
Trading-off Information Modalities in Zero-shot Classification

Jorge Sánchez
CIEM-CONICET

Av. Medina Allende s/n,
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Abstract

Zero-shot classification is the task of learning predictors
for classes not seen during training. A practical way to
deal with the lack of annotations for the target categories
is to encode not only the inputs (images) but also the out-
puts (object classes) into a suitable representation space.
We can use these representations to measure the degree at
which images and categories agree by fitting a compatibil-
ity measure using the information available during training.
One way to define such a measure is by a two step process
in which we first project the elements of either space (visual
or semantic) onto the other and then compute a similarity
score in the target space. Although projections onto the vi-
sual space has shown better general performance, little at-
tention has been paid to the degree at which the visual and
semantic information contribute to the final predictions. In
this paper, we build on this observation and propose two
different formulations that allow us to explicitly trade-off
the relative importance of the visual and semantic spaces
for classification in a zero-shot setting. Our formulations
are based on redefinition of the similarity scoring and loss
function used to learn the projections. Experiments on six
different datasets show that our approach lead to improve
performance compared to similar methods. Moreover, com-
bined with synthetic features, our approach competes fa-
vorably with the state of the art on both the standard and
generalized settings.

1. Introduction
In the past decade we have witnessed a tremendous

growth on the capabilities of learning systems to encode
complex high-level information from data. Along with the
development of novel algorithms and powerful computing
machinery, a key factor for this growth has been the avail-
ability of increasingly large amounts of manually annotated
data that can be used for training, with ImageNet [7] being
the paradigmatic example on the field of image classifica-

tion. Although gathering large quantities of data is in many
cases possible, the effort required to annotate it may be too
big to make it practical, specially in cases of uncommon
and fine-grained visual concepts. This has lead to a great
interest in the development of predictive models that can be
trained from a few examples [30, 38, 26]. Zero-shot learn-
ing (ZSL) is a extreme case in which for some of the target
concepts no training samples are provided [18, 40]. For in-
stance, in the zero-shot classification (ZSC) problem we are
given labeled samples from a known set of categories and
we are asked to learn a model that is able to make predic-
tions about object classes not seen during training, in which
case we need to resort on additional sources of informa-
tion that allow us to overcome the lack of annotations for
such classes. Although different sources of side information
has been explored in the past (word embeddings [10, 44],
class hierarchies [1], textual descriptors [19], etc.), visual
attributes [18] remain as the most effective output encoding
method in the literature.

It is important to note that, differently from the fully
supervised learning setting, in the zero-shot scenario all
knowledge about the target categories is not encoded ex-
plicitly (via class-level labels) but indirectly trough a repre-
sentation space that is different from the one chosen to en-
code the images. The interplay between these two “views”
of the same abstract concepts need to be coordinated in or-
der to be useful. However, different problems might require
different trade-offs in terms of the information that these
two view may provide, i.e. visual cues might be relevant in
discriminating fine-grained details while semantic relations
might help extrapolate to a different set of visually simi-
lar objects. Training a model under the zero-shot setting
is not only about learning input-output relations, but un-
covering semantic relations as seen by the representations
chosen to encode both images and concepts. Here, instead
of learning a partitioning of the input space based on class-
membership relations, we can learn a scoring function that
measures the degree at which image- and class-level rep-
resentations “agree” on a given abstract concept. This has
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become the dominant approach to tackle the zero-shot clas-
sification in the literature. A particularly relevant family of
methods correspond to those that seek (explicitly or not) to
learn a projection for the representations in one space (e.g.
visual) to the other (e.g. semantic) so that they can be easily
compared by means of a suitable metric on the target space.
In this case, learning the model accounts to optimizing both
the projection and similarity computation under any con-
straint imposed by the end task.

In this work, we build on this idea and consider a sim-
ple model based on bilinear projections and cosine simi-
larities on the visual and semantic spaces. Since our aim
it to study the interplay between the visual and semantic
modalities (as induced by the model) and not to learn better
single-modality representations, we assume both represen-
tations are given and fixed during training. We propose two
different formulations that allow us to parametrically trade-
off the relative importance of each space in dealing with the
zero-shot problem. One of the formulations is based on the
redefinition of the scoring mechanism while the other on the
definition of an upper bound over a suitable loss function.
We run extensive experimental evaluations on six different
datasets. Despite their simplicity, our models are shown to
compete favorably with more elaborated formulations.

