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Abstract

We propose a method to improve DNN robustness
against unseen noisy corruptions, such as Gaussian noise,
Shot Noise, Impulse Noise, Speckle noise with different lev-
els of severity by leveraging ensemble technique through a
consensus based prediction method using self-supervised
learning at inference time. We also propose to enhance
the model training by considering other aspects of the is-
sue i.e. noise in data and better representation learning
which shows even better generalization performance with
the consensus based prediction strategy. We report results
of each noisy corruption on the standard CIFARIO-C and
ImageNet-C benchmark which shows significant boost in
performance over previous methods. We also introduce re-
sults for MNIST-C and Tinylmagenet-C to show usefulness
of our method across datasets of different complexities to
provide robustness against unseen noise. We show results
with different architectures to validate our method against
other baseline methods, and also conduct experiments to
show the usefulness of each part of our method.

1. Introduction

Generalization performance of Deep Neural Networks
(DNNps) is a very important objective, as the networks are
susceptible to fail against noise at test time. In recent years,
researchers have shown many examples of this kind [10],
which raises serious questions about deployment of the
seemingly good DNN models in the wild. Although these
issues were shown with known types of noise, this problem
is actually more challenging because it is difficult to predict
what noise will occur at test time.

Recent years have seen a few different efforts in develop-
ing models robust to unseen noise. Adversarial joint train-
ing [11] was one of the early efforts that focused on improv-
ing model robustness by enhancing model generalizability.
In particular, this method attempted to find a robust model
against noise by adversarial training with a supervised head
attached to the model. Though this method performed bet-
ter than a naturally trained model, there still existed a big
gap in performance between test accuracy on clean data and
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noisy data. More recently, [28] proposed a test-time train-
ing method to improve model generalization which showed
performance boost over [11] on noisy data. A more recent
work [1] further showed improvement over such test-time
training [28]. Augmentation-based methods, on the other
hand [2, 7, 12, 25] attempt to address model generalization
by carefully augmenting the training dataset through dif-
ferent means. However, augmentation methods require a
significant increase in the size of the training dataset, and
are also known to fail when the test-time distribution dif-
fers from the distribution of augmented training data [18].
In this work, we seek to propose a method that can address
model robustness to unseen noise by only training on clean
data (no additional training data including augmentations).

To this end, we take advantage of ensembled infer-
ence through a novel test-time consensus-based prediction
method that allows for better generalization at inference.
We show that such an approach shows excellent perfor-
mance against unseen noise, when compared with afore-
mentioned state-of-the-art baselines, especially when no
additional data beyond the clean training data is used for
training. Building on [28], this method leverages a self-
supervision pretext task at test-time to iteratively update the
model and predict the class label as a majority vote over
multiple predictions of updated models at inference. We
call this Test-Time Consensus Prediction (TTCP). In order
to further improve model performance against unseen noise,
we also propose an extended framework (TTCP++), where
a training phase is introduced to: (i) retrieve the latent data
manifold from clean data using the idea of quantized la-
tents [29]; and (ii) improve the representations learned by
the backbone network used in TTCP via knowledge dis-
tillation from a pre-trained teacher network. When quan-
tized latents are used, although the reconstructed images are
less noisy, due to the discrete nature of the latent space, the
method fails to preserve local texture details during image
reconstruction. We leverage knowledge distillation from a
pre-trained teacher to help the backbone network learn bet-
ter representations from such reconstructed images. Our re-
sults on multiple benchmark datasets show significant im-
provement over existing methods, corroborating our claim.
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Our key contributions are as follows:

e We propose a novel test-time consensus prediction
(TTCP) strategy to achieve better model robustness
through improved generalization performance against
unseen noise.

* We propose an extended framework, TTCP++, to ex-
ploit quantized latents and knowledge distillation in a
training phase, to boost the performance of the pro-
posed TTCP method on unseen noise.

¢ Our results on CIFAR10-C and ImageNet-C are a sig-
nificant improvement over previous methods based on
improved training. We also studied our method on
MNIST-C and TinyImagenet-C datasets, which are the
first results in this context, and report strong results
here too.

* We perform consistently against all kinds of noise
on CIFAR10-C and ImageNet-C datasets compared to
augmentation-based methods, even without the use of
any augmentation and training only on clean data.

* Detailed ablation studies are presented showing the
usefulness of each component of our overall TTCP++
framework.

2. Related Work

We now discuss earlier efforts from different related per-
spectives.

