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Abstract

The detection of dim artificial Earth satellites using
ground-based electro-optical sensors, particularly in the
presence of background light, is technologically challeng-
ing. This perceptual task is foundational to our under-
standing of the space environment, and grows in importance
as the number, variety, and dynamism of space objects in-
creases. We present a hybrid image- and event-based archi-
tecture that leverages dynamic vision sensing technology to
detect resident space objects in geosynchronous Earth orbit.
Given the asynchronous, one-dimensional image data sup-
plied by a dynamic vision sensor, our architecture applies
conventional image feature extractors to integrated, two-
dimensional frames in conjunction with point-cloud feature
extractors, such as PointNet, in order to increase detec-
tion performance for dim objects in scenes with high back-
ground activity. In addition, an end-to-end event-based
imaging simulator is developed to both produce data for
model training as well as approximate the optimal sensor
parameters for event-based sensing in the context of electro-
optical telescope imagery. Experimental results confirm
that the inclusion of point-cloud feature extractors increases
recall for dim objects in the high-background regime.

1. Introduction
Use of the near-Earth space environment is essential

for many commercial, government, and scientific endeav-
ors. Consequently, the population of resident space objects
(RSOs) has grown dramatically over the past decade, neces-
sitating the development of new methods to accurately per-
ceive objects in the space environment at scale. This is chal-
lenging even for large, bright objects under ideal observing
conditions; for dim objects in sub-optimal collection con-
ditions (i.e., near the moon, through deep atmospheric tur-
bulence) new visual perception approaches are even more
crucial. While the apparent visual magnitude (MV), an as-
tronomical measure of the brightness of space objects, of
the brightest satellites can reach up to +5 MV, small and low

Figure 1. Event-based Satellite Detection Framework

reflectance satellites often have apparent magnitudes as low
as +15 MV, well outside the range visible to the naked eye
[10][20]. Specialized radar and laser ranging equipment has
been used to detect small orbiting targets, but optical solu-
tions provide a versatile, power efficient, and cost effective
approach to space domain awareness tasks [23]. However,
due to the significant background noise present in charge-
coupled device (CCD) sensors as well as the presence of
high brightness objects such as stars, sophisticated algo-
rithms are necessary to differentiate between light-sources
with little apparent difference in shape or size. Many clas-
sical approaches both identify classes of space-based ob-
jects and filter background noise data by relying on the tem-
poral information between consecutively captured images
[7][29][26]. Nonetheless, the detection of satellites in cis-
lunar orbit and daylight continues to represent a significant
hurdle for optical systems, primarily due to ambient light-
ing having much greater apparent magnitude than potential
targets.

The primary focus of this work is leveraging the unique
properties of event-based cameras to enhance the detection
of dim RSOs. Also sometimes referred to as dynamic vi-
sion sensors, event-based cameras are a class of optical
imager in which each pixel responds asynchronously to
logarithmic changes in luminance. Rather than synchro-
nized images, event-based cameras generate binary events
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only at pixels that register a significant change in lumi-
nance beyond calibrated threshold values. Given the asyn-
chronous response of the pixels, image data is relayed in
a one-dimensional event stream with the form (x, y, t, p),
where x and y indicate the two-dimensional coordinates of
the pixel in camera space, t represents an assigned times-
tamp, and p is a positive or negative polarity flag indicating
an increase or decrease in luminance, respectively. These
sensors, originally developed to model the function of the
human eye, are separated into unique categories based on
the type of intensity change that is primarily detected, in-
cluding: spatial contrast, spatial differencing, and temporal
contrast [4]. The overall benefit is that the resulting sen-
sors have high dynamic range, high temporal resolution,
and sampling rate in the MHz range, while maintaining low
power consumption and relatively low data-rate. More ma-
ture versions of event-based sensors have begun develop-
ment over the past few years that have improved resolution
and include synchronous frame outputs, albeit with greater
noise and far less dynamic range [15]. Some preliminary
work has already demonstrated the effectiveness of using
event-based sensors for space-based imaging tasks, show-
ing that these sensors can successfully detect Low-Earth
Orbit (LEO) and Geosynchronous Earth Orbit (GEO) ob-
jects under both nighttime and daytime conditions [3]. The
ability of event-based cameras to detect exceedingly small
differences in luminance, especially with respect to objects
of varying speed, suggests that these sensors could be ideal
for detecting dim, but relatively high-speed satellites in con-
ditions too difficult for conventional sensors. Despite the
low resolution and significant noise present in many cur-
rent event-based cameras, these issues are already being ad-
dressed by newer versions of hardware that present an even
more attractive option for satellite detection.

