not exist in the real world, the
method still creates shadow sculptures that transcend the
ones seen in contemporary art forms casting the physically
realizable shadows when lit from appropriate directions.
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Differentiable Rendering. We briefly review meth-
ods that learn the 3D geometry via differentiable render-
ing. These methods are categorized based on the under-
lying 3D representation: point clouds, voxels, meshes, or
implicit neural representation. In this work, we primarily
focus on voxel and mesh-based representations. Several
methods operate on voxel grids [8, 13, 16, 21]. Paschali-
dou et al. [16] and Tulsiani et al. [21] propose a strong
probabilistic ray potential formulation. However, it requires
the intermediate evaluations to be saved for backpropaga-
tion and is limited to smaller resolution voxel grids. On
one hand, Sitzmann et al. [20] used an LSTM-based dif-
ferentiable renderer to infer implicit scene representations
from RGB images and Liu et al. [7] perform max-pooling
over the ray intersections from multi-view silhouettes. On
the other hand, [14] demonstrate that volumetric rendering
is inherently differentiable for implicit representations and
does not require saving the intermediate results for the back-
ward pass. OpenDR [9] roughly approximates the back-
ward pass of mesh-based graphics pipelines. Liu et al. [6]
proposed Soft Rasterizer to make the rasterization step dif-
ferentiable. It uses a deformable template mesh for train-
ing and yields compelling results in reconstruction tasks.
We deploy this in our mesh-based differentiable rendering
pipeline for rasterization.

This work describes the differentiable rendering opti-
mization frameworks for both voxel and mesh-based rep-
resentations and discuss their strengths and weaknesses.

3. Method

3.1. Problem Formulation

The key idea of our work is to generate an artistic 3D
sculpture S that casts N different shadows when lit from
N different directions using differentiable rendering based
optimization pipeline. The prime focus here is to create in-
teresting shadow art effects using the 3D sculpture S. The
input to the pipeline is a set X = {X1, X2, ..., XN} of
shadow configuration Xi = (Ii, Pi). Ii represents the tar-
get shadow image and Pi is the corresponding projection
information. The shadow of an object can be regarded as its
projection on a planar surface. Assuming directional light-
ing, this projection is an orthographic projection when the
surface is perpendicular to the lighting direction and a per-
spective projection, otherwise [1]. Obtaining the shadow
of an object is equivalent to finding the corresponding sil-
houette captured by a camera pointing in the same direction
as the light source. Therefore, Ii the shadow image is es-
sentially a silhouette. From here on, we shall use the term
silhouette images and shadow images interchangeably.

The shadow art problem is similar to a multi-view 3D
reconstruction problem [5, 11], where we try to estimate
the 3D structure of an object given its N silhouette views.

However, the following are the key differences in shadow
art. (i) The N views can correspond to arbitrary silhouettes
(not necessarily of the same object). (ii) The learned 3D
sculpture may bear no resemblance with any real-world ob-
ject and be an abstract art that casts the desired shadows
when lit from appropriate directions. Undoubtedly, there
exist multiple 3D shapes that can cast the same set of shad-
ows. However, our concern is to learn one such 3D sculp-
ture that can create the desired artistic effects through its
shadows.

3.2. System Overview

By providing shadow configuration X = {Xi =
(Ii, Pi)|i = 1, 2, ..., N} as input to the pipeline, the objec-
tive is to learn the underlying 3D sculpture S , as described
earlier. The projection information Pi corresponds to the
camera position (and hence, the light source position) asso-
ciated with ith shadow image Ii such that Pi = (Ri, ti).
Here, Ri and ti are the 3D rotation and translation of the
camera, respectively. We start by initialising S with a stan-
dard geometry which is further optimized by minimizing
image-based losses, such that the rendered silhouette im-
ages Ĩi = Ii for all i = 1, 2, ..., N . The prime reason for
using differentiable rendering is that it allows gradient flow
directly from images back to parameters of S to optimize it
in an iterative fashion. In other words, it does not require
any explicit 3D supervision and optimizes the 3D shape
solely from image based losses. For further simplicity, let
the set of target shadow images and the associated projec-
tion information be denoted as I and P , respectively, such
that I = {I1, I2, ..., IN} and P = {P1, P2, ..., PN}. Fur-
ther, let Ĩ = {Ĩ1, Ĩ2, ..., ĨN} be the set of shadow images
obtained from learned 3D sculpture S as per projections P .

In this work, we consider two common representations
for 3D shapes i.e. voxel and mesh based representations
and discuss which representation fits the best for the under
different scenarios. In the following section, we elaborate
on the optimization pipelines for the voxel and mesh-based
representations of the 3D object to create visually plausible
shadow art using differentiable rendering.

