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Abstract

We present an automated machine learning approach
for uncalibrated photometric stereo (PS). Our work aims
at discovering lightweight and computationally efficient PS
neural networks with excellent surface normal accuracy.
Unlike previous uncalibrated deep PS networks, which are
handcrafted and carefully tuned, we leverage differentiable
neural architecture search (NAS) strategy to find uncali-
brated PS architecture automatically. We begin by defining
a discrete search space for a light calibration network and
a normal estimation network, respectively. We then perform
a continuous relaxation of this search space and present
a gradient-based optimization strategy to find an efficient
light calibration and normal estimation network. Directly
applying the NAS methodology to uncalibrated PS is not
straightforward as certain task-specific constraints must be
satisfied, which we impose explicitly. Moreover, we search
for and train the two networks separately to account for
the Generalized Bas-Relief (GBR) ambiguity. Extensive ex-
periments on the DiLiGenT dataset show that the automat-
ically searched neural architectures performance compares
favorably with the state-of-the-art uncalibrated PS methods
while having a lower memory footprint.

1. Introduction

Photometric stereo (PS) aims at recovering an object’s
surface normals from its light varying images captured from
a fixed viewpoint. Although range scanning methods [45,
35, 46, 44], multi-view methods [15, 32, 33, 29, 30, 31] and
single image dense depth estimation methods [54, 13, 34]
can recover the object’s surface normals, photometric stereo
is excellent at capturing high-frequency surface details such
as scratches, cracks, and dents from images. Therefore, it is
a favored choice for fine-detailed surface recovery in many
scientific and engineering areas such as forensics [53] and
molding [70].

Seminal work on PS assumes a Lambertian object un-
der calibrated setting i.e., the directions of the light sources
are known [65]. Firstly, the Lambertian object assumption
does not hold for surfaces with general reflectance property.

As a result, several robust methods [67, 47, 23], and realis-
tic Bidirectional Reflectance Distribution Function (BRDF)
based methods [16, 11, 17, 21, 58] were proposed. Robust
methods treat non-Lambertian effects as outliers, and popu-
lar realistic BRDF models confine to isotropic BRDF mod-
eling of non-Lambertian surfaces [22, 58]. Hence, these
methods can only model the reflectance property of a re-
stricted class of materials. In general, modeling surfaces
with unknown reflectance properties is challenging.

In recent years, deep neural networks have significantly
improved the performance of many computer vision tasks,
including photometric stereo. Their powerful ability to
learn from data has helped in modeling surfaces with un-
known reflectance properties, which was a challenge for
traditional PS methods. Further, neural networks can im-
plicitly learn the image formation process and global illu-
mination effects from data, which classical algorithms can-
not pursue. As a result, several deep learning architectures
were proposed for PS [20, 63, 8, 7, 41, 40, 19]. Hence,
by leveraging a deep neural network, we can overcome the
shortcoming of PS due to the Lambertian object assump-
tion. However, these methods still rely on the other assump-
tion of calibrated setting i.e., the light source directions are
given at test time, limiting their practical application. Ac-
cordingly, uncalibrated deep PS methods that can provide
results comparable to calibrated PS networks are becoming
more and more popular [6, 27, 9].

The impressive results demonstrated by deep uncali-
brated PS methods have a few critical issues: the network
architecture is manually designed, and therefore, such net-
works are typically not optimally efficient and have a large
memory footprint [27, 6, 8, 9]. Moreover, the authors of
such networks conduct many experiments to explore the ef-
fect of empirically selected operations and tune hyperpa-
rameters. But, we know from the popular research in ma-
chine learning that not only the type of operation but some-
times their placement (ordering) matters for performance
[18, 73]. And therefore, a separate line of research known as
Neural Architecture Search (NAS) has gained tremendous
interest to tackle such challenges in architecture design.
NAS methods automate the design process, greatly reduc-
ing human effort in searching for an efficient network de-
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sign [1]. NAS algorithms have shown great success in many
high-level computer vision tasks such as object detection
[61, 72], image classification [66], image super-resolution
[68], action recognition [60], and semantic segmentation
[37]. Yet, its potential for low-level 3D computer vision
problem such as uncalibrated PS remains unexplored.

