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Abstract

Despite receiving significant attention from the research
community, the task of segmenting and tracking objects in
monocular videos still has much room for improvement. Ex-
isting works have simultaneously justified the efficacy of di-
lated and deformable convolutions for various image-level
segmentation tasks. This gives reason to believe that 3D ex-
tensions of such convolutions should also yield performance
improvements for video-level segmentation tasks. However,
this aspect has not yet been explored thoroughly in existing
literature. In this paper, we propose Dynamic Dilated Con-
volutions (D2Conv3D): a novel type of convolution which
draws inspiration from dilated and deformable convolutions
and extends them to the 3D (spatio-temporal) domain. We
experimentally show that D2Conv3D can be used to im-
prove the performance of multiple 3D CNN architectures
across multiple video segmentation related benchmarks by
simply employing D2Conv3D as a drop-in replacement for
standard convolutions. We further show that D2Conv3D
out-performs trivial extensions of existing dilated and de-
formable convolutions to 3D. Lastly, we set a new state-of-
the-art on the DAVIS 2016 Unsupervised Video Object Seg-
mentation benchmark. Code is made publicly available at
https://github.com/Schmiddo/d2conv3d.

1. Introduction
The task of segmenting objects from monocular video

sequences has received significant attention from the re-
search community in recent years, mainly because of use-
ful applications in self-driven cars, autonomous robots, etc.
Several existing approaches [23, 44, 4] for this task follow a
two-step paradigm where objects are first segmented in in-
dividual image frames, followed by a second temporal asso-
ciation step. Such methods leveraged the availability of ac-
curate image-level instance segmentation networks [26, 15]
and various cues for temporal association (e.g. attention, op-
tical flow, Re-ID) [23, 44, 38, 29]. More recently however,
methods have emerged [16, 1, 24] which use 3D convolu-
tions to jointly reason over spatial and temporal dimensions,

Figure 1: Comparison of regular convolutions (left),
modulated deformable convolutions [43] (middle), and
D2Conv3D (right). Note that D2Conv3D predicts a distinct
spatiotemporal dilation for every point in the volume. Dif-
ferent colors indicate different modulation values.

resulting in improved performance for various video object
segmentation related tasks.

In parallel to the aforementioned developments in the
video domain, another research area in computer vision was
focusing on improving the performance of image-level seg-
mentation networks. To this end, one line of reasoning
considers the limited receptive field of convolution opera-
tions as a drawback and aims to mitigate it. Even though
a restricted receptive field is useful for weight sharing and
imparting translation invariance, it is also a limitation for
dense segmentation tasks where a wider view of the fea-
ture map can be beneficial. Chen et al. published a series
of works [7, 8, 9] that use atrous convolutions (also called
dilated convolutions) for semantic segmentation in images.
Dilated convolutions effectively add padded zeros between
the values in the convolutional kernel, thus enlarging the re-
ceptive field without incurring computational overhead or
increasing the parameter count. Chen et al. argued that
the high degree of spatial downsampling usually applied in
CNNs is detrimental for dense segmentation tasks. They
instead maintained feature maps at a higher resolution and
used dilated convolutions to capture a larger receptive field.

Another method for enhancing the receptive field of
convolutions is the idea of deformable convolutions [11]
(DCNv1). Here, the convolutional kernel can be arbitrarily
shaped depending on the input feature map, as opposed to
being a regular grid as in standard or dilated convolutions.
Practically, this is realized by using the input feature map to
predict offsets (or deformations) to the sampling locations
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of the convolution operation. The underlying idea here is to
enable the network to dynamically adapt the kernel based
on the input image. Zhu et al. [43] further extended this by
adding a dynamic modulation parameter which scales the
kernel weight value for each sampling location (DCNv2).
By simply using deformable convolutions as a drop-in re-
placement for standard convolutions, it was shown that the
performance of a variety of network architectures could be
improved for object detection and segmentation.

Keeping these developments in mind gives rise to a ques-
tion: Can 3D dilated/deformable convolutions retrace the
success story of their 2D counter-parts and deliver improve-
ments for video segmentation tasks? In this paper, we show
that the answer is ’yes’. To this end, we propose a novel
type of convolution called D2Conv3D (Dynamic Dilated 3D
Convolutions), which combines elements from dilated and
deformable convolutions by dynamically learning a multi-
plicative scaling factor for the sampling locations of a con-
volutional kernel. Additionally, we also a predict a modula-
tion parameter which dynamically scales the kernel weights
based on the input features. We show that D2Conv3D out-
performs trivial extensions of dilated and deformable con-
volutions to 3D. Fig. 1 provides an illustrative comparison
between: (i) standard 3D convolutions, (ii) a 3D exten-
sion of the modulated deformable convolutions proposed by
Zhu et al. [43], (iii) our proposed D2Conv3D.

In summary, our contributions are as follows:
• We propose a novel D2Conv3D operator which can be

used as drop-in replacements for standard convolutions
in 3D CNNs to improve their performance on video
segmentation tasks.

• We experimentally justify the efficacy of D2Conv3D
by applying it to two different 3D CNN based archi-
tectures [1, 24] and evaluating them on five different
benchmarks [25, 6, 37, 34, 28].