3.3. Voxel Based Optimization

This section looks at a differentiable rendering pipeline
that uses voxels to represent the 3D geometry. A voxel is
a unit cube representation of a 3D space. The 3D space is
quantized to a grid of such unit cubes and is parameterized
by an N -dimensional vector signifying the volume occu-
pied in 3D space. Additionally, it encodes occupancy, trans-
parency, color, and material information. Even though oc-
cupancy and transparency probabilities (in the range [0, 1])
are different, they are considered to be the same to main-
tain differentiability during the ray marching [2]. A typical
rendering process involves collecting and aggregating the
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Figure 3: Information flow in the proposed mesh-based differentiable rendering pipeline.

voxels located along a ray and assigning a specific color to
each pixel based on the transparency or the density value.
While rendering a pixel, all the voxels located along a ray
projecting to a pixel are considered. However, our objective
is to do the inverse, i.e., to find the 3D geometry associated
with silhouettes corresponding to different directions.

We assume that the 3D object S is enclosed in a 3D cube
of known size centered at the origin. Hence, S can be de-
fined by a learnable 3D tensor V that stores the density
values for each voxel. We initialize V with all ones. The
color value for each voxel is set to 1. It is kept fixed in the
form of a color tensor C. Next, we render S using a dif-
ferentiable volumetric rendering method described in [18].
To restrict the voxel density values to the range [0, 1], V is
passed through a sigmoid activation function (σ) to obtain
Ṽ , as described in Equation 1.

Ṽ = σ(V ) (1)

We then pass Ṽ through the differentiable volume ren-
derer Rvol along with the fixed color tensor C and the as-
sociated projection information P to obtain the set of corre-
sponding rendered images Ĩ , as described in Equation 2.

Ĩ = Rvol(Ṽ , C,P) (2)

The voxel densities V are optimized by minimizing the
image level loss between a set of rendered shadow images Ĩ
and the corresponding target shadows in I. The image-level
loss Limg is a weighted combination of L1 and L2 losses,
as described in Equation 3.

Limg = λ1LL1 + λ2LL2 (3)

Here, λ1 = 10.0 and λ2 = 10.0 are the weights associated
with L1 and L2 losses, respectively. The resulting voxel-

based representation of S can finally be converted to a 3D
mesh making it suitable for 3D printing (see Figure 9). One
simple way to achieve this is by creating faces around each
voxel having a density greater than a certain threshold value
(as described in [18]).

3.4. Mesh Based Optimization

In this section, we also propose to use mesh-based differ-
entiable rendering to meet our objective. The entire work-
flow is described in Figure 3. The 3D object S can be rep-
resented as a mesh M(V, F ). Here, V is a set of vertices
connected by a set of triangular faces F that define the sur-
face of S. We start by initializing a source mesh Ssrc =
M(Vsrc, Fsrc) with an icosphere consisting of |Vsrc| ver-
tices and |Fsrc| faces. The idea is to learn the per-vertex dis-
placements Vd to deform Ssrc to the final desired mesh that
casts desired shadows (silhouettes), when lit from appropri-
ate directions. This is achieved by rendering the deformed
mesh Sdef = M(Vdef , Fdef ) through a mesh-based dif-
ferentiable silhouette renderer Rsilh (as described in [18])
from the associated projection P such that,

Vdef = Vsrc + Vd

Fdef = Fsrc

Ĩ = Rsilh(Sdef ,P)
(4)

3.4.1 Loss Function

The source mesh is optimized by minimizing image-level
loss Limg (described in Equation 3), normal consistency
loss, and imposing Laplacian and edge length regularisa-
tion.

Normal consistency. We use normal consistency loss
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to ensure smoothness in the resulting 3D sculpture. For
a mesh M(V, F ), let e = (vx,vy) be the connecting
edge of two neighboring faces fx = (vx,vy,a) and
fy = (vx,vy,b), such that fx, fy ∈ F with normal
vectors nx and ny , respectively. If Ẽ is the set of all such
connecting edges e and |F | is the total number of faces in
mesh, the normal consistency over all such neighbouring
faces fx and fy is given as per Equation 5.

Lnorm =
1

|F |
∑
e∈Ẽ

(1− cos(nx,ny)) (5)

where,

nx = (vy − vx)× (a− vx)

ny = (b− vx)× (vy − vx).

Laplacian regularisation. To prevent the model from gen-
erating large deformations, we impose uniform Laplacian
smoothing [12], as described by Equation 6.

Llap =
1

|V |

|V |∑
i=1

∥∥∥∥ ∑
vj∈N (vi)

wijvj − vi

∥∥∥∥
1

 (6)

Here, |V | is the number of vertices in the mesh M and
N (vi) is the neighbourhood of vertex vi.

wij =
ωij∑

k∈N (i) ωik

For uniform Laplacian smoothing, ωij = 1, if (vi,vj)
form an edge, ωij = −1 if i = j, and ωij = 0, otherwise.