2. Related Work
Zero-shot recognition relies on the semantic knowledge

encoded into the representations chosen for the outputs.
Among different alternatives [10, 44, 1, 19], attribute de-
scriptors remain the most effective [3, 40, 36]. Early works
on attribute based classification divided the problem in two
different stages: attribute prediction and class label assign-
ment. The DAP and IAP methods of [18] are among the
first methods in the literature based on this idea. For in-
stance, DAP first learns a set of attribute predictors based on
the available training information and then use these mod-
els to classify previously unseen categories according to a
maximum-a-posteriori (MAP) rule. It has been observed
[11] that two-stage approaches suffer from the domain-shift
problem, which arises from the decoupling of the problem
into the intermediate task of learning attribute predictors
and the end task of predicting class labels. Instead, more
recent work seek to mitigate this problem by directly learn-
ing a mapping between the visual feature space and the se-
mantic space. Here, while some methods rely on simple
bilinear forms and loss formulations [10, 3, 28, 17], oth-
ers exploit more complex projections or elaborate on more
complex learning objectives [33, 4, 43, 8, 20].

DeViSE [10] propose a loss inspired by the Ranking
SVM [16] and learns a linear mapping from the visual to
the semantic embedding space. SJE [3] and ALE [2] learn
a bilinear compatibility by optimizing a ranking loss that
ensures that more importance is given to the top of the

list. While SJE optimizes a loss inspired from the Struc-
ture SVM [32], ALE uses on a weighted approximation to
the ranking objective [39]. ESZSL [28] proposes a sim-
ple closed-form solution by considering the Euclidean er-
ror of the projections induced by the model from the vi-
sual to the semantic space and back. SAE [17] further ex-
plores this idea and propose an autoencoder learned so as
to minimize the projection and reconstruction errors on the
semantic and visual feature space. Using a hubness argu-
ment, i.e. the presence of universal neighbors or hubs in
high-dimensional vector spaces, Zhang et al. [44] propose
a deep embedding model that project attribute descriptors
onto the visual representation space. Experimental results
show the advantages of using the visual space as the em-
bedding space for (nearest-neighbor) classification. A sim-
ilar observation was made by Jiang et al. [14] and Wang et
al. [37] regarding the usefulness of the visual space under a
the zero-shot learning setting.

GFZSL [33] proposes a generative framework based on
the estimation of class-conditional distributions from at-
tribute descriptors. At test time, attributes from unseen
classes are used to regress the parameters of these class-
conditional densities. Given a test sample, it is assigned
to the class with the maximum posterior probability. PSR
[4] use the similarity between attributes as a proxy for the
semantic similarity of the corresponding categories. The
authors propose to learn a mapping from the semantic to
the visual space such that these proximity relations are pre-
served. The model is based on encoder-decoder architec-
tures and a triplet-based loss formulation. ZSKL [43] apply
the concept of kernel alignment [6] and propose different
non-linear compatibility functions between visual and se-
mantic features. MLSE [8] encodes the semantic represen-
tations into a latent space through an adaptive graph formu-
lation and a rather involved optimization procedure.

More recently, with the emergence of deep generative
modeling [12, 22], some works propose to learn to syn-
thetize samples from arbitrary classes based on the aligned
samples available for training [41, 29]. These family of
approaches deviate from the more restrictive ZSL setting
as they assume the availability of semantic descriptors
for the test classes during training. They correspond to
the class-transductive instance-inductive characterization
of [36]. Assuming that target class information is available
during training has also been explored in non-generative
settings. For instance, [15] propose a contrastive learning
formulation, observing large improvements on the general-
ized ZSL setting.