Among architecture search methods, evolutionary algo-
rithms [51, 52] and reinforcement learning-based methods
[74, 75] are computationally expensive and need thousands
of GPU hours to find architecture. Hence they are not suit-
able for our problem. Instead, we adhere to the cell-based
differentiable NAS formulation. It has proven itself to be
computationally efficient and demonstrated encouraging re-
sults for many high-level vision problems [39, 36]. How-
ever, in those applications, differentiable NAS is used with-
out any task-specific treatment. Unfortunately, this will not
work for the uncalibrated PS problem. There exists GBR
ambiguity [4] due to the lack of light source information.
Moreover, certain task-specific constraints must be satis-
fied (e.g., unit normal, unit light source direction), and the
method must operate on unordered image sets. Unlike typi-
cal NAS-based methods, we incorporate human knowledge
in our search strategy to address those challenges. To re-
solve GBR ambiguity, we first search for an efficient light
calibration network, followed by a normal estimation net-
work’s search [6]. To handle PS-related constraints, we fix
some network layers and define our discrete search space
for both networks accordingly. We model our PS architec-
ture search space via a continuous relaxation of the discrete
search space, which can be optimized efficiently using a
gradient-based algorithm.

We evaluated our method’s performance on the DiLi-
GenT benchmark PS dataset [59]. The experiments re-
veal that our approach discovers lightweight architectures,
which provides results comparable to the state-of-the-art
manually designed deep uncalibrated networks [8, 6, 27].
This paper makes the following contributions:

• We propose the first differentiable NAS-based framework
to solve uncalibrated photometric stereo problem.

• Our architecture search methodology considers the task-
specific constraints of photometric stereo during search,
train, and test time to discover meaningful architecture.

• We show that automatically designed architecture out-
performs the existing traditional uncalibrated PS perfor-
mance and compares favorably against hand-crafted deep
PS network with significantly less parameters.

2. Proposed Method
This section describes our task-specific neural architec-

ture search (NAS) approach. We utilize the seminal clas-
sical photometric stereo formulation [65, 4] and previous
handcrafted deep neural network design [6] as the basis of

our NAS framework. Utilizing previous methods knowl-
edge in the architecture design process not only helps in
reducing the architecture’s search time but also provides
an optimal architecture with better performance accuracy
[6, 27]. Before we describe the NAS modeling of our prob-
lem, we define the classical photometric stereo setup.

Consider an orthographic camera observing a rigid ob-
ject from a given viewpoint v = (0, 0, 1)T . For PS setup,
the images are captured by firing one unique directional
light source per image. Let I ∈ Rm×n be the measure-
ment matrix comprising of n images with m pixels stacked
as column vectors. Let L ∈ R3×n and N ∈ R3×m de-
note all the light sources and surface normals respectively.
Then, the image formation model under Lambertian surface
assumption is formulated as follows:

I = ρ ·NTL + E. (1)

Here, ρ ∈ R is the diffuse albedo and E accounts for er-
ror due to shadows, specularities, or noise. When all non-
Lambertian effects are ignored, solving Eq.(1) can recover
the actual surface up to a GBR transformation, such that
I = (G−T N̄)T (GL). Here, N̄ ∈ R3×m denotes the albedo
scaled normals and G ∈ R3×3 is the transformation matrix
with 3 unknown parameters [4, 5]. It indicates that there are
many solutions leading up to the same image. Neverthe-
less, it is well known that specularities [16, 12], interreflec-
tions [5], albedo distributions [3, 56] and BRDF properties
[62, 69, 42] provide useful cues for disambiguation. How-
ever, such cues are not well exploited in a single-stage net-
work designed for regressing per-pixel normals, and there-
fore, we adhere to use two different neural networks fol-
lowing Chen et al. [6]. We first learn the light sources from
images by training a light calibration network in a super-
vised way. Then, we use its results at inference time for the
normal estimation network to predict the surface normals.
Unlike other uncalibrated deep PS methods, our approach
allows automatic search for the optimal architecture both
for the light calibration and normal estimation networks.