Edge length regularisation. Edge-length regularisa-
tion is included to prevent the model from generating flying
vertices and is given by Equation 7.

Ledge =

|V |∑
i=1

∑
vj∈N (vi)

‖ vi − vj ‖22 (7)

Finally, the overall loss function is as described in Equation
8.

Ltotal = λaLimg + λbLnorm + λcLlap + λcLedge (8)

Here, λa = 1.6, λb = 2.1, λc = 0.9, and λd = 1.8 are the
weights associated with the losses Limg , Lnorm, Llap, and
Ledge, respectively.

3.5. Implementation Details

The aforementioned differentiable rendering pipelines
are implemented using Pytorch3D [18]. For initializing

the mesh, we use a level 4 icosphere composed of 2,562
vertices and 5,120 faces. For the voxel-based rendering
pipeline, we assume that the object is inside a cube (a grid
of 128 × 128 × 128 voxels) centered at the origin with a
side of length 1.7 world units. We train the optimization
pipeline with custom silhouette images of size 128 × 128
for 2000 epochs. We keep the learning rate to 1×10−4. We
keep the learning rate to 1 × 10−2 and train the optimiza-
tion pipeline for 500 epochs. The training is performed on
NVIDIA Quadro RTX 5000 with 16 GB memory.

4. Experimental Analysis
In this section, we perform an extensive analysis of the

results obtained using voxel and mesh-based differentiable
rendering pipelines to create plausible shadow art effects.
We discuss the evaluation metrics and perform ablation
studies to understand the effect of various loss terms in the
design.

4.1. Evaluation Metrics

Following our discussion in Section 3.1, we assess the
quality of silhouettes (shadow images) obtained through the
3D sculpture S as per projections P . To compare the ren-
dered silhouette images with the target silhouette images
(representing shadows), we use Intersection over Union
(IoU) and Dice Score (DS). Additionally, we need to quan-
tify the quality of the 3D sculpture S obtained after opti-
mization. While we do not have any ground truth for 3D
shape, and this is an optimization framework, we need a
”no reference” quality metric. Therefore, we decided to use
normal consistency evaluated over S to assess the quality of
the mesh.

(a) (b) (c) (d)

Figure 4: Qualitative analysis of effect of various loss terms.
(a) Limg , (b) Limg + Ledge, (c) Limg + Ledge + Llap, and
(d) Limg + Ledge + Llap + Lnorm.

4.2. Ablation Study

Figure 4 depicts the qualitative effect of different loss
terms used in the optimization pipeline. The underlying
mesh in this figure corresponds to the arrangement shown
in Figure 5 (c). The image-based loss Limg alone is not
sufficient for generating plausible 3D sculptures as they are
expected to suffer from distortions due to flying vertices
(spike-like structures in Figure 4 (a)) or large deformations.
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Figure 5: Qualitative and quantitative results on (a) two views (b,c) three orthogonal views, and (d, e) three non-orthogonal
views using voxel and mesh-based rendering for shadow art.

Since we do not have any ground truth for explicit 3D super-
vision, we examine the effect of including regularisation in
the objective function. Figure 4 (b) shows that the spikes are
reduced by introducing edge-length regularisation. Further,
as shown in Figure 4 (c), Laplacian smoothing prevents the
sculpture from experiencing super large deformations. Fi-
nally, normal consistency loss ensures further smoothness
in the optimized surface. Figure 4 (d) shows the result ob-
tained by applying all the regularization as mentioned above
terms along with the image-based loss. The resulting qual-
ity of the mesh validates our choice of loss terms.

4.3. Qualitative and Quantitative Analysis

In this section, we perform the qualitative and quantita-
tive evaluation on a wide variety of shadow images, includ-
ing those used in [10] to illustrate the versatility of our ap-
proach in generating 3D shadow art sculptures represented
using both voxels and mesh. For every result in Figure
5 (a)-(d), we show the learned 3D sculptures (voxel and
mesh-based) along with the respective shadows cast from
different specified directions. We could not include the op-
timized 3D sculpture from [10] as the associated object file
was not downloadable through their optimization tool. We