For a broader overview of these and other methods we
refer the reader to [40, 36].
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3. Preliminaries

In zero-shot classification (ZSC) we are given a train-
ing set Dtr = {(xi, yi)}Ni=1 of image-label pairs, xi ∈ X ,
yi ∈ Ytr ⊂ Y , sampled from a known set of visual cate-
gories. The goal is to learn a mapping f : X → Y from
Dtr that can be used to classify samples over a different set
Yts ⊂ Y . If the sets Ytr and Yts are disjoint, the problem
is known as standard zero-shot classification; otherwise, it
is known as generalized zero-shot classification. The par-
ticular case of Ytr = Yts corresponds to the standard su-
pervised classification problem. To overcome the lack of
annotations for the target categories, we assume each class
y ∈ Y can be encoded by zy ∈ Z in an output representa-
tion space that allow us to encode some of the abstract se-
mantic relations that can be found among the elements of Y .
Examples of such representations are visual attributes [18],
word embeddings [10, 44], class hierarchies [1] and textual
descriptors [19]. Let zy = z(y) ∈ Z denote the represen-
tation of class y. The problem can be reformulated as that
of learning a mapping (scoring function) F : X × Z → R
that measures the degree at which the input and output sig-
natures agree on a concept (visual-semantic compatibility
score) and then use this model to rank test images and tar-
get categories accordingly. Parameters of this model are
learned solely using samples from Dtr. Once the model is
trained, it can be used to classify an input sample x over an
arbitrary set Ỹ as follows:

ŷ = argmax
y∈Ỹ

F (x, zy;W ), (1)

where Ỹ = Yts or Ỹ = Ytr∪Yts for the standard or gener-
alized settings, respectively, and W denotes model param-
eters. If both the input and output spaces are encoded by
means of vectorial representations, a common yet effective
approach to define F is as a simple bilinear form, as fol-
lows:

F (x, zy;W ) = xTWzy (2)

where x ∈ RD, zy ∈ RE and W ∈ RD×E . For in-
stance, x may correspond to a feature vector extracted from
a pretrained deep network and zy to a vector representation
for class y. Using ⟨·, ·⟩ to denote the dot-product operator,
Eq. (2) can be written as:

F (x, zy;W ) = ⟨x,Wzy⟩ = ⟨WTx, zy⟩. (3)

This form is particularly attractive since it allow us to see
the compatibility score induced by Eq. (2) as a two-step
symmetric process in which we first project one of the rep-
resentations onto the space of the other and then compute a
similarity score on the target space.

Figure 1. Suppose that ∥x∥ = ∥z∥ = 1. Replacing the dot-product
by the cosine similarity in either side of Eq. (3) can be seen as
linear embedding (by WT or W ) followed by a projection onto the
unit sphere on the target space. The visual-semantic compatibility
between x and y is the dot-product between one of the signatures
and the projection of the other, i.e. cos θ and cosϕ.

4. Projection Symmetries in ZSC
From the discussion above, we see that the symmetry of

Eq. (3) stems from the linearity of the projection by W and
the use of a simple dot-product for similarity computation.
Replacing either of them by a non-linear operation brakes
this symmetry and makes the similarities defined on the
visual and semantic spaces to behave differently. In what
follows, we consider replacing the dot-product by a cosine
similarity and propose two different formulations that allow
us to trade off the relative importance of the semantic and
visual modalities in a zero-shot scenario. Figure 1 provides
an illustration of the projections and similarity notions in-
duced by this process.

4.1. Weighted similarity formulation

We first explore a simple convex combination of the sim-
ilarities in the visual and semantic domains, as follows:

Fβ(x, zy;W ) = β⟨⟨x,Wzy⟩⟩+ (1− β)⟨⟨WTx, zy⟩⟩, (4)

with ⟨⟨·, ·⟩⟩ denoting the cosine similarity operator, i.e. dot-
product between L2-normalized vectors, and 0 ≤ β ≤ 1
is a trade-off parameter. Note that, although the projec-
tion by W is a linear operation, the similarity function is
not since the normalization is over Wzy and WTx, respec-
tively. Eq. (4) defines a similarity score which is a combi-
nation of two measures defined independently on the visual
and semantic spaces, with their relative strength balanced
by β. From Eq. (4) we define the following softmax poste-
rior:

p(y|x) = exp (τFβ(x, zy;W ))∑
y′ exp (τFβ(x, zy′ ;W ))

, (5)

with τ a temperature scaling parameter [13]. Instead of
treating τ as a hyperparameter to be tuned, we learn it from
data together with the projection matrix W . The rationale
behind this choice is to improve convergence by allowing
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the model to expand the range of the exponential arguments
beyond the [−1,+1] interval induced by the cosine metric
[35]. From Eq. (5) we can derive the following loss:

LFβ
(W ;Dtr) =

∑
x,y

ℓFβ
(x, y;W ) =

∑
x,y

− log p(y|x)

=
∑
x,y

−τFβ(x, zy;W ) + LSE
y′

(τFβ(x, zy′ ;W )) (6)

with LSE the log-sum-exp operator and the sums run over
training pairs (x, y) ∈ Dtr. Predictions are performed as in
Eq. (1) but using Fβ instead of F .