In this work, we present a framework for both generating
synthetic, event-based training data and detecting RSOs in
the context of event-based optical telescope imagery. Train-
ing data is generated via event-based vision simulation in
conjunction with a previously established space scene sim-
ulator, SatSim [5]. Both SatSim and the event-based sim-
ulator developed in this work allow the varying multiple
telescope and sensor parameters, enabling heuristic opti-
mization of parameters for space detection tasks with the
intent to extend these findings to physical hardware in fu-
ture work. Lastly, RSO detection with event-based data is
accomplished through a hybridized YOLO architecture uti-
lizing feature fusion between image and point-cloud feature
extraction backbones. This hybridized architecture is eval-
uated using multiple feature extraction backbones and with
space scenes of widely varying conditions. While the sim-
ulation pipeline established in this work is focused on RSO
detection, the hybridized architecture proposed has object
detection applications beyond the scope of this work.

2. Related Work
The hybrid architecture proposed in this work ap-

proaches the satellite localization task using a YOLO-based
detection scheme. ”You Only Look Once”, or YOLO, is
a now well-known approach to object detection that in-
volves the regression of object bounding boxes from pre-
diction volumes derived from a feature extraction backbone
and YOLO detection head [18]. The subsequent updated
architecture, YOLOv3, adopts an anchor-based approach
that predicts offsets to predefined anchors for better over-
all accuracy, especially for smaller target objects [19]. For
our purposes, YOLO’s simpler, unified detection approach
is more easily extensible to multiple sensor modalities and
avoids the object proposal modules required by many other
architectures. Furthermore, a YOLOv3 architecture has al-
ready demonstrated superior detection performance on tele-
scope imagery as compared to more traditional means of
satellite detection based on background subtraction and in-
tensity thresholding [5][30]. This previously established
model for RSO detection serves as a baseline of compari-
son for our own hybridized architectures’ performance.

While the image feature extraction backbone used in the
original YOLOv3 architecture, DarkNet53, was shown to
be effective for satellite detection in [5], a conventional im-
age feature extraction backbone is not immediately suitable
for event-based data. While it is possible to create two-
dimensional images by integrating over a range of times-
tamps, flattening the event stream removes potentially crit-
ical temporal data. Alternatively, the event stream can be
treated as a three-dimensional point cloud, with the times-
tamp of event defining a third spatial dimension. This rep-
resentation naturally lends itself to feature extraction us-
ing geometric deep learning architectures such as PointNet.
While the PointNet architecture extracts only global fea-
tures from point cloud embeddings, the subsequent Point-
Net++ architecture introduced hierarchical k-nearest neigh-
bors clustering in conjunction with PointNet to extract lo-
cal spatial information [16][17]. Other more recent models
have also been developed, such as PointCNN, PointConv,
among others, which extract local features by approximat-
ing three-dimensional convolution operations with varying
degrees of permutation invariance [27][9].

The unconventional image data produced by event-based
sensors has necessitated modifications to standard computer
vision techniques, as well as entirely new methods of object
detection and tracking. The earliest methods of detection
relied on event-based reformulations of standard techniques
such as the Hough transform [12] and Harris corner detector
[24], while more recent methods, such as the hierarchy of
time-ordered surfaces (HOTS) algorithm, exploit the tem-
poral information of generated events to perform both de-
tection and identification of objects [8]. Several deep learn-
ing models have also been developed, which differ in their
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treatment of event-based data as either a sequence of two-
dimensional image data or as a single three-dimensional
point-cloud, though both also deal with relatively sparse
numbers of events. ”You Only Look at Events”, or YOLE,
is a variant of YOLO modified with leaky and asynchronous
layers intended to capture temporal changes within the two-
dimensional context [1]. Conversely, EventNet is an event-
based PointNet, including a temporal encoding with each
event and implementing a look-up table approach to per-
form real-time feature extraction [21]. For all of these meth-
ods, however, one of the greatest challenges to event-based
deep learning methods is the general lack of available train-
ing data. While some event-based versions of well-known
data sets do exist [22][13], many of these are produced by
shifting conventional two-dimensional images to produce
three-dimensional representations. For our purposes, these
datasets lack a suitable model of event-based noise and fea-
ture objects that have far more distinctive spatial character-
istics compared to satellites on starfield backgrounds.