2.1. Architecture Search for Uncalibrated PS

Leveraging the recent one-shot cell-based NAS method
i.e., DARTS [39], we first define different discrete search
spaces for light calibration and normal estimation networks.
Next, we perform a continuous relaxation of these search
spaces, leading to differentiable bi-level objectives for opti-
mization. We perform an end-to-end architecture search for
light calibration and normal estimation networks separately
to obtain optimal architectures. Contrary to high-level vi-
sion problems such as object detection, image classification,
and others [39, 10, 75], directly applying the one-shot NAS
to existing uncalibrated PS networks [6, 27] may not neces-
sarily lead to a good solution. Unfortunately, for our task,
a single end-to-end NAS seems challenging. It may lead
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to unstable behavior due to GBR ambiguity [4]. And there-
fore, we search for an optimal light calibration first and then
search for a normal estimation network by keeping some of
the necessary operations or layers fixed —such a strategy is
used in other NAS based applications [14]. The searched
architectures are then trained independently for inference.
• Background on Differentiable NAS. In recent years,
Neural Architecture Search (NAS) has attracted a lot of at-
tention from the computer vision research community. The
goal of NAS is to automate the process of deep neural net-
work design. Among several promising approaches pro-
posed in the past [51, 75, 51, 39, 38, 26, 50], the DARTS
[39] has shown promising outcomes due to its computa-
tional efficiency and differentiable optimization formula-
tion. So, in this paper, we use it to design an efficient deep
neural network to solve uncalibrated PS.

DARTS searches for a computational cell from a set of
defined search spaces, which is a building block of the ar-
chitecture. Once the optimal cells are obtained, it is stacked
to construct the final architecture for training and inference.
To find the optimal cell, we define search space O, that is a
set of possible candidate operations. The method first per-
forms continuous relaxation on the search spaces and then
searches for an optimal cell. A cell is a directed acyclic
graph (DAG) with N nodes and E edges. Each node is a la-
tent feature map representation say x(i) for the ith node and
each edge is associated with an operation say o(i,j) between
node i and node j (see Fig.1(a)). In a cell, each intermediate
node is computed from its preceding nodes as follows:

x(j) =
∑
i<j

o(i,j)
(
x(i)

)
(2)

Let o(i,j) be some operation among K candidate operations
O = {o(i,j)1 , o

(i,j)
2 , ..., o

(i,j)
K }. The categorical choice of a

specific operation is replaced by the continuous relaxation
of the search space by taking softmax over all the defined
candidate operations as follows:

õ(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x) (3)

Here, α(i,j) is a vector of dimension |O| which denotes the
operation mixing weights on edge (i, j) (see Fig.1(b)). As
a result, the search task for DARTS reduces to a learning
set of continuous variable α(i,j) ∀ (i, j). The optimal archi-
tecture will be determined replacing each mixed operation
ō(i,j) on edge (i, j) with: o(i,j) = argmaxo∈O α

(i,j)
o cor-

responding to the operation which is the “most probable”
among the ones listed in O (see Fig.1(c)-Fig.1(d)). The
introduced relaxation allows joint learning of architecture
α and its weight ω within the mixture of operations. So,
the goal of architecture search now becomes to search for
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Figure 1: Illustration of a cell. (a) Initially, the optimal operations
ō(i,j) between nodes x(i) and x(j) are unknown. (b) Each node is
computed by a mixture of candidate operations. (c) Architecture
encoding is obtained by solving the continuous relaxation of the
search space. (d) Optimal cell obtained after selection of most
probable candidate operation.

an optimal architecture α using the validation loss with the
weights ω that minimizes the training loss for a given α.
This leads to following bi-level optimization problem.

minimize
α

Lval(ω
∗(α), α);

subject to: ω∗(α) = argmin
ω

Ltrain(ω, α)
(4)

where, Lval and Ltrain are the validation and training
losses respectively. This optimization problem is solved it-
eratively until convergence is reached. The architecture α
is updated by substituting the lower-level optimization gra-
dient approximation. Concretely, update α by descending
∇αLval(ω − ξ∇ωLtrain(ω, α), α). Subsequently update
ω by descending ∇ωLtrain(ω, α), where:

∇αLval(ω − ξ∇ωLtrain(ω, α), α) ≈ ∇αLval(ω
∗(α), α)

(5)
ξ > 0 is the learning rate of the inner optimization. The
idea is that, ω∗(α) is approximated with a single learning
step which allows the searching process to avoid solving the
inner optimization in Eq.(4) exactly. We refer this formula-
tion as second-order approximation [39]. To speed up the
searching process, common practice is to apply first-order
approximation by setting ξ = 0. For more details on the
bi-level optimization refer Liu et al. work [39].