Robustness against Unseen Noise and Other Corrup-
tions: Over the last 2-3 years, there has been an increased
interest to identify and study the issue of the inability of
normally trained DNN models when performing on unseen
noisy images.Geirhos et al [7] identified that CNNs trained
on the standard ImageNet dataset focuses more on textures
rather than shape which is fundamentally different from hu-
man behavior. They proposed a stylized version of Im-
ageNet and proved that models trained with this dataset
learn shape-based representation better, and are more ro-
bust against unseen image distortions. Hendrycks et al
[10] looked at how models can handle common real-world
image corruptions (such as fog, blur, and JPEG compres-
sion) as well as noises (Gaussian, shot, impulse, speckle)
and propose a comprehensive set of distortions to evaluate
real-world robustness. Cubuk et al proposed AutoAugment
[2], a reinforcement learning-based method which under-
stands the types of augmentations required for model train-
ing using policy gradients, to perform better on corrupted
data. Hendrycks et al [12] also proposed AugMix, an image
augmentation method derived from AutoAugment, which
showed that training a DNN model using diverse set of aug-
mentations improves robustness significantly. These aug-
mentations are constructed by taking a linear combination
of different compositional transformations of the original
image. Rusak et al [25] proposed a method to generate
maximally confusing noise from standard Gaussian noise

and train a model to accordingly adapt with the generated
noise to work on unseen corruptions. Another recent work
[27] showed how covariate shift statistics of the corrupted
images can be leveraged, by replacing the training set statis-
tics, to improve robustness substantially. Patch Gaussian
[17] is another simple augmentation scheme that adds noise
to randomly selected patches in an input image which helps
to overcome the trade-off between robustness and accu-
racy. Though these augmentation methods make models ro-
bust against corruptions, it has been recently demonstrated
[18] that model robustness for augmentation-based meth-
ods drastically falls when test-time distribution is dissimilar
to augmented data. In this work, we propose a method to
address unseen noise when only training on clean data.

Improving Generalization at Inference: Sun et al [28]
recently proposed a training strategy for better generaliza-
tion during inference time. This method helps the model to
adapt to the test distribution by leveraging a self-supervised
rotation pretext task, and was shown to produce promising
results against unseen corruptions on CIFAR10-C. A more
recent paper [1] achieved slightly improved results over test
time training [28]. We improve upon these methods, as de-
scribed in Sec 3, and also compare against them in all our
experimental studies. Also note that our method is designed
to work for a single data point at test time where data from
different unknown distributions are expected to arrive arbi-
trarily. This makes our work different from batch-statistics
based methods such as a recently proposed method [32].
Another recent paper leveraged test-time ensemble of dif-
ferent transformations to augment the dataset and averaged
the output to show performance improvement for adversar-
ial robustness [22]; their objective (adversarial robustness)
and method (no model update at test time) is very differnt
from our method.

Self-Supervision for Representation Learning: Differ-
ent self-supervised methods have been proposed to help
learn better representations and boost classification accu-
racy. Tasks such as predicting the relative position of image
patches [4], predicting rotation angle [8], recovering color
channels [38], solving jigsaw puzzle games [20], and dis-
criminating images created from distortion [5] have been
extensively used in recent years. Another class of methods
reconstruct images from corrupted versions or just part of it
such as denoising autoencoders [30], image inpainting [21],
and split-brain autoencoder [39]. Contrastive learning is an-
other paradigm where representations are learned in such a
way that similar data points are brought closer and dissimi-
lar data points are pushed further away [33]. Predicting nat-
ural ordering or topology of data has also leveraged as pre-
text tasks in video-based [34, 19, 6], graph based [14, 36],
and text-based [23, 3] self-supervised learning. Hendrycks
et al [11] were the first to show that self-supervision can be
useful for model robustness against adversarial examples,

1840



R; = Inference time auxiliary task
prediction at i-th step

Auxiliary
Self-supervised task
Classification | IE—Y> Rl Rz R3 R,

P fr Block
Image

Backbone
Network

Predictions

Final
Prediction

)
" 4 Maxi
k Main ':aaslir(‘ ° / Votlai:lg::‘z%
i i selected C;
Classification m Cl CZ C3 Cn

Block
C; = Class prediction
at i-th step
/: selected for voting
x: not selected for voting

SON {Ad210D)
S{N 3D/
»}

SON {Ad910D)

Update Backbone

Network at every step
Figure 1. Proposed Test-Time Consensus Prediction (TTCP)
method

label corruption and common input corruption by helping
learn distribution shifts on CIFAR10-C. We build on their
success by proposing a test-time strategy that leverages self-
supervision and ensembling to address this important chal-
lenge.

In addition to the aforementioned perspectives, we use
the idea of quantized latents [29] and knowledge distilla-
tion (KD) [13] in our extended framework, TTCP++, which
we describe in the next section. While KD methods were
initially proposed for model compression [24], more recent
work [26] have shown the effectiveness of KD in efficient
learning with label noise and class imbalance, which we
leverage in this work.