3. Approach
To accomplish our satellite detection task, this work is

separated into three distinct contributions. Firstly, an event-
based simulation framework is established that attempts to
emulate the function of the underlying event-based hard-
ware. Secondly, tunable sensor parameters are heuristically
optimized with respect to a proposed event-based signal-to-
noise ratio metric in order to both increase target detection
performance and inform future hardware platforms. Lastly,
a YOLO-based object detection model utilizing feature fu-
sion between extracted image and event stream features is
established and evaluated on both generated satellite im-
agery and a small, real dataset.

3.1. Dataset Simulation

In order to produce event-based satellite imagery, we
leverage the Tensorflow-based SatSim space scene simula-
tor. Developed in [5] for augmenting datasets with GEO
satellite targets, SatSim allows for the simulation of electro-
optical telescope imagery with a range of varied hardware
parameters and scene conditions. The simulator supports
generating target satellites of varying apparent magnitudes
and velocities in addition to simulated sensor noise, back-
ground magnitude due to ambient lighting, and background
starfields. Previous approaches to simulating event stream
data largely rely on linear extrapolation on the intensity be-
tween subsequent images, i.e. producing events by vari-
ations of frame differencing. In physical hardware, each
pixel in an event-based sensor integrates logarithmic cur-
rent generated from incident light, producing an event of
either positive or negative polarity if this integrated current
rises above or falls below a given threshold respectively. To
emulate this behavior, simulators will generate a sequence

Figure 2. Example SatSim scene with conventional CCD image
(left) and event-based integrated frame (right). Marked targets
have apparent magnitude 15 MV with background apparent mag-
nitude of 19 MV.

of events based on the difference of log-intensity in each
frame, with some simulators generating a single event and
others encoding the magnitude of the difference in the num-
ber or relative timing of these events.

Given the extremely high temporal resolution of events
captured in hardware (on the µs scale), these simulation
methods may not fully express the temporal information
present in collected data, which could be critical for train-
ing deep learning based detection techniques. However,
SatSim produces scene images directly using the apparent
magnitude of scene components, e.g. satellite targets, back-
ground, noise, etc., and the corresponding time interval be-
tween simulated frames in order to generate the raw photo-
electron counts as they might be observed on a sensor focal
plane array.

PEtarget = 10
mvzeropoint−mvtarget

2.5 (1a)

PEbackground = 10
mvzeropoint−mvbackground

2.5

∗ (iFoVy ∗ 3600 ∗ iFoVx ∗ 3600) ∗∆t (1b)

PEnoise = N (0, 1) ∗
√

PE2
readnoise + PE2

elec.noise (1c)

Equations 1a-1c define the generation of raw photoelec-
tron counts for both target satellites (PEtarget) and back-
ground activity (PEbackground) as a function of several pa-
rameters pertaining to both the simulated sensor and scene.
mvtarget and mvbackground refer to the apparent magni-
tude of satellite targets and sky background respectively,
while mvzeropoint indicates the minimum apparent magni-
tude that produces one photoelectron per second on the sen-
sor focal plane array. iFoVy and iFoVx both refer to the in-
stantaneous field-of-view of the sensor, i.e. the angle of vis-
ible sky to which the pixel is sensitive, multiplied by 3600
to convert from degrees to arc seconds, while ∆t represents
the exposure time between subsequent frames. Finally, the
photoelectrons attributed to noise (PEnoise) are sampled
from a normal distribution (N (0, 1)) and then scaled by the
root-mean-square of read and electronic noise expected on
the focal plane array. Using the fine control over the time
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interval between frames, we can more closely emulate the
physical behavior of the event-based sensor by implement-
ing an integration and discharge behavior. The generation
of events is also mitigated by a refractory period, i.e. a min-
imum time interval before a new event can be generated at
a given pixel.