2.1.1 Our Cell Description

For our problem, we search for both light calibration and
normal estimation networks. Our cells consist of two in-
put nodes, four intermediate nodes, and one output node
for both of the networks. Each cell at layer k uses the out-
put of two preceding cells (Ck−1 and Ck−2) at input nodes
and outputs Ck by channel-wise concatenation of the fea-
tures at the intermediate nodes. To adjust the spatial dimen-
sions, we define two cells i.e., normal cells and reduction
cells. Normal cells preserve the spatial dimensions of the
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input feature maps by applying convolution operations with
stride 1. The reduction cells use operations with stride 2
adjacent to input nodes, reducing the spatial dimension by
half. Although the cell definition for both networks is the
same, the network-level search spaces are different due to
the problem’s constraints. Next, we describe our procedure
to obtain optimal network architecture for uncalibrated PS.

2.2. Light Calibration Network

Light calibration network predicts all the light source’s
direction and intensity from a set of PS images. Here, we
assume the object mask is known. One obvious way to esti-
mate light is to regress a set of images with the source direc-
tion vectors and intensities in a continuous space. However,
converting this task into a classification problem is more fa-
vorable for our purpose. It stems from the fact that learning
to classify light source directions to predefined bins of an-
gles is much easier than regressing the unit vector itself.
Further, using discretized light directions makes the net-
work robust to small input variations.

We represent the light source direction in the upper-
hemisphere by its azimuth ϕ ∈ [0, π] and elevation θ ∈
[−π/2, π/2] angles. We divide the angle spaces into 36
evenly spaced bins (Kd = 36). Our network perform clas-
sification on azimuth and elevation separately. For the light
intensities, we assign the values in the range of [0.2, 2] di-
vided uniformly into 20 bins (Ke = 20) [6].
NAS for Light Calibration Network. To perform NAS
for light calibration network, we use the backbone shown in
Fig.2(a). The backbone consists of three main parts (i) local
feature extractor (ii) aggregation layer and (iii) classifier.
The feature extraction layers provide image-specific infor-
mation for each input image. The weights of these feature
extraction layers are shared among all input images. The
image-specific features are then aggregated to a global fea-
ture representation with the max-pooling operation. Later,
global feature representation is combined with the image-
specific information and fed to the subsequent layers for
classification. The fully connected layers provide softmax
probabilities for azimuth, elevation, and intensity values.

We use the NAS algorithm to perform search only over
the feature extraction layer and classifier layers for architec-
ture search (shown with dashed box Fig.2(a)), while keep-
ing other layers fixed. For NAS to provide optimal archi-
tecture over the searchable blocks in the light-calibration
network backbone, we define our search space as follows:
1. Search Space. Our candidate operations set in search
space for light calibration network is composed of Olight =
{“1 × 1 separable conv.”, “3 × 3 separable conv.”, “5 ×
5 separable conv.”, “skip connection”, “zero”}. The
“zero” operation indicates the lack of connection between
two nodes. Each convolutional layer defined in the set first
applies ReLU [71] and then convolution with given kernel

size followed by batch-normalization [24]. As before, our
cells consist of two input nodes, four intermediate nodes,
and one output node §2.1.1. Just for the initial cell, we use
stem layers as its input for better search. These layers apply
fixed convolutions to enrich the initial cell input features.
2. Continuous relaxation and Optimization. We perform
the continuous relaxation of our defined search space us-
ing Eq.(3) for differentiable optimization. During searching
phase, we perform alternating optimization over weights ω
and architecture encoding values α as follows:
• Update network weights ω by ∇ωLtrain(ω, α).
• Update architecture mixing weights α by ∇αLval(ω −
ξ∇ωLtrain(ω, α), α). (see Eq.(5) )

Ltrain and Lval denote the loss computed over training and
validation datasets, respectively. We use multi-class cross-
entropy loss on azimuth, elevation, and intensity classes to
optimize our network [6]. The total light calibration loss is

Llight = Lϕ + Lθ + Le (6)

where, Lϕ, Lθ, and Le are the losses for azimuth, el-
evation, and intensity respectively. We utilize the syn-
thetic Blobby and Sculpture datasets [8] for this optimiza-
tion where ground-truth labels for lighting are provided.