4.2. Weighted loss formulation

In the previous section we defined a scoring function
as a weighted combination of the similarities computed
on the visual and semantic spaces (Eq. (4)) and used it to
model a conditional density over the set of known categories
(Eq. (5)) in a softmax manner. Instead, we could model
a conditional distribution on each space independently and
aggregate them via an adequate pooling mechanism. Let us
begin by defining:

pX (y|x) = exp (µ⟨⟨x,Wzy⟩⟩)∑
y′ exp (µ⟨⟨x,Wzy′⟩⟩)

, (7)

pZ(y|x) =
exp

(
ν⟨⟨WTx, zy⟩⟩

)∑
y′ exp (ν⟨⟨WTx, zy′⟩⟩)

(8)

where X and Z denote the space used for similarity com-
putation and µ, ν ∈ R+ trainable scaling parameters. Let
us now consider as scoring function the maximum of the
posteriors given by Eq. (7)–(8), i.e.

G(x, y;W ) = max (pX (y|x), pZ(y|x)) . (9)

Following a similar reasoning as in the previous section, we
can define the following optimization objective1:

LG(W ;Dtr) = −
∑

(x,y)∈Dtr

logG(x, y;W ). (10)

However, in doing so, we have lost the ability to trade-off
the relative importance of the visual and semantic spaces as
we did in Eq. (4). We can recover such flexibility by noting
that, for any 0 ≤ β ≤ 1, the following upper bound holds2:

− logG ≤ − [β log pX + (1− β) log pZ ] . (11)

1Eq. (6) follows from adopting maximum-likelihood criteria after
Eq. (5). Since Eq. (9) is not a valid pdf, it does not allows for the same
formal derivation. However, the loss given by Eq. (10) appears as a sensi-
ble choice.

2For any p, q ≥ 0 and 0 ≤ α ≤ 1 holds that max(p, q) ≥ pαq1−α.
Eq. (11) follows from applying logarithms on both sides and inverting the
inequality.

Therefore, instead of directly optimizing Eq. (10), we can
minimize the following upper bound on LG:

LG,β(W ;Dtr) =

− β
∑
x,y

log pX (y|x)− (1− β)
∑
x,y

log pZ(y|x). (12)

This loss can be seen as the convex combination of the
losses that would have been derived from pX and pZ by fol-
lowing the same reasoning that led to Eq. (6). For any 0 ≤
β ≤ 1 it holds also that LG(W ;Dtr) ≤ LG,β(W ;Dtr).

4.3. Relation between LFβ
and LG,β

Let us consider µ = ν = τ in Eq. (7)–(8). Using the def-
inition of Fβ given by Eq. (4) we can write the per-sample
losses in Eq. (6) and (12) as follows:

ℓFβ
= −τFβ + LSE(βτF1 + (1− β)τF0)

ℓG,β = −τFβ + βLSE(τF1) + (1− β)LSE(τF0).

From the above, it can be seen that both objectives promote
that images and attributes of the same class are pulled to-
gether (Fβ), while those from different classes are pushed
away. The difference stem on the way the later is promoted.
If we think on LSE as an approximation to the maximum,
we see that while ℓFβ

penalizes the difference between Fβ

and the maximum among all classes, ℓG,β penalizes the dif-
ference between Fβ and the weighted average of the max-
ima on each space. Under the assumption of equal temper-
atures and from the convexity of the LSE function we have
ℓFβ

≤ ℓG,β .

5. Experiments
We follow the protocol proposed in Xian et al. [40] in all

our experiments. Details are provided next.