∆C = logPE(t)− Cte
−λ∆t (2a)

pk =


+1 ∆C > Θ+and∆t > trefractory

−1 ∆C < Θ−and∆t > trefractory

0 otherwise

(2b)

Ct =

{
logPE(t) + Cte

−λ∆t pk = 0

0 pk ̸= 0
(2c)

Equations 2a-2c describe the generation of events from
the photoelectron counts produced by SatSim. In Equa-
tion 2a, the contrast at a given pixel, in terms of photo-
electrons generated, is first transformed to a logarithmic
scale (logPE(t)), after which the accumulated charge (Ct)
is subtracted from it to determine the change between time
steps. This accumulated charge decays at a rate of λ, which
is a parameter chosen before simulation time. This change
in accumulated threshold is subsequently compared against
contrast thresholds, Θ+ and Θ−, to determine if a positive
or negative polarity event should be generated as shown in
Equation 2b. Finally, as indicated in Equation 2c, the ac-
cumulated charge is updated if no event was generated or
discharged to 0 if otherwise. A small, normally distributed
offset is added to the positive and negative threshold for
each pixel [6], which represents an inherent error in set-
ting the contrast threshold of pixels. This offset, defined in
Equation 3, is applied equally to the positive and negative
polarity thresholds for each pixel k such that all pixels in
the sensor array will have unique thresholds.

Θ
(+/−)
k = Θ

(+/−)
k +N (0, 0.3) (3)

Using SatSim in conjunction with this event-based sim-
ulation, we can generate event-based space scene data by
generating a large sequence of space images with extremely
small (15-100µs) intervals between frames. In order to pro-
duce a two-dimensional representation for parallel image
processing, we then integrate over the entire time period
of an event-based sample, resulting in an image of shape
H ×W × 2, with the event polarities separated into the two
image channels. Equation 4 from [11] details the general
method for integrating events to create conventional frames,
which is maintained across many works using event-based
image data,

logÎ(u; t) = logI(u; 0) +
∑

0<tk≤t

pkCδ(u− uk)δ(t− tk), (4)

where u = (x, y), the x and y image coordinates of the
integrated frame, I is the corresponding pixel intensity, pk
represents the event polarity (+/-1), and C is the quantiza-
tion interval of intensity for each event. As indicated in
Equations 2a - 2c, the quantized pixel intensity used in pre-
vious works is replaced with the raw photoelectron counts
generated by SatSim. Figure 2 depicts a typical SatSim
scene and an integrated event-stream image yielded from
event-based simulation with ground-truth bounding boxes
indicating satellite targets.

3.2. Sensor Parameter Optimization

The detectability of a target generated in SatSim scenes
is directly determined by the interplay between sensor pa-
rameters, scene conditions, and the contrast threshold cho-
sen for event generation. Since the contrast threshold for
event-based simulation can also be readily modified in a
real-world scenario, we choose to optimize the detectabil-
ity of target objects with respect to sensor parameters and
scene conditions, using contrast threshold as a control out-
put. In this context, we introduce an event-based signal-
to-noise ratio metric, similar to measures used in previous
noise filtering approaches [14], with which to quantify the
detectability of targets in SatSim scenes.

EB − SNR = 10log10(
E+

signal + E−
signal

E+
noise + E−

noise

)(∆t) (5)

Equation 5 defines event-based signal-to-noise ratio as
it is used in this work, where E+ and E− represent the
number of positive and negative polarity events, respec-
tively, and ∆t refers to the window of time in which these
events are accumulated. In order to produce training data
with maximal detectability, we perform a heuristic opti-
mization procedure to determine the appropriate contrast
threshold given three key parameters: sensor field-of-view,
exposure time (i.e. temporal window length), and apparent
background magnitude of the scene. In general, field-of-
view and apparent background magnitude both contribute
to the number of noise events generated. Field-of-view, or
instantaneous field-of-view once sensor resolution is taken
into account, dictates the amount of light incident upon a
given pixel from both signal and noise sources found in the
scene. Background magnitude defines the intensity of am-
bient light, and is therefore necessarily a source of noise
events. Lastly, exposure time is defined as the total light
collection time associated with a generated sample, which
in turn dictates the temporal window length, i.e. the time in-
terval over which the stream of events is generated. For op-
timization, these three values were varied over a continuous
range within expected conditions. Event-based signal-to-
noise ratios were then calculated across these samples and
polynomial regression used to determine optimal contrast
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thresholds with given parameters. Data for model training
and evaluation was finally generated using uniformly, ran-
domly sampled values for each key parameter and the em-
pirically determined optimal contrast thresholds.