Once the searching phase is complete, we convert the
continuous architecture encoding values into a discrete ar-
chitecture. For that, we select the strongest operation on
each edge (i, j) with: o(i,j) = argmaxo∈Olight α

(i,j)
o .

We preserve only the strongest two operations preceding
each intermediate node. We train our designed architecture
with optimal operations from scratch on the training dataset
again to optimize weights before testing §3.1.

2.3. Normal Estimation Network

We independently search for optimal normal estimation
network using the backbone shown in Fig.2(b). To use the
light source information into the network, we first convert n
light direction vectors into a tensor X ∈ Rn×3×h×w, where
each 3-vector is repeated over spatial dimensions h and w.
This tensor is then concatenated with the input image to
form a tensor I ∈ Rn×6×h×w. Similar to the light cali-
bration network, we use a shared-weight feature extraction
block to process each input. After image-specific informa-
tion is extracted, we combine them in a fixed aggregation
layer with the max-pooling operation and obtain a global
representation. Keeping the aggregation layer fixed allows
the network to operate on an arbitrary number of test images
and improves robustness. The global information is finally
used to regress the normal map, where a fixed normalization
layer is used to satisfy the unit-length constraint.
NAS for Normal Estimation Network. Similar to light
calibration network, the cells here consist of two input
nodes, four intermediate nodes, and one output node. To
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Figure 2: Our pipeline consists of two networks: (a) Light Calibration Network predicts light source directions and intensities from
images. Our search is confined to feature extraction module and classification module. (b) Normal Estimation Network outputs the surface
normal map from images and estimated light sources. Our search is confined to feature extraction module and regression module.

efficiently search for architectures at initial layers, we make
use of stem layers prior to each search space [39]. These
layers apply fixed convolutions to enrich the input features.
1. Search Space. It is a well-known fact that the kernel
size has great importance in vision problems. Recent work
on photometric stereo has verified that using bigger kernel
size helps to explore the spatial information, but stacking
too many of them leads to over-smoothing and degrades
the performance [73]. Therefore, we selectively use differ-
ent kernel sizes in the candidate operations set Onormal =
{“1 × 1 separable conv.”, “3 × 3 separable conv.”, “5 ×
5 separable conv.”, “skip connection”, “zero”}. Here
also, each convolutional layer defined in the set first applies
ReLU [71] and then convolution with given kernel size fol-
lowed by batch-normalization [24]. The selection of can-
didate operation sets if further investigated in §3.3 of the
supplementary material.
2. Continuous Relaxation and Optimization. Similar to
light calibration network, we use Eq.(3) to make the search
space continuous. We then jointly search for the architec-
ture encoding values and the weights using the ground-truth
surface normals and light source information during opti-
mization. The optimization is performed using the same bi-
level optimization approximation strategy (see Eq.(4) and
Eq.(5)). We normalize the images before feeding them to
the network. The normalization ensures the network is ro-
bust to different intensity levels. To search normal estima-
tion network, we use the following cosine similarity loss:

Lnormal =
1

m

m∑
i

(1− ñT
i ni) (7)

where, ñi is the estimated normal by our network and ni is
the ground-truth normal at pixel i. Note that ñi is a unit-
vector due to the fixed normalization layer.

After the search optimization for normal estimation net-
work is done, we obtain optimal discrete architecture by
keeping the operation o(i,j) = argmaxo∈Onormal α

(i,j)
o on

each edge (i, j). Similar to [39], we only preserve the two
preceding operations with highest weight for each node. Fi-

nally, we train our normal estimation network from scratch
using the searched architecture. Our normal estimation net-
work uses the light directions and intensities estimated by
the light calibration network to predict normals at test time.

3. Experiments and Results
This section first describes our procedure in preparing

the dataset for the searching, training, and testing phase.
Later, we provide the implementation of our method, fol-
lowed by statistical evaluations and ablation.

3.1. Dataset Preparation

We used three popular photometric stereo datasets for
our experiments, statistical analysis, and comparisons,
namely, Blobby [25], Sculpture [64] , and DiLiGenT [57].