have been able to incorporate both orthogonal (Figure 5
(a, b, c)) and non-orthogonal views (Figure 5 (d) and Fig-
ure 1 (b)) to obtain the shadows that are consistent with
the desired target shadow images. For a quantitative com-
parison, we also report IoU and Dice score. As depicted
in Figure 5, the IoU and Dice Score are comparable for
both voxel and mesh-based renderings. However, the cor-
responding voxel-based 3D sculptures are not that smooth
(low normal consistency value) when compared to those
of mesh-based 3D sculptures. It is important to note that
the underlying voxel representation has been converted to
a mesh representation to compute normal consistency val-
ues. While [10] have focused only on foreground inconsis-
tencies (marked in orange color), we also show the back-
ground inconsistencies (marked in blue color) that appear
in some of the rendered shadow images. Ours is an end-to-
end optimization approach without any additional editing
tool to prune the generated 3D sculpture. In some cases, the
mesh-based approach is found to produce certain disconti-
nuities near non-convex regions (Figure 5 (b,d)) for at least
one view. This is mainly attributed to the inability of ico-
sphere to handle sharp discontinuities in the desired shape,
especially when regularisation has been imposed (Equation
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Figure 6: Qualitative evaluation of results obtained through (A) shadow art tool in [10] and (B) our voxel based rendering
pipeline. The inconsistencies are highlighted in orange color.

8). The voxel-based approaches may contain a few out-
liers (voxels outside the desired 3D shape, as marked in
blue in Figure 5 (d)) which is generally not the case with
mesh-based approaches. However, the mesh-based differ-
entiable rendering method lags in handling sharp discon-
tinuities and holes present in the shadow images. While
these shortcomings are handled effectively by voxel-based
methods, they tend to generate discretized 3D sculptures
and are often associated with high memory and computa-
tional requirements. Overall, the differentiable rendering-
based optimization for both the approaches generates plau-
sible 3D shadow art sculptures and outperforms [10] in han-
dling shadow inconsistencies by a large extent without hav-
ing to deform the desired shadow images explicitly.

4.4. Comparison with the State-of-the-art method

We show the qualitative comparison of the results
obtained using our voxel-based differentiable rendering
pipeline and the voxel-based optimization tool presented in
[10] without any deformation to the target shadow image.
In Figure 6, we observe that the shadows rendered using

the proposed pipeline are highly consistent with that of the
desired target shadows when compared to those produced
by [10]. The authors of [10] argue that it might be impos-
sible to find a consistent configuration with a given choice
of input images. Therefore, they introduce deformations
in the input image to achieve consistency of the rendered
shadow images with the desired ones. However, the dif-
ferentiable rendering-based optimization can handle incon-
sistencies without causing any explicit change in the target
shadow images.

5. Applications
In this section, we show some additional artistic shadow

art creations and an extension to yet another application that
can also benefit from our optimization approach. Figure 7
depicts the creation of faces of well-known scientists around
the world and movie characters like Minions and Ironman,
demonstrating the strength of differentiable rendering based
optimization approach to handle complex objects or scenes
with consistency. In addition to the binary silhouette im-
ages, half-toned images can also be used to generate 3D
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(a) (b) (c)

Figure 7: A seemingly random voxel soup creates three distinct shadow images of (a) Albert Einstein, Nikola Tesla, and APJ
Abdul Kalam, (b) Minions, and (c) Ironman.

Figure 8: 3D reconstruction of (a) flower vase, (b) pen-stand, and (c) coffee mug using the associated hand drawn sketches
from three different views.

Figure 9: 3D printed sculptures of quality upto the 3D
printer’s resolution.

shadow art sculptures, as shown in Figure 1. Another in-
teresting extension is towards sketch-based modeling [15]
where we use hand-drawn sketches of a shape from differ-
ent viewpoints to automatically create the underlying 3D
object. We demonstrate the creation of a flower vase (Figure
8 (a)), pen-stand (Figure 8 (b)), and a coffee mug (Figure 1
(c)) solely from hand-drawn sketches from three different
views.

Figure 9 shows the 3D printed structures to demonstrate
their physical realizability. Contouring [3] can be used to
convert the voxel grids to a triangular mesh, and some steps
of subdivision on meshes yields a smooth, printable sur-
face. The structures shown in Figure 6 and 8 can be phys-

ically printed, as shown in Figure 9. The facial structures
in Figure 7 and 1 (c) are difficult to print using the conven-
tional 3D printing techniques due to missing connectivity
in the learned voxel representation. Converting such repre-
sentations to meshes is challenging and can potentially be
explored in the future.

6. Conclusion
We have introduced an optimization framework for gen-

erating 3D shadow art sculptures from a set of shadow im-
ages and the associated projection information. The key
idea is to explore the strength of differentiable rendering in
creating visually plausible and consistent shadows of rigid
objects, faces, and animated movie characters by generat-
ing the associated 3D sculpture. We have discussed voxel
and mesh-based rendering pipelines and have identified the
benefits of each of them for the task at hand. Addition-
ally, we have demonstrated the applicability of the pro-
posed framework in reconstructing 3D shapes using their
sketches drawn from three different viewpoints. At present,
we have primarily considered the shadows associated with
static sculptures, and hence, they themselves are static in
nature. Dynamic shadow art can also be explored in the
near future.
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