3. Proposed Methodology

We now introduce our Test-Time Consensus Prediction
method (TTCP) towards achieving improved robustness
against unseen noise. We then present the extension of our
method to TTCP++ which improves the training procedure
to further get improvements on noisy datasets. We note that
our method involves only training on clean data to achieve
the objective of better generalization on corrupted data.

3.1. Test-Time Consensus Prediction (TTCP)

Given training data {(z;,v;), = 1,--- ,n} drawn i.i.d.
from a distribution P and model parameters 6, we consider
the classification task loss function £,,(z;,v;,0) as the
main task. We leverage the fact that self-supervised learn-
ing empowers model training by improving the intermedi-
ate representation with better semantic meaning, which may
be beneficial to a downstream task. The labels for a self-
supervised task can be generated for free, and a correspond-
ing supervised loss is computed based on the task. We refer
to the self-supervised task as auxiliary task which yields the
loss Lss (i, yi,0).

Now, consider a (Y-shaped) DNN represented as a back-
bone network with two task-specific heads — one for the
main classification task and the other for the auxiliary task.
Let the model parameters for the backbone network be 6.,
the main task head be 6,,, and the auxiliary task head be 6y,
ie. 0 = (0e,0,) and 6 = (6.,0,). This DNN is trained
by minimizing the loss terms for both tasks, /,,, and l5,. As-

Algorithm 1: Test-Time Consensus Prediction

Input: Test sample x, Self-supervision head f
parametrized by 65, Classification head g
parametrized by 6,,, Pretrained backbone network
e parametrized by 6., Ground truth auxiliary task
output in i™ step R}, Operator ¢(-) which
converts a softmax output to a one-hot vector,
Number of classes for main classification task L

Output: Predicted class label for test sample =

Initialize vote counter. f = f, etrained ; € = Epretrained;

fori=1,2,..., M do

xss=T'(x); (Random auxiliary transformation)

Compute auxiliary task prediction R; = f(e(xss))

Compute main classification task prediction §; =
9(e(w.s)) A

6 Compute classwise vote V; = I[R; = R;] ¢(J;)

7 Update 6.

8

9

M oBR W N =

end

Predict class label arg max(Zﬁ L(Va))
JEL

suming the model parameters 0, and 0,,, are already trained
using a prior training procedure, following [28], we focus
our efforts on the test-time (or inference stage). Given a
test data point x forward-propagated through the abovemen-
tioned DNN, a gradient step is taken with the objective of
minimizing the auxiliary task loss on z i.e.

rr;in Lss(x,0c,0,) (D

For such a gradient step which updates the shared back-
bone network parameters 67, the model predicts a class la-
bel (main task) through the parameters (6%, 6,,).

Leverage the capabilities of self-supervision and shared
parameter updation at test-time, an auxiliary transforma-
tion (e.g. rotation, which defines a corresponding self-
supervised task — rotation prediction in this case) is applied
to = and passed through the network. At the ™ such test-
time step, we observe both the prediction of the auxiliary
task as well as the main task before the gradient step is taken
to update the shared backbone parameters. Let R denoted
the true label for the auxiliary task in the i step and R;
denote the predicted auxiliary task output in the same step.
This step is performed a pre-defined number of times, each
time with a different auxiliary transformation applied to x
under the same self-supervised task (different rotation an-
gle, for example).

At the completion of these steps, we define our final out-
put of test-time consensus prediction as:

argmax(d _T[R; = R;] ¢(§:)) )

jEL ;
where ¢(.) returns a one-hot vector given a softmax output
(with the winning position denoted by a 1 and rest zeros), 1
is the indicator function, L is the number of classes for the
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main classification task, ¢ is the predicted softmax output
of the main classification task, and C; = argmax (¢;). In
jeL
words, Eqn 2 states that our final output is th?: consensus of
predictions on the main classification output for every trans-
formed input where the auxiliary task head predicts the cor-
rect expected output. We term this complete strategy “Test-
Time Consensus Prediction (TTCP)”. The TTCP method is
summarized in Fig 1, and described in Algorithm 1. We
note that similar to [28], only a few steps are required at
test-time thereby resulting in minimal computational over-
head (described further in Sec 4).

3.2. Beyond Test-Time Consensus Prediction
(TTCP++)

While TTCP focuses only on test-time, we observe that
improvements in obtaining a more robust representation of
input data can further help TTCP. To this end, we include
a training phase procedure for handling unknown noise at
test-time. In particular, we propose a two-staged approach:
(i) retrieve the latent data manifold from given clean train-
ing data; and (ii) improve the feature representations of
the backbone network using knowledge distillation. We
now describe each of these steps that together comprise
TTCP++.