Search and Train Set Details. For architecture search and
optimal architecture training, we used 10 objects from the
Blobby dataset [25] and 8 from the Sculpture dataset [64].
We considered the rendered photometric stereo images of
these datasets provided by Chen et al. [8]. It uses 64 random
lights to render the objects. In search and train phase, we
randomly choose 32 light source images. Following Chen
et al. [8], we considered 128 × 128 sized images for both
Blobby and Sculpture dataset.

(a) Preparation of Search Set. Searching for an optimal
architecture using one-shot NAS [39] can be computation-
ally expensive. To address that, we use only 10% of the
dataset such that it contains subjects from all the categories
present in the Blobby and Sculpture dataset. Next, we re-
sized all those 128× 128 resolution images to 64× 64. We
refer this dataset as Blobby search set and Sculpture search
set. Our search set is further divided into search train set
and search validation set. This train set is prepared by tak-
ing eight shapes from Blobby search set and six shape from
Sculpture search set. The search validation set is composed
of two shapes from Blobby and Sculpture search sets, re-
spectively. Hence, approximately 80% of the search set is
used as search train set and 20% is used as search validation
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Figure 3: (a) Training curve of the light calibration network. (b) Light calibration network results on DiLiGenT objects. We show the
light direction by projecting the vector [x, y, z] to a corresponding point [x, y]. The color of the point shows the light intensity value in
[0, 1] range. MAElight is the mean angular error in the estimation of light source direction and Eerr stands for the intensity error.

set. This is done in a way that there is no common subject
between train and validation sets. We used a batch size of
four at train and validation time during search phase. The
search set is same for the light calibration and normal esti-
mation network’s search.
(b) Preparation of Train Set. Once the optimal archi-
tectures for light calibration and normal estimation are ob-
tained, we use the train set for training these networks from
scratch. Since, we searched architecture using 64× 64 size
images, we use convolution layer with stride 2 at the train
time for the light calibration network’s training. Following
Chen et al. [8], we use 99% of the Blobby and Sculpture
dataset for training and 1% for the validation. For light
calibration we used batch size of thirty-two at train time
and eight for validation. For normal estimation, instead, we
considered batch size of four both at training and validation.

3.1.1 Test Set Details.

We tested our networks on the recently proposed DiLi-
GenT PS dataset [57]. It consists of 10 real-world objects,
with images captured by 96 LED light sources. It provides
ground-truth normals and calibrated light directions making
it an ideal dataset for evaluation. Following Chen et al. [8],
we use 96 images per object at 128× 128 resolution to test
our light calibration and normal estimation network.

3.2. Implementation Details

The proposed method is implemented with Python 3.6,
and PyTorch 1.1 [49]. For both networks, we employ the
same optimizer, learning rate, and weight decay settings.
The architecture parameters α and the network weights ω
are optimized using Adam [28]. During the architecture
search phase, the optimizer is initialized with the learning
rate ηalpha = 3 × 10−4, momentum β = (0.5, 0, 999) and
weight decay of 1 × 10−3. At model train time, the opti-
mizer is initialized with the learning rate ηw = 5 × 10−4,
momentum β = (0.5, 0, 999) and weight decay of 3×10−4.

We conducted all the experiments on a computer with a sin-
gle NVIDIA GPU with 12GB of RAM.

We search for two types of cells, namely normal cell and
reduction cell. We use the loss function defined in Eq.(6)
and Eq.(7) during search phase to recover optimal cells for
each network independently. Fig.2(a) and Fig.2(b) show
the light calibration and the normal estimation backbone
and its searchable parts, respectively. For light calibration
network, we have two searchable blocks (i) Feature block
and (ii) Classification block. Here, we design our feature
block using three normal cells, two reduction cells, and the
classification block using one normal cell and one reduction
cell. Similarly, we have two searchable blocks (i) Feature
block and (ii) Regressor block for normal estimation net-
work. Here, the feature block comprises three normal cells
and two reduction cells, while the regressor block is com-
posed of three normal cells. To construct the network design
for searchable blocks, each normal cell is concatenated se-
quentially to the reduction cell in order. We use 3 epochs to
search architecture for each network.