3.3. Model Architecture

To perform the object detection task, we introduce an
ensemble network framework to incorporate features ex-
tracted from both an integrated image and raw event stream.
For the prediction of bounding boxes and classes, the frame-
work organizes extracted features into a prediction volume
in the same manner as YOLOv3, using predefined anchors
for localizing targets and non-maximum suppression to fil-
ter bounding boxes based on a predicted confidence score.
Features extracted by both an image feature extraction back-
bone, e.g. DarkNet53, and a point-cloud feature extraction
backbone, e.g. PointNet, are concatenated before passing
through a feature fusion and YOLO detection head. Since
point-cloud extraction backbones such as PointNet produce
a one-dimensional embedding of the point-cloud, these fea-
tures are tiled and reshaped for concatenation such that
global point-cloud features are associated with each image
feature. The resultant features are reduced through a series
of convolutional layers to form the final YOLO prediction
volume. The overall framework is depicted in Figure 3.

As previously mentioned, an event stream can be in-
tegrated to produce two-dimensional images with shape
H × W × 2, where positive and negative polarity event
counts are separated into two image channels. For the in-
tended object detection task in this work, targets of interest,
i.e. satellites, have very few visual features that distinguish
them from both noise and non-target stars. In the conven-
tional image context, a YOLO architecture can learn to dis-
tinguish targets via small differences in size and inferred
direction as a result of the total exposure time of the col-
lected CCD image. As exposure time is increased, relatively
brighter objects will appear larger and produce streaks indi-
cating their trajectory. However, distinguishing targets be-
comes exceedingly more difficult when the apparent magni-
tude of a target approaches the ambient background bright-
ness. This issue represents the primary motivation for in-
vestigating the benefits of event-based sensors, and conse-
quently the inclusion of model architectures that operate on
point-cloud input.

3.4. Point Cloud Networks

Due to the high sample rate and temporal resolution
of event-based sensors, many such sensors are capable of
producing more than a million events per second, result-
ing in dense point-clouds far larger than those ordinarily
processed by PointNet and derivative networks. Further-
more, the event streams in our application lack large con-
tinuous shapes such as in the objects that PointNet and sim-

ilar networks were originally meant to classify and/or seg-
ment (see the ModelNet dataset [28]). To overcome these
issues, our framework leverages both image and point-cloud
feature extraction backbones to localize targets and distin-
guish them from stars and background activity that appear
too similar for image-based object detection alone. For our
evaluation, we explored three point-cloud architectures to
use in tandem with YOLOv3’s DarkNet backbone architec-
ture: PointNet, PointNet++, and PointConv. While Point-
Net++ and PointConv both extract local features within
the point-cloud via inter-layer clustering, PointNet extracts
global features that are reduced by application of a global
maximum pooling operation on its output. To supplement
the basic version of PointNet for use with event streams
in our context, we include sinusoidal positional encoding
added to the output features as established in [25], in addi-
tion to replacing the global maximum pooling layer with a
1-by-1 convolutional layer to introduce a learned reduction
of the global output features.

3.5. Training

The general process for model training follows that of
[19], specific details may be found in supplementary ma-
terial. A set of purely simulated training data was gener-
ated with 400,000 samples of randomized scene/target con-
ditions and with sensor parameters chosen to resemble a
Raven-class telescope [2]. Four hybrid configurations were
trained and evaluated in total: a frame-based only baseline
(Darknet53 only), DarkNet53 with PointNet, DarkNet53
with PointNet++, and DarkNet53 with PointConv. Since
our work focuses on the improvement brought by including
point-cloud models, we chose to evaluate hybrid models all
including the Darknet53 backbone that been previously es-
tablished for RSO detection. Each model configuration was
trained with a batch size of 8 and linearly decaying learning
rate of 1e-4 for 500 epochs. In terms of model input, in-
tegrated frames were resized to (224,224,2) for DarkNet53
input, down-scaled from event-based sensor dimensions of
(346,260) with two channels accommodating separate po-
larity channels. Event stream input was either padded or
truncated to a size of (10000, 4) for point-cloud model in-
put, where the four dimensions represented are x location,
y location, timestamp t, and event polarity p in that order.