Retrieving the latent data manifold: Removing noise
from data has long been an important topic of research. It is
generally hypothesized that a data point x and its noisy ver-
sion ,.ise are arbitrarily close on the true data manifold.
One of the well-known approaches to retrieve this true data
manifold is to use a denoising autoencoder (DA) [31]. Such
an approach attempts to remove noise by generating clean
images from its noisy version, and works if the type of noise
is known beforehand. However, such an approach does not
work well (shown in our ablation studies) when handling
unknown or unseen noise, given only clean data at train-
ing time. We hence instead propose to leverage the idea
of quantized latents to mitigate noise in data. Discretiza-
tion inherently makes two different but nearby points from
the given data distribution map to the same point or bring
them closer in the latent data manifold. We follow a vector
quantization-based approach [29] to achieve this objective.

Our model consists of a standard convolutional encoder-
decoder architecture with an intermediate vector quantiza-
tion (VQ) layer which takes care of building a discrete la-
tent space. More specifically, the encoder network, Z., is a
fully convolutional neural network which maps input im-
ages to an output feature map of size w X h x d. This
provides w x h d-dimensional vectors, each of which is
mapped to one latent code from a set of k learned latent
codes {e,---,ex} € R through a mapping (VQ) layer.
This is achieved by minimizing the Ly-distance between
each of the d-dimensional vectors (obtained as output of Z.)
with the latent codes ¢;s, i.e.

Ze(p,q,:) = ej, where j = arg _min || Zc(p,q,:)—eill2
ie{l,-- ,k}

o 3)
where Z, denotes Z,(x) for a given input z, p and q are in-
dices over w X h d-dimensional vectors. The output of the
encoder hence is Z.(z), aw x h x d feature map, where the
depth vector at each pixel is replaced by the nearest latent
code vector. Z, () is then provided as input to a fully con-
volutional decoder, Z;, which attempts to reconstruct the
input image.

Due to the discrete bottleneck layer in between, the train-
ing of this model is not straightforward. The training objec-
tive includes the reconstruction loss (mean squared error)
and two VQ-based loss terms which guarantee that encoder
outputs stay close to the embedding vector entries they are
matched to, as below:

arg min  logp(#Z. () + ||Z.(2) = Zo()]?

Zeyzdy{ei}
1 Ze(2) = Ze(@)|P @

where - denotes the stop gradient operation. A vector under
stop gradient operation corresponds to normal forward pass,
but no updation during backpropagation. We follow [29] for
the rest of the training procedure.

Importantly, we use clean training data to learn vector
quantized latents and show that the trained model works
well with unseen noise at test-time. We find that this model
is capable of removing local textures (including noise), but
keeps the global content of an image while reconstructing
the image. (We note that this step is offline, and can be
done prior to the training of the backbone network used in
TTCP.) We present sample visualizations in Fig. 3 for dif-
ferent noises on images from CIFAR10-C dataset to show
the potential of this method. More such visualizations from
Tiny-ImageNet-C and MNIST-C datasets are presented in
the Appendix.

Learning robust representations: While the above step
captures global details of the original image, it also misses
texture details of original image (as shown in Fig 3). Due
to this lossy nature of the reconstructed images, we noticed
that the models, trained with these images — while handling
unseen noise — report a drop in clean test accuracy (~9—
10%) compared to a model trained on normal data.

To address this issue, we consider a pretrained (on clean
data) “Teacher Network”. Our objective herein is to lever-
age the guidance of the teacher network to help the student
model in learning refined representations from images only
with the global content obtained as output of the quantized
latent (VQ) step above. The said purpose is achieved by
incorporating the following objective:

Lrp = ||logit(T(x)) — 10git(S(Zrecons))|l2 - (5)

where T'(-) denotes the pretrained teacher network, S(-) de-
notes our backbone network from TTCP (student network
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Figure 2. Overall framework of TTCP++

in this context), logit(-) represents the logits of the corre-
sponding network, and Z,...ns denotes the reconstructed
image obtained from the previous step when z is provided
as input. The student network architecture here follows a
Y-shape structure (similar to TTCP, for later use of TTCP at
test-time) and contains a self-supervision head and a clas-
sification head for auxiliary task prediction and classifica-
tion respectively. Both these heads follow a shared back-
bone network. Altogether, the student network is trained
with standard classification loss (cross-entropy loss), self-
supervision loss (auxiliary prediction loss) and logit simi-
larity loss (minimizing the Lo distance of logits generated
by teacher and student), as given below:

L=Lcg+ Lss+ Lxp (6)

where Lo denotes cross entropy loss and L gg denotes self
supervision loss, as before in Sec 3.1.