At train time, we regularize the normal estimation net-
work loss function using the concept of auxiliary tower [39]
for performance gain. Consequently, we modify its loss
function at train time as follows:

Lnormal =
1

m

m∑
i

(1− ñT
i ni) + λaux

1

m

m∑
i

(1− n̂T
i ni)

(8)
where, λaux is a regularization parameter, and n̂i is the out-
put surface normal at pixel i due to auxiliary tower. We
set λaux = 0.4. We observed that the auxiliary tower im-
proves the performance of the normal estimation network.
It can be argued that a similar regularizer could be used for
the light calibration network. However, in that case, we
have to incorporate that regularizer for each image indepen-
dently, which can be computationally expensive. Fig.3(a)
and Fig.4(a) show the training curve for the light calibration
and normal estimation network respectively. We trained the
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Figure 4: (a) Training curve of the normal estimation network.(b) Qualitative surface normal results on the DiLiGenT benchmark. The
bottom row demonstrates the angular error maps and mean angular errors of our results.

Methods↓ | Dataset → Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average
Alldrin et al. (2007)[2] 7.27 31.45 18.37 16.81 49.16 32.81 46.54 53.65 54.72 61.70 37.25

Shi et al. (2010)[55] 8.90 19.84 16.68 11.98 50.68 15.54 48.79 26.93 22.73 73.86 29.59
Wu & Tan (2013)[69] 4.39 36.55 9.39 6.42 14.52 13.19 20.57 58.96 19.75 55.51 23.93

Lu et al. (2013)[43] 22.43 25.01 32.82 15.44 20.57 25.76 29.16 48.16 22.53 34.45 27.63
Papadh. et al. (2014)[48] 4.77 9.54 9.51 9.07 15.90 14.92 29.93 24.18 19.53 29.21 16.66

Lu et al. (2017) [42] 9.30 12.60 12.40 10.90 15.70 19.00 18.30 22.30 15.00 28.00 16.30
Ours 3.46 8.94 7.76 5.48 7.10 10.00 9.78 15.02 6.04 17.97 9.15

Table 1: Quantitative comparison with the traditional uncalibrated photometric stereo methods on DiLiGenT benchmark. Our searched
architecture estimates accurate surface normals of the object with general reflectance property.

light calibration and normal estimation networks for six and
three epochs, respectively for inference.

3.3. Qualitative and Quantitative Evaluation

Evaluation Metric. To measure the accuracy of the esti-
mated light directions and surface normals, we adopt the
standard mean angular error (MAE) metric as follows:

MAElight =
180

π

1

n

n∑
i

arccos(ℓ̃
T

i ℓi) (9)

MAEnormal =
180

π

1

m

m∑
i

arccos(ñT
i ni) (10)

where, n is the number of images, and m is the number of
object pixels. ℓ̃i and ℓi denote the estimated and ground-
truth light directions. Similarly, ñi and ni denote the esti-
mated and ground-truth surface normals. As the auxiliary
tower is not used at test time, we define metrics using ñi.
Following previous works [6, 8], we report MAE in degrees.

Unlike light directions and surface normals, light inten-
sity can only be estimated up to a scale factor. For this rea-
son, instead of using the exact intensity values for evalua-
tion, we use a scale-invariant relative error metric [6]:

Eerr =
1

n

n∑
i

(
|sẽi − ei|

ei

)
(11)

Here, ẽi and ei are the estimated and ground-truth light in-
tensities, respectively with s as the scale factor. Following

Chen et al. [7], we solve argmins
∑n

i (sẽi − ei)
2 using the

least squares to compute s for intensity evaluation.

3.3.1 Inference

Once optimal architectures are obtained, we train these net-
works for inference. We test their performance using the
defined metric on the Test set. For each test object, we first
feed the object images at 128 × 128 resolution to the light
calibration network to predict the light directions and inten-
sities. Then, we use the images and estimated light sources
as input to the normal estimation network to predict the sur-
face normals. Visual diagram of the optimal cell architec-
tures is provided in the supplementary material.

(a) Performance of Light Calibration Network. To show
the validity of our searched light calibration network, we
compared its performance on DiLiGenT ground-truth light
direction and intensity. Fig.3(b) shows the quantitative and
qualitative results obtained using our network. Concretely,
it provides light directions MAElight and intensity error
(Eerr) for all object categories. The results indicate that the
searched light calibration network can reliably predict light
source direction and intensity from images of object with
complex surface profile and different material properties.