In addition to simulated data sets, we also had access to
a small set of annotated, real data collections taken with
a Prophesee Gen 3 VGA event-based sensor for valida-
tion and simulator-to-real gap analysis. Samples contain-
ing relevant satellite targets were isolated into a dataset
containing 857 samples for model training and validation;
conversely, samples containing stars correlated with avail-
able star catalogs were used to extrapolate magnitude val-
ues for use in simulation (full details can be found in sup-
plementary material). In order to train the hybrid model
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Figure 3. A Point-Image Fusion Framework. Our proposed framework comprises four components: (a) An image feature extractor that
maps an integrated event-based image to a feature map. (b) A point-cloud feature extractor that produces a position-encoded feature map
from point-clouds. (c) A feature fusion trunk that enables feature representation mixing. (d) A detection head, YOLO v3 in this work, that
maps the fused feature map to a representation encoding bounding boxes.

with an adequate amount of real data, we applied a ran-
domized, non-destructive data augmentation pipeline with
both 2D augmentations (flipping, rotating, and addition of
Gaussian noise) and 3D augmentations (point perturbation
and point dropout). To explore the simulation to real data
gap, we generated an approximately equivalent simulated
dataset (20,000 samples) using simulator parameters (in-
cluding temporal window length, target magnitude, target
velocity, and background magnitude) extrapolated from the
real samples. Model performance and simulator-to-real gap
were finally analyzed by training and cross-evaluation on
simulated and real datasets, as well as direct comparison of
simulated and real event streams.

4. Experiment
We separate the task of training our event-based satel-

lite detection framework into three stages: (1) optimization
of contrast threshold, (2) simulation of real dataset equiva-
lents, and (3) model training and evaluation. Since the de-
tectability of targets (i.e., their event-based signal-to-noise
ratio) is largely determined by the contrast threshold used
during collection, the contrast threshold must be chosen
with respect to sensor parameters and observation condi-
tions before collection. Once determined, an optimal con-
trast threshold value, for a given sensor configuration, may
be used to generate the elements of the dataset upon which
we may train a model. Since not all sensor and scene pa-
rameters for the real data samples are known, approximately
equivalent samples are generated using optimal values de-
termined in simulation.

4.1. Empirical Contrast Threshold Optimization

To determine the optimal contrast thresholds for the sim-
ulation of an event stream, we generate SatSim event-based

samples with relevant sensor parameters and scene condi-
tions and using a full range of contrast threshold settings.
A sample was generated for each unique combination of
values for a total of 45,000 trials. Sample targets were gen-
erated with magnitude BackgroundMag.−1 up to a max-
imum of +15 MV in order to prioritize the detection of dim
targets, while velocities were randomly sample from a uni-
form distribution of U(-10,+10). Full details of the param-
eters used are left to supplementary material. To determine
the optimal contrast thresholds in each scenario, the con-
trast threshold that maximized event-based signal-to-noise
ratio was selected for each unique combination of FoV, ex-
posure time, and background magnitude. A 2nd order mul-
tivariate polynomial regression was then fit to the resulting
trial data, which was subsequently used to calculate con-
trast thresholds for dataset generation; the full result is left
to supplementary material.

4.2. Sim-to-Real Gap

As stated previously, approximately equivalent simu-
lated samples were generated for each annotated real-data
sample obtained. Several necessary parameters for simula-
tion were readily available from the real-data annotations,
such as FoV, exposure time, target location, and target ve-
locity. However, due to the real data collected being be-
yond our control, both background and satellite target mag-
nitude, as well as the contrast threshold used by the sen-
sor, were unavailable. In order to form some basis for
comparison, these values were therefore determined via ex-
trapolation. The magnitudes of target satellites and back-
ground were extrapolated using the known magnitudes of
catalogued stars identified within the real-data samples, re-
lating the observed event counts to the known visual mag-
nitudes found in available star catalogs. Using the extrap-
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Figure 4. Real satellite collection (left) vs. simulated equivalent
sample (right)

olated magnitude values, an optimal contrast threshold was
finally calculated using the optimization results of the pre-
vious section. Expanded results of this extrapolation are
available in supplementary material. Figure 4 shows one
example of a real-data sample and the corresponding simu-
lated sample produced by our simulation pipeline, with tar-
get satellites marked. More thorough quantitative compar-
ison between the real and simulated event streams can be
found in the supplementary material.