Inference/Test-time: After the training phase, during in-
ference, we input the test data through the VQ module to
obtain the reconstructed image. This is then input to the
TTCP module to obtain the final prediction as in Sec 3.1.
We name this extension TTCP++ when we consider vec-
tor quantization and a pretrained teacher network for model
training along with TTCP during inference time. Adding
this training phase helps improve clean accuracy by ~3%.
Additionally, with this training phase, TTCP during infer-
ence phase also achieves improvements on clean test accu-
racy (~3.5%) as well as improvements on unseen noisy test
data (ranging from 6-10% across different noise). Our re-
sults are discussed in detail in Sec 4, and ablation studies of
individual components and other combinations are studied
in Sec 5.

4. Experiments and Results

We conducted a comprehensive suite of experiments and
ablation studies, which we report in this section and in Sec
5. We report results with our method on CIFAR10-C, Tiny-
ImageNet-C, ImageNet-C and MNIST-C datasets [10], go-
ing beyond earlier related methods — joint training (JT) [11],
test-time training (TTT) [28] and SSDN [1] — which fo-
cused on CIFAR10-C. Our results with Tiny-Imagenet-C
and MNIST-C datasets are the first effort in this direction to
the best of our knowledge. In order to study our method’s
efficacy on improving model robustness against different
kinds of unseen noise, we compare our method’s perfor-
mance with other baseline methods —JT [11], TTT [28] and
SSDN [1] — on 4 kinds of noise from CIFAR10-C, Tiny-
ImageNet-C and MNIST-C datasets: Gaussian Noise, Shot
Noise, Impulse Noise and Speckle Noise with 5 increasing
levels of severity in each noise category. Our methods, both
TTCP and TTCP++, show promising improvement in per-
formance over baseline methods against all these kinds of
noise across the datasets. We follow [10] in defining noise
as corruptions arising due to Gaussian, shot, impulse and
speckle, rather than those caused due to weather and other
variations. We however show results of our method on other

corruptions too in the Appendix.
Architecture Details of Backbone Network: For fair

comparison, we used the same backbone architecture used
in TTT [28] and SSDN [1] — ResNet-26 [9] — to perform
our experiments on CIFAR10-C. For completeness, we also
studied the use of WRN 40-2 [37] since JT [11] reported re-
sults with WRN 40-2. We use the ResNet-18 backbone net-
work for our studies on ImageNet-C and report results on
Severity Level 5 following [28]. We also introduce results
for MNIST-C and TinylmageNet-C with LeNet [16] and
ResNet-26 [9] backbone architectures respectively. More
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Baselines OURS Baselines OURS
Method Natural| JT [11] TTT [28] SSDN[1] | TTCP [ TTCP++| Method Natural| JT [11] TTT [28] SSDN [1] | TTCP [ TTCP++
SL 1 78.30 | 79.60 80.90 NA 83.18 | 83.27 SL 1 83.00 | 83.10 83.50 NA 84.71 | 84.79
SL2 68.30 | 69.00 71.20 NA 78.44 | 81.51 SL2 75.70 | 76.60 77.00 NA 81.86 | 82.92
SL3 57.80 | 59.80 62.80 NA 66.88 | 79.32 SL3 69.30 | 70.10 71.40 NA 7429 | 81.06
SL 4 53.60 | 55.00 58.50 NA 61.81 | 77.76 SL 4 55.20 | 57.80 60.20 NA 64.09 | 77.38
SL5 49.50 | 50.60 54.40 53.00 56.01 | 72.21 SL5 43.90 | 46.60 50.00 51.00 54.17 | 67.14
Avg 61.50 | 62.80 65.56 NA 69.26 | 78.91 Avg 65.42 | 66.84 68.42 NA 71.82 | 78.66

Table 1. Results with Gaussian noise (SL = Severity Level) Table 2. Results with Impulse noise (SL = Severity Level)

Baselines OURS Baselines OURS
Method Natural| JT [11] TTT [28] SSDN [1] | TTCP [ TTCP++| Method Natural| JT [11] TTT [28] SSDN [1] | TTCP [ TTCP++
SL 1 82.10 | 83.40 84.20 NA 85.62 | 86.29 SL 1 82.85 83.14 83.21 NA 83.67 | 84.97
SL2 7740 | 77.40 79.30 NA 82.04 | 83.71 SL2 75.67 | 77.33 79.57 NA 80.05 | 83.64
SL3 64.90 | 65.60 68.40 NA 72.11 | 79.37 SL3 64.19 | 65.87 68.21 NA 70.02 | 80.07
SL 4 60.80 | 61.70 64.60 NA 67.38 | 75.16 SL 4 54.86 | 57.29 59.76 NA 66.41 | 78.36
SL5 52.80 | 54.70 58.20 56.00 61.03 | 66.29 SL 5 50.78 | 53.45 55.91 53.00 59.74 | 72.61
Avg 67.60 | 68.56 70.94 NA 73.64 | 78.16 Avg 65.67 | 67.42 69.33 NA 7198 | 79.93

Table 3. Results with Shot noise (SL = Severity Level)