Datasets. We report experiments on the following
datasets: Caltech UCSD Birds 200-2011 (CUB) [34], An-
imals with Attributes 1 and 2 (AWA1 & AWA2) [40], at-
tribute Pascal & Yahoo (APY) [9], SUN attributes (SUN)
[25] and Oxford flowers (FLO) [23]. CUB is a fine-
grained datasets containing 11788 images of 200 different
bird species each of which is annotated with 312 attributes.
AWA1 contains 30475 images of 50 animal species de-
scribed by 85-dimensional attribute vectors. AWA2 is an
updated version of the same dataset consisting of 37322 im-
ages from the same classes. We decided to include both
AWA1 and AWA2 in order to compare with other works
that report results on either of both. APY is a coarse grained
dataset depicting 32 classes described by 64 attributes. SUN
is a fine-grained dataset containing 14340 images from 717
different visual scenes. Each scene is annotated with 102
different attributes. Finally, FLO is a fine-grained dataset
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Table 1. Statistics of the datasets used in our experiments.
Number of ... SUN FLO CUB AWA2 AWA1 APY

seen categories 645 82 150 40 40 20
unseen categories 72 20 50 10 10 12
attributes 102 1024 312 85 85 64
samples 14340 8189 11788 37322 30475 15339
training samples 10320 5631 7057 23527 19832 5932
test seen samples 2580 1403 1764 5882 4958 1483
test unseen samples 1440 1155 2967 7913 5685 7924
granularity fine fine fine coarse coarse coarse

with 8189 images of 102 types of flowers. Attribute vectors
in this case correspond to 1024 dimensional embeddings
computed from a set of fine-grained visual descriptions for
each class [27]. Dataset statistics are shown in Table 1.

Evaluation Metric Zero-shot performance is measured
by the average per-class top-1 accuracy (Top-1 Acc.), i.e.
by computing the average top-1 accuracy per-class and then
averaging results across classes. Evaluation on the ZSC set-
ting is performed on Yts while for GZSC it is performed on
Ytr ∪ Yts. We follow [40] and report Top-1 Acc. for the
train (tr) and test (ts) sets as well as their harmonic mean
(H).

Experimental Setup We follow the experimental setup
proposed in Xian et al. We use the same class splits (“ps”
in [40]) as well as the same visual and attribute represen-
tation released by the authors. They correspond to fea-
tures extracted by a ResNet101 model pretrained on Ima-
geNet and per-class real valued attribute vectors. In the case
of FLO, we use the features and class split proposed by
[27]. Hyperparameter tuning is performed independently
on each dataset by training different models on three dif-
ferent subsets of the “trainval” partition and selecting the
value that maximizes the average top-1 accuracy across the
different splits. All our models were implemented in py-
torch [24]. To train our models we use SGD with momen-
tum and an exponential learning rate decay with a factor
of 0.9. We use a batch size of 64 and a learning rate of
10−2 in all our experiments. We validate the number of
epochs (up to a max. of 100) and parameter β in Eq. (4)
and (12). Temperature scaling τ , µ and ν in Eq. (5), (7)
and (8) are learned along with W . As a pre-processing
step, we apply a L2-normalization on both the visual and
semantic representations. No further transformations of
the inputs or outputs are applied. The code is available at
http://github.com/jadrs/zsl.

5.1. Effect of the trade-off parameter β

In this section we evaluate the effect of the parameter β
on the models outlined in Sec. 4.1 and Sec. 4.2. Fig. 2 shows
the average Top-1 validation accuracy over the validation
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Figure 2. Average top-1 accuracy on the validation set of the
AWA1 (left) and SUN datasets (right) as a function of the trade-
off parameter β. Errorbars at ±1 standard deviation are shown.
WSF and WL denote weighted similarity and loss formulations,
respectively.

splits for the SUN and AWA1 datasets as a function of the
trade-off parameter β. WS denotes the weighted similarity
formulation relying on the scoring function Fβ (Eq. (4)) and
loss function LFβ

(Eq. (6)). WL to the weighted loss for-
mulation with scoring function G (Eq. (9)) and loss LG,β