4.3. Object Detection Results

Purely simulated datasets for model training were gener-
ated using the empirically determined regression equation
for contrast threshold applied to a full range of parame-
ter values (full details available in supplementary material),
while the real-data simulated equivalents were generated
as previously specified. Each hybrid model configuration,
including the frame-based baseline model, was trained on
each of the datasets successively, then evaluated on hold-
out sets taken from that dataset. To assess the simulator-to-
real gap, models were trained and evaluated on either real
or simulated data. Table 4 indicates the results of models
with supervised pretraining performed on simulated data,
followed by training and evaluation on real data. The pre-
cision, recall, maximum F1 score, and auPR results of the
final evaluations are detailed in Tables 1, 2, 3, and 4, while
the corresponding precision-recall curves can be found in
Figure 5.

In order to visualize general trends in recall as they are
related to each of the sensor parameters and scene condi-
tions, Figure 6 includes histograms of each relevant param-
eter in the corresponding data set with overlaid recall val-
ues. Here temporal window length refers to the exposure
time taken into account for event generation (see Equations
2a-2c). While the primary purpose of the purely simulated
datasets is to assess the effects of various simulation param-
eters, full precision-recall results for these sets can also be
found in the supplementary material.

5. Discussion and Future Work
Upon evaluation, the maximum recalls in Figure 6 show

little difference in the trends of recall versus the sensor pa-

Figure 5. Precision-recall curves for all model configurations on
both real and equivalent simulated data.

Figure 6. Maximum recall for each hybrid architecture with re-
spect to relevant simulation parameters and conditions

rameters and scene conditions with respect to the differ-
ent model configurations. With regard to the parameters
themselves, Figure 6 shows that the strongest indicator of
model recall is field-of-view, though this parameter does
not impact the real data results given that all real collec-
tions were made with the same field-of-view. Nonethe-
less, EB-SNR, to which FoV heavily contributes, is also a
strong indicator of model performance and is readily calcu-
lated from event counts in real samples. Recall also ex-
hibits a slightly parabolic trend with respect to velocity,
indicating that exceptionally slow moving and fast mov-
ing targets both generate fewer events and become more
difficult to detect. Despite similar trends with respect to
sensor parameters/conditions, the overall precision and re-
call results indicated in Tables 1 through 4 show a signif-
icant increase in both maximum F1 score and area under
the PR curves when incorporating the point-cloud architec-
tures versus the frame-based only baseline. The improve-

2894



Hybrid Architecture TP FP FN Precision Recall F ∗
1 auPR Conf.

Framed Baseline 1960 210 271 0.903226 0.87853 0.890707 0.87822 0.503
DarkNet-PointNet 1971 188 260 0.912923 0.88346 0.89795 0.88121 0.693

DarkNet-PointNet++ 1976 135 255 0.936049 0.885701 0.91018 0.88914 0.768
DarkNet-PointConv 1973 186 258 0.913849 0.884357 0.89890 0.88152 0.859

Table 1. Performance comparison of hybrid frame and event stream architectures on simulated dataset

Hybrid Architecture TP FP FN Precision Recall F ∗
1 auPR Conf.

Framed Baseline 1166 338 1019 0.775266 0.533638 0.6321 0.5297 0.507
DarkNet-PointNet 1441 214 744 0.870695 0.659497 0.750521 0.6746 0.511

DarkNet-PointNet++ 1258 275 927 0.820613 0.575744 0.676708 0.58146 0.594
DarkNet-PointConv 1188 454 997 0.723508 0.543707 0.620852 0.531919 0.908

Table 2. Performance comparison of hybrid frame and event stream architectures on real data collections.

Hybrid Architecture TP FP FN Precision Recall F ∗
1 auPR Conf.