Table 4. Results with Speckle noise (SL = Severity Level)

Accuracy results of different methods with Gaussian, Impulse, Shot and Speckle noises from CIFAR10-C dataset using ResNet-26 architecture

details of architectures for each dataset are in the Appendix.
Architecture Details of Vector Quantization and KD

module: We used an encoder network consisting of 2 con-
volutional layers followed by 2 residual blocks each of
which contains 2 convolutional layers. The decoder fol-
lows the same architecture in mirrored fashion, and the di-
mension d of the latent code vector is taken as 512. We
used group norm [35] in between convolutional layers in
both encoder and decoder modules to handle single sample
reconstruction required for TTCP at test-time. WRN 28-
10 [37] architecture is used as the teacher network for ex-
periments with CIFAR10-C and Tiny-ImageNet-C datasets,
while ResNet-18 and ResNet-152 networks are used as
teacher networks for MNIST-C and ImageNet-C datasets
respectively. All these pretrained models are available pub-
licly, which we leveraged directly in this work, thereby
causing no additional training cost for these models. More
details on the architecture is provided in the Appendix.

Performance Metrics: Following the benchmark on such
noise provided in [10], we report results of our method and
baselines on noisy test data for all the mentioned datasets.
In case of CIFAR10-C, TinyImageNet-C and MNIST-C, we
consider all severity levels (SL) 1 to 5 for Gaussian, Im-

pulse, Shot and Speckle noises as in [10]. For ImageNet-C,
we follow [28] and report resutls on SL 5 (most severe).

Results: Tables 1, 2, 3 and 4 report the results of our
methods, TTCP and TTCP++, as well as the baseline meth-
ods on CIFAR10-C data with Gaussian, impulse, shot and
speckle noise respectively. Similar results are shown for
Tiny-ImageNet-C [10] in Tables 5, 6, 7 and 8. Results on
ImageNet-C with noise of severity level 5 are shown in Ta-
ble 9. Results on MNIST-C are deferred to the Appendix
owing to space constraints. From these tables, it is evident
that our method shows significant improvement in perfor-
mance over previous methods. Importantly, we note that
apart from improved robustness against unseen noise, Table
10 shows that our method does not sacrifice on clean data
accuracy too. More results on clean accuracy are included
in the Appendix. Our experimental findings suggest that
TTCP (alone) excelled over TTT [28], showing its capabil-
ity to be an independent useful module for generalization
beyond this work. Our extended method TTCP++ further
improves robustness to unseen noise, making it relevant and
useful for deployment in in-the-wild settings where unseen

noise may be expected. )
TTCP vs TTT: Since TTCP and TTT [28] are test-time
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Baselines OURS Baselines OURS
Method Natural| JT [11] TTT [28] SSDNT[1] | TTCP [ TTCP++| Method Natural| JT [11] TTT [28] SSDN[1] | TTCP [ TTCP++
SL 1 55.61 NA 57.09 NA 58.76 | 60.74 SL 1 57.87 | NA 59.40 NA 59.83 | 61.72
SL2 4572 | NA 48.97 NA 50.66 | 56.38 SL2 4893 | NA 50.23 NA 51.97 | 57.27
SL 3 34.05 | NA 39.43 NA 43.92 | 49.71 SL 3 3649 | NA 41.76 NA 44.78 | 50.64
SL 4 26.81 | NA 30.52 NA 33.18 | 44.12 SL 4 28.34 | NA 32.67 NA 36.57 | 42.35
SL5 21.19 | NA 2491 NA 27.47 | 41.23 SL5 24.57 | NA 26.54 NA 29.32 | 39.18
Avg 36.67 | NA 40.18 NA 42.79 | 50.43 Avg 39.24 | NA 42.12 NA 44.49 | 50.23
Table 5. Results with Gaussian noise (SL = Severity Level) Table 6. Results with Impulse noise (SL = Severity Level)
Baselines OURS Baselines OURS
Method Natural| JT [11] TTT [28] SSDN[1] | TTCP [ TTCP++| Method Natural| JT [11] TTT [28] SSDN[1] | TTCP [ TTCP++
SL 1 58.61 | NA 60.41 NA 61.18 | 62.98 SL 1 5824 | NA 59.87 NA 60.05 | 62.37
SL2 50.02 | NA 52.85 NA 54.69 | 58.26 SL 2 48.79 | NA 50.39 NA 52.61 | 57.84
SL 3 39.15 | NA 42.97 NA 45.88 | 50.41 SL 3 39.26 | NA 41.28 NA 44.99 | 50.02
SL 4 30.11 | NA 33.81 NA 37.04 | 43.68 SL 4 28.03 | NA 31.26 NA 36.57 | 43.17
SL5 2539 | NA 27.98 NA 30.16 | 39.53 SL5 23.15 | NA 25.29 NA 29.68 | 39.21
Avg 40.65 | NA 43.60 NA 45.79 | 50.97 Avg 3949 | NA 41.62 NA 44.78 | 50.52