(Eq. (12)). We report the mean Top-1 Acc. over the vali-
dation splits and error bars at ±1 standard deviation. From
the figure, it can be seen that different values of β result
in different performance metrics. For WSF, setting β = 0
(β = 1) is equivalent to using similarity scores defined
only over the semantic (visual) space. Different choices
for this parameter offer different trade-offs among these two
regimes. For the SUN dataset, if we consider the WS for-
mulation we observe a peak between β = 0.6 and 0.7, i.e.
at a slightly higher weight to the visual side. For WL, the
interpretation is more subtle because of the mismatch be-
tween the loss (LG,β) and scoring function (G) definitions.
Nevertheless, we observe a similar trend w.r.t. β. In the
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Table 2. Values of β found by cross validation.
SUN FLO CUB AWA2 AWA1 APY
0.7 0.8 0.6 0.5 0.5 0.8

case of the AWA1 dataset, WS and WL behave similarly for
different values of the parameter. Besides the higher vari-
ance in the results, we observe a peak around β = 0.5. We
also observe a higher degradation of performance for higher
values of β. This is interesting since it reveals that, beyond
the chosen formulation, the optimal balance between visual
and semantic information is characteristic of each partic-
ular dataset (and the chosen representation spaces). Ta-
ble 2 show the values of the parameter β chosen for each
dataset using the validation procedure outlined above. Inter-
estingly, we observe a preference towards the visual term.
This is consistent with the observations made by [44, 14]
regarding the better performance observed by models based
on projections onto the visual space.

5.2. Zero-Shot Classification Experiments

In this section we compare our approach with others
methods from the literature. We consider the following
groups of methods: 1) those based on simple bilinear forms
as the one considered in this paper, i.e. DeViSE [10], SJE
[3], ESZSL [28]and ALE [2]; 2) methods based on more
elaborated formulations, as GFZSL [33], PSR [4], ZSKL3

[43], and MLSE [8]; and 3) models for which class embed-
dings are assumed to be available during training, i.e. condi-
tional feature generation network of of [41] (FGN+softmax)
and the contrastive learning approach of [15] (TCN). Al-
though this deviates from the base ZSL setting, we decided
to include them in our experiments since they can be used
transparently in conjunction with a wide range of models.
For a fairer comparison, our results are based on our own
implementation of the feature generation network (FGN) of
[41] (marked as “rep.” in the table). We do not include in
the evaluation some recent works (e.g. [21, 5, 20, 31, 42]) as
they either use different set of features than those proposed
by Xian et al. or do not conform to the same training and
evaluation procedure. Evaluation of the impact of different
combinations of visual and semantic representations as well
as the learning of better encoding mechanisms is beyond the
scope of this paper. Besides WS and WL, we also include
a baseline model consisting of a simple bilinear form over
L2-normalized signatures and a temperature Eq. (6). We
denote this system as “bilinear”. Table 3 shows the average
per-class top-1 accuracy for these methods. Those marked
by an asterisk (⋆) are reproduced from [40].

Compared to the first group of methods we observe that,
while the bilinear baseline achieves a comparable classi-
fication performance, both WS and WL exhibit a signifi-

3“Gaussian-Ort” kernel in [43].

Table 3. ZSC performance as the average per-class top-1 accuracy
over unseen test classes as proposed by Xian et al. Results marked
with a star (⋆) are reproduced from [40, 41].

Method SUN FLO CUB AWA2 AWA1 APY
DeViSE⋆ 56.5 45.9 52.0 59.7 54.2 39.8
SJE⋆ 53.7 53.4 53.9 61.9 65.6 32.9
ESZSL⋆ 54.5 51.0 53.9 58.6 58.2 38.3
ALE⋆ 58.1 48.5 54.9 62.5 59.9 39.8
GFZSL⋆ 60.6 - 49.3 63.8 68.3 38.4
PSR 61.4 - 56.0 63.8 - 38.4
ZSKL 61.7 - 51.7 70.5 70.1 45.3
MLSE 62.8 - 64.2 67.8 - 46.2
TCN 61.5 - 59.5 71.2 70.3 38.9
FGN+softmax⋆ 60.8 67.2 57.3 - 68.2 -
FGN+softmax (rep.) 60.8 56.7 59.5 65.8 70.1 35.1
Ours (bilinear) 57.6 50.5 43.5 64.7 63.4 38.4
Ours (WS) 63.9 62.4 57.0 64.1 63.9 40.5
Ours (WL) 63.1 62.3 54.4 65.1 67.7 39.0
Ours (FGN+bilinear) 64.2 66.2 60.6 70.7 71.8 43.1
Ours (FGN+WS) 62.8 64.9 62.5 66.0 65.7 38.2
Ours (FGN+WL) 64.4 63.6 62.3 69.1 69.2 39.9