(b) Comparison of Surface Normal Accuracy. We doc-
umented the performance comparison of our approach
against the traditional uncalibrated photometric stereo
methods in Table 1. The statistics show that our method per-
forms significantly better than such uncalibrated approaches
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Figure 5: Visual comparison against Robust PS [48], Holistic PS[69], SDPS-Net [6] and UPS-FCN [8] on (a) BEAR (b) GOBLET and
(c) POT2 object from DiLiGenT dataset. The statistics show the superiority of our searched architecture.

Methods Params (M) Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average
UPS-FCN† (2018)[8] 6.1 3.96 12.16 11.13 7.19 11.11 13.06 18.07 20.46 11.84 27.22 13.62
SDPS-Net (2019) [6] 6.6 2.77 8.06 8.14 6.89 7.50 8.97 11.91 14.90 8.48 17.43 9.51

GCNet (2020) [9] + PS-FCN [8] 6.8 2.50 7.90 7.20 5.60 7.10 8.60 9.60 14.90 7.80 16.20 8.70
Kaya et al. (2021) [27] 8.1 3.78 7.91 8.75 5.96 10.17 13.14 11.94 18.22 10.85 25.49 11.62

Ours (w/o auxiliary) 4.4 4.86 9.79 9.98 4.97 8.95 10.29 9.46 15.59 8.06 18.20 9.98
Ours 4.4 3.46 8.94 7.76 5.48 7.10 10.00 9.78 15.02 6.04 17.97 9.15

Table 2: Quantitative comparison of deep uncalibrated photometric stereo methods on DiLiGenT benchmark [59]. Our searched architec-
ture on average provides results that are better compared to other deep networks not only in surface orientation accuracy (MAE) but also
in model size. The blue show the statistics where our method has the second best performance. We used deeper version of UPS-FCN [8].

for all the object categories. That is because we don’t ex-
plicitly rely on BRDF model assumptions and the well-
known matrix factorization approach. Instead, our work ex-
ploits the benefit of the deep neural network to handle com-
plicated BRDF problems by learning from data. Rather than
using matrix factorization, our work independently learns to
estimate light from data and use it to solve surface normals.

Further, we compared our method with the state-of-the-
art deep uncalibrated PS methods. Table 2 shows that
our method achieves competitive results with an average
MAEnormal of 9.15◦, having the second best performance
overall. The best performing method [9] uses a four-stage
cascade structure, making it complex and deep. On the con-
trary, our searched architecture is light and it can achieve
such accuracy with 2.4M fewer parameters. Fig.5 provides
additional visual comparison of our results with several
other approaches from the literature [48, 69, 6, 8]. Table
2 also shows the benefit of using an auxiliary tower at train
time (see supplementary for more details and results).

(c) Ablation Study. (i) Analysing the performance with the
change in number of input images at test time. Our light
calibration and normal estimation network can work with
an arbitrary number of input images at test time. In this ex-
periment, we analyse how the number of images affects the
accuracy of the estimated lighting and surface normals. Fig.
6(a) and 6(b) show the variation in the mean angular error
with different number of images. As expected, the error de-
creases as we increase the number of images. Of course,
feeding more images allows the networks to extract more
information, and therefore, the best results are obtained by
using all 96 images provided by the DiLiGenT dataset [59].
For more experimental results, ablations and visualizations,
refer to the supplementary material.
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Figure 6: Variation in MAE w.r.t the change in the number of
input images at test time. Observation with (a) light calibration
and (b) normal estimation network, respectively.

4. Conclusion

In this paper, we demonstrated the effectiveness of applying
differentiable NAS to deep uncalibrated PS. Though using
the existing differentiable NAS framework directly to our
problem is not straightforward, we showed that we could
successfully utilize NAS provided PS-specific constraints
are well satisfied during the search, train, and test time.
We search for an optimal light calibration network and nor-
mal estimation network using the one-shot NAS method by
leveraging hand-crafted deep neural network design knowl-
edge and fixing some of the layers or operations to account
for the PS-specific constraints. The architecture we discover
is lightweight, and it provides comparable or better accu-
racy than the existing deep uncalibrated PS methods.

Acknowledgement. This work was funded by Focused
Research Award from Google (CVL, ETH 2019-HE-318,
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