Table 7. Results with Shot noise (SL = Severity Level)

Table 8. Results with Speckle noise (SL = Severity Level)

Accuracy results of different methods with Gaussian, Impulse, Shot and Speckle noises on TinyImageNet-C dataset using ResNet-26 architecture

Noisy Noisy Noisy

Noisy

image TTT TTCP  [°S  TIT  TTee POV TIT TTCP page  TTT  TTCP
=2 R ) ) B ) ] B ) B ) [)  [Mehod [TTT__] TICP ]

- % - - Gauss | 65.56 | 69.26
s [ S| o [l mputse | 6502 | 7182
s R 7 ) B ) | e e
sevs i <) . <] N o< Clen | 9210 _| 9305

Gaussian Impulse ) Shot 7 Speckle
Figure 4. TTT vs TTCP results on improving generalization at inference time. (Left) Sample image with
different noise at different severity levels; (Right) Accuracy on complete test data.
Baselines OURS Baselines OURS

Method | Natural| JT[11] TTT[28] SSDN/[1] TTCP‘ TTCP++ Method AA[2] PG[17] AM[12]| TTCP++
Gauss 1.3 2.1 3.1 NA 3.8 4.5 Gaussian Noise 71.00 81.00 81.00 82.29
Impulse| 1.3 2.1 3.5 NA 4.1 4.7 Impulse Noise 74.00 76.00 86.00 81.86
Shot 2.0 3.1 4.5 NA 52 5.9 Shot Noise 72.00 74.00 85.00 81.62
Clean 68.9 69.1 69.0 NA 69.7 68.9 Speckle Nf)ise 68.00 71.00 78.00 83.42
Table 9. Accuracy results of different methods with Gaussian, Im- Brown Noise 8250 69.90 72.20 82.76

pulse, Shot noises and Clean images on ImageNet-C dataset using
ResNet-18 architecture (Results shown for SL 5 following [28])

[ Method [ Nat. [ JT[11] [ TTT[28] [ SSDN[1][ TTCP | TTCP++

l

[Clean [ 9110 [ 91.90 | 92.10 [ 90.00 | 93.05 [ 92.01

l

Table 10. Accuracy on clean CIFAR1O0 test data using ResNet-26

methods, we performed a comparative study between these
two explicitly for better understanding of our contribution.
Fig 4 (visualized with sample images) shows results of
the methods on CIFAR10-C, where a significant improve-
ment (~3-4% on average) is noticed for TTCP over TTT.
The qualitative results show that as severity level increases,
TTCP’s improvements are more evident. Similar improve-
ments of TTCP over TTT on MNIST-C, Tiny-ImageNet-C
and ImageNet-C datasets are shown in the Appendix.

Computational Overhead: TTCP is real-time, similar to
TTT [28], and incurs negligible overhead at test-time. Ev-

Table 11. Accuracy comparison with augmentation-based methods
on different noises on CIFAR10-C using WRN 40-2 architecture

Baselines OURS
Method AA[2] PG[17] AM[12]| TTCP++
Gaussian Noise 31.00 33.00 35.00 36.54
Impulse Noise 28.00 30.00 33.00 34.16
Shot Noise 32.00 32.00 34.00 33.02
Speckle Noise 30.00 31.00 35.00 35.73
Brown Noise 31.00 29.00 26.00 34.25

Table 12. Accuracy comparison with augmentation-based methods
on different noises on ImageNet-C using ResNet-50 architecture

ident from the results, TTCP by itself provides improve-
ments over baseline state-of-the-art methods. TTCP++ has
an offline VQ step to obtain the discretized latents which
can incur an additional cost. We however found this to
be minimal too, considering a simple fully convolutional
encoder-decoder architecture (2 conv layers followed by 2
residual blocks with 2 conv layers each) was sufficient for
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this purpose. On CIFARIO, our entire training (including
the offline VQ module) took ~ 1.3x training time over the
baselines. (If the VQ step is performed offline for a dataset,
this increase goes away too.) Since we use a pre-trained
teacher network for the knowledge distillation step, no ad-
ditional training time overhead was incurred here.
Comparison with Augmentation Methods: We also com-
pare our method against recent augmentation methods i.e.
AutoAugment (AA) [2], AugMix (AM) [12] and Patch
Gaussian (PG) [17] that have attempted to address similar
issues (we do not use [25] and [27] since they did not re-
port results on CIFAR10-C). Following these baselines, we
use WRN 40-2 and ResNet-50 architectures for CIFAR10-
C and ImageNet-C datasets respectively. The results are
reported in Tables 11 and 12. In general, we outperform
augmentation methods — especially AA and PG consistently
— across all noise categories in both datasets. AM outper-
forms us in a couple of noise categories, but we note here
that our method achieves these results with no training aug-
mentation with models trained only on clean data, making
this result significant. Also, as stated in [18], augmentation-
based methods perform badly when the distribution of test
data differs from the augmented data. Hence, apart from
the 4 kinds of noise i.e. Gaussian Noise, Shot Noise, im-
pulse Noise and Speckle Noise, we also experimented with
Brown Noise as a less-used noise, and obtain the best re-
sult for both CIFAR10-C and ImageNet-C datasets, which
shows consistency of our method against any unseen noise.
Note again that our method is trained only on clean data.