cant improvement. If we consider more complex models
as those from the second group, WS and WL improve over
GFZSL and PSR for all dataset but AWA1. Compared to
MLSE, we improve only on the sun dataset but remain be-
hind on the others. Compared to ZSKL, our models show
improvements only for the fine grained datasets (SUN and
CUB). Notwithstanding the performance gap, the proposed
approach is based on a much simpler formulation. For in-
stance, PSR requires different architectures designs for dif-
ferent datasets while MLSE relies on an rather involved op-
timization procedure.

Finally, we follow [41] and train a conditional feature
generator based on the attribute and visual descriptors of
seen classes. We then generate 300 synthetic samples for
each class from the test set and use them to train a softmax
classifier on them. Table 3 show the results reported in [41]
as well as our own implementation. We were able to re-
produce the results by Xian et al. (and in some cases with
a slight improvement) for all datasets but FLO, where we
observe a large gap in performance. Results obtained with
the softmax model on synthetic features perform on par with
the models from the second group. If we now train our mod-
els using features from the training and synthetic test sets,
we observe a clear improvement in all cases. Remarkably,
the largest improvement is observed for the simple bilinear
baseline, specially on the fine-grained problems. WL ap-
pears as to have an edge over WS but the difference is not
conclusive. Note however that in this scenario we assume
full knowledge of the output attributes. In case where this
information is not available at training time, WS and WL
offer a good trade-off between model simplicity and over-
all classification performance. Furthermore, the insights
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gained by exploring bilinear symmetries can be useful in
other application domains e.g. multimodal problems, met-
ric learning, etc.

5.3. Generalized Zero-Shot Classification Experi-
ments

In this section we analyze results obtained under the gen-
eralized setting. In Table 4 we show results for the same
datasets as in the previous section as well as for the same
groups of methods. The only difference is that, for the
FGN+X4 models, now we generate 2000 samples per class
instead of 300 as we did before. Also in this case, we
were able to reproduce the results reported Xian et al. on
all datasets but FLO, where we still observe a large per-
formance gap. Again, we believe this gap could be made
smaller by a more aggressive parameter tuning but such
evaluation is beyond the scope of our work. TCN improves
over FGN+softmax* on all dataset but SUN. Overall, the
performance observed by methods from this group exhibit
a large improvement compared to those from the first and
second, showing the importance of having access to some
information of the target classes during training.

From the table, we observe that our models (bilinear, WS
and WL) perform on par or better than the models from the
first and second group on all datasets except APY. On this
dataset both WS and WL are behind the bilinear baseline
which in turn show a performance which sits between the
models of the first and second group. WS and WL show
similar performance overall, improving also over the bilin-
ear baseline. Combined with generated test features, our
models show a large performance boost, improving on more
than 10 absolute points in the harmonic mean over the mod-
els trained on seen samples alone. As noted in [41], is due to
a reductions of the number of samples from the test (unseen)
categories that are missclassified as belonging to any of the
seen classes. This is supported by the large improvement
observed in the “ts” column for models FGN-x compared
to their simpler counterpart.

6. Conclusions
In this work we developed around the idea that sim-

ple zero-shot formulations based on bilinear compatibility
functions can be seen as a two-step process consisting on a
projection followed by a similarity computation on the tar-
get space. This process can be formulated from the visual
to the semantic space and vice versa. We explored this sym-
metry by proposing two different formulations, namely: i)
by redefining the similarity metric as a weighted combina-
tion of the similarities on each space, and ii) by deriving
an upper bound to a suitable loss function that can be ex-
pressed as a combination of the losses acting on each space.

4We denote FGN-bilinear, FGN-WS or FGN-WL generically as FGN-
X.

Experiments on different dataset both in the standard and
generalized settings showed promising results. Due to the
widespread use of learnable cosine metrics in the literature,
we believe this work can be found useful in other applica-
tion domains.
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