Framed Baseline 590 1083 1595 0.35266 0.27023 0.30585 0.163835 0.48
DarkNet-PointNet 582 1420 1603 0.29071 0.266362 0.278003 0.10790 0.81

DarkNet-PointNet++ 654 1342 1531 0.327655 0.299314 0.312844 0.15081 0.73
DarkNet-PointConv 564 1508 1621 0.272201 0.258124 0.264975 0.12851 0.907

Table 3. Sim2Real performance on real data collections with simulator trained models.

Hybrid Architecture TP FP FN Precision Recall F ∗
1 auPR Conf.

Framed Baseline 1166 338 1019 0.775266 0.533638 0.6321 0.5297 0.507
DarkNet-PointNet 1415 282 770 0.833824 0.647597 0.7290 0.636029 0.623

DarkNet-PointNet++ 1428 309 757 0.822107 0.653547 0.7282 0.63179 0.678
DarkNet-PointConv 1215 573 970 0.67953 0.556064 0.6116 0.53167 0.906

Table 4. Sim2Real performance comparison with the addition of supervised pretraining on real data subsets.

ment in object detection performance (with regard to maxi-
mum F1 and auPR) seen when using the point-cloud repre-
sentation is surprisingly far greater for real data samples as
opposed to simulated data. The relative better performance
of the baseline model on simulated data is most likely due
to the far more well-defined appearance of simulated satel-
lites with regard to generated events. Referring to Figure
4, the simulator pipeline generates a consistent number of
events across the entire timeframe, resulting in a visibly
larger streak that is more easily detectable by the frame-
based only model.

With regard to the simulator-to-real gap, the object de-
tection performance of models trained in simulation and
evaluated on real data shows a sizable drop in performance
without additional real data training. However, the reasons
for this disparity can be explained by comparisons of the
streams themselves (full results found in the supplementary
material). Firstly, the size of the simulated event streams
is far larger than that of the real data, despite the same ex-
posure time, suggesting that the sensor contrast threshold
is much larger than that determined by our optimization
method. Secondly, the average EB-SNR value observed
across the real data is much lower than that of the simu-
lated data, which would significantly impact the overall per-
formance as previously established. Finally, and perhaps
most importantly for point-cloud model training, the real
data exhibits significantly different ratios of positive to neg-
ative events (and greater variation) both in regard to targets
and the overall event streams. Regrettably, the lack of con-
trast threshold information from the real dataset presents a
significant issue for assessing how closely the simulation

matches real data. However, we believe that the results
show that the simulation still presents a useful method for
experimentation on relevant event-based data, as well as im-
proving model generalization by enabling the simulation of
scenes outside the conditions found in currently available
real data. Nonetheless, discrepancies between the simulated
and real sensors are a necessary avenue for further research,
which is also contingent upon the acquisition of new hard-
ware and data collection opportunities.

While further architecture exploration can no doubt in-
crease detection performance, the more pressing avenue
for improving target detection is increasing target visibility.
Developing a better means of tuning the event-based con-
trast threshold, most likely through a neural network-based
control mechanism, would not only improve EB-SNR and
object detection in simulation, but could also enhance visi-
bility on actual event-based hardware with real-time adjust-
ments. In addition, although several of the point-cloud ar-
chitectures used in this work already include simple cluster-
ing and sampling of the event streams, more advanced clus-
tering algorithms could serve as a basis for filtering noise
events or possibly included in a future version of the ob-
ject detection framework. Finally, while contrast thresh-
olds could be tuned to better match the real data in simu-
lation, a more extensive real data collection with more var-
ied conditions, parameters, and contrast thresholds will be
essential to future simulator improvements. Overall, the re-
sults found in this work provide evidence that satellite de-
tection can be improved by incorporating temporal event-
based data.
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and Nicolas Lièvre. The use of streak observations to de-
tect space debris. International journal of remote sensing,
39(7):2066–2077, 2018.

[27] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9621–9630, 2019.

[28] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

2896



shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015.

[29] Jiangbo Xi, Desheng Wen, Okan K Ersoy, Hongwei Yi, Dalei
Yao, Zongxi Song, and Shaobo Xi. Space debris detection in
optical image sequences. Applied optics, 55(28):7929–7940,
2016.

[30] HKC Yee. A faint-galaxy photometry and image-analysis
system. Publications of the Astronomical Society of the Pa-
cific, 103(662):396, 1991.

2897