[ Method | KD [ VQ | VQ+KD[ VQ+KD+TTT[ TTCP++ |
Gaussia] 62.01 7126 [ 7230 [ 76.56 78.91
Tmpulse | 6592 [ 7229 | 72.83 | 76.33 78.66
Shot 6786 | 74.02 | 7446 [ 7627 78.16
Speckle | 6594 [ 73.61 [ 7412 | 77.20 79.93

Table 13. Comparative results (accuracy averaged across 5 severity
levels) of diff parts of our method with diff noises on CIFAR10-C
using ResNet-26 architecture (detailed results for each SL in Ap-
pendix); KD = Std model training with knowledge distillation. VQ
= Std model trained with reconstructed images from vector quan-
tization step. TTCP = Std model training with proposed TTCP
approach applied at inference. TTCP++ = KD + VQ+ TTCP.

5. Discussion and Ablation Studies

Effect of different parts of proposed method: Table 13
presents results of our studies on the effect of different parts

=% | [Method [ DA [ VQ |
Gauss 61.74 71.26
Impulse | 64.95 72.29
Shot 66.12 74.02
Speckle | 65.19 73.61
Clean 79.04 84.91

1 Accuracy comparison between DA and OUR Method

&

Gaussian Impulse shot Speckle Clean

Table 14. VQ vs DA on handling noise in CIFAR10-C (accuracy results
averaged across 5 severity levels)

[ Noise type | Gauss | Impulsg Shot [ Speckle | Clean
Rand. crop 71.57 76.89 | 76.53 78.06 89.61
Rot.+Rand. crop 78.12 77.54 77.25 78.82 90.28
Rot(OUR) 78.91 78.66 78.16 79.93 92.01

Table 15. Accuracy comparison of our method with other self-supervision
tasks in place of rotation prediction on CIFAR10-C

of our method for Gaussian, Impulse, Shot and Speckle
Noise on CIFARI10-C dataset where TTCP++ represents
VQ+KD+TTCP (detailed results for each severity level are
presented in the Appendix). In general, we notice that
the idea of using discretized latents using VQ has a sig-
nificant impact on the performance against unseen noise,
as we surmised. Individually, KD helps improve perfor-
mance, especially when all modules are considered collec-
tively. The last two columns compare between (VQ + KD
+ TTT) and (VQ + KD + TTCP), showing the effectiveness
of TTCP over TTT when used with other parts of our pro-
posed model. We also observe similar trends for MNIST-C
and TinylmageNet-C datasets in the Appendix.

Effect of Vector Quantization over DA: Denoising au-
toencoder (DA) was another choice of mitigating noise. We
experimented with DA accompanied by natural training and
compared this result with the use of VQ module. The results
are presented in Table 14 (and adjoining bar plot) for noisy
data from CIFAR10-C. VQ performs much better compared
to DA for both noisy and clean test data.

Effect of different self-supervised techniques: Rotation
prediction pretext task was used as the auxiliary task for all
our experiments following earlier related efforts [11][28].
We study the use of other self-supervised tasks such as:
(1) random cropping, and (2) random cropping + rotation
prediction, keeping everything else same. Our results are
shown in Table 15 for CIFAR10-C; the best result was
achieved with rotation prediction, which we used in our
main results. Exploring other suitable self-supervision tasks
will be an important direction of our future work.

6. Conclusions and Future Work

Most real-world environments are inherently noisy, thus
hindering DNN models from being deployed in real-world
applications, especially in in-the-wild with unknown or un-
seen noise. In this work, we propose a simple yet effec-
tive test-time consensus prediction (TTCP) approach that
addresses model robustness to robust noise with training
only on clean data. We further propose an extended ver-
sion, TTCP++, where we add a training phase based on
quantized latents and knowledge distillation, that helps im-
prove the performance of TTCP further on unseen noise.
Our comprehensive results on multiple benchmark datasets
against SOTA baselines show significant promise for de-
ploying DNN models in in-the-wild with unseen noise.
Acknowledgements. This work has been partly supported
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