• We set a new state-of-the-art on the DAVIS 2016 Un-
supervised challenge [25] by achieving a J&F score
of 86.0%.

2. Related Work

Image-level Segmentation: Dense prediction tasks such as
segmentation need to predict full resolution output maps
and, at the same time, use multi-scale context for effec-
tive reasoning. Existing approaches for such tasks [1, 7,
8, 9, 15, 39] utilize dilated convolutions for this purpose,
which dilate the convolutional kernel by a fixed factor to in-
crease the receptive field, thus mitigating the need for down-
sampling the image features. Atrous Spatial Pyramid Pool-
ing (ASPP) [7] goes a step further by using multiple dilation
rates on the same feature map to capture a multi-scale fea-
ture representation, and has been successfully used for both
instance and semantic segmentation tasks [1, 15].

Although dilated convolutions and ASPP help capture
objects of different sizes, the convolutional kernels have
fixed geometric structures since the dilation rates are con-
stant. Several existing works [11, 12, 43] attempt to adapt
these kernels by learning offsets or other transformation pa-
rameters from the image features. Spatial Transformer Net-
works (STN) [17] learn deformations of the sampling grid,
for a regular convolution operation, from the input feature
map and warp the sampling grid based on the learnt de-
formation parameters. Deformable Convolutional Network
(DCNv1) [11] on the other hand apply learned offsets to
the sampling locations of a regular convolution, thereby
enhancing its capability of capturing non-rigid transforma-
tions. DCNv1 can adapt to varying object sizes and scene
geometry, and is shown to be effective for image-level tasks
such as object detection and segmentation [11]. Neverthe-
less, the sampling locations learned by DCNv1 often spread
beyond the region of interest, which can lead to unneces-
sary feature influences. To overcome this issue, Zhu et al.
introduced DCNv2 [43] where, in addition to the offsets, a
dynamic modulation parameter is learned which scales the
kernel weights. This parameter gives the convolution ker-
nels additional freedom to adjust the influence of the sam-
pled regions. A teacher network based on R-CNN [14] is
then used to train this modulation mechanism, where the
teacher provides additional guidance to learn a more fo-
cused feature representation.

D2Conv3D, similar to deformable convolutions [11, 43],
can be directly plugged-in to any existing architecture and
improve its performance. However, unlike deformable con-
volutions, D2Conv3D works with 3D models and can be
used effectively for segmentation tasks in videos. In addi-
tion, the modulation mechanism used in D2Conv3D does
not need additional supervision from a teacher network as
in DCNv2 [43].

Video Processing using 3D Convolutions: Videos can be
interpreted as 3D data with the third dimension being time.
To leverage temporal context effectively, video classifica-
tion networks [18, 19, 30, 33] successfully use 3D-CNNs
and show their superior performance. However, unlike seg-
mentation tasks, these networks do not need large resolu-
tion feature maps, and hence the increase in computational
overhead caused by 3D-CNNs is still manageable. Recent
works in the field of Unsupervised Video Object Segmen-
tation [16, 24], which target foreground-background seg-
mentation, have also adapted 3D-CNNs to improve the seg-
mentation performance. Hou et al. [16] uses an encoder-
decoder architecture based on a variant of 3D-CNNs called
R2plus1D [32], and insert an ASPP after the last layer of
the encoder. However, they adopt a relatively shallow net-
work to compensate for the additional computation needed
by ASPP, which in turn affects the final performance. Ma-
hadevan et al. [24] on the other hand employ a much deeper
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channel-separated 3D-CNN [31] as backbone with much
fewer parameters in combination with their novel 3D Global
Convolutions and 3D Refinement modules in the decoder,
and achieve state-of-the-art results. In this paper, we show
that augmenting [24] with D2Conv3D further improves the
network performance even with significantly less training
data.

Instance Segmentation in Videos: Multi-instance Seg-
mentation in Videos has recently emerged as a popular field
due to its applicability in autonomous driving and robotics.
Some of the popular tasks in this domain are Video Ob-
ject Segmentation (VOS) [6, 25], Video Instance Segmen-
tation (VIS) [37], and the more recent Occluded Video In-
stance Segmentation (OVIS) [28]. Here the primary goal
is to segment all object instances in a video and associate
them over time. For VIS and OVIS, there is an additional
task of classifying the predicted tracks into one of the pre-
defined object categories. Multi Object Tracking and Seg-
mentation (MOTS) [34] is another similar task that focuses
on autonomous driving scenes and requires segmenting and
tracking cars and pedestrians in these scenarios.

Popular methods [37, 34, 44, 40, 23] that tackle the
aforementioned tasks typically first generate image-level
instance proposals, and then associate them either by us-
ing multiple cues such as optical flow and re-id, or by
learning some kind of pixel affinity based on attention
mechanism [44, 23]. Most of these methods employ 2D
dilated convolutions in the backbone, and process each
frame separately, thereby not effectively making use of the
larger temporal context. Bertasius et al. recently proposed
MaskProp[4], which modifies Mask R-CNN [15] with a
mask propagation branch to adapt it to videos The features
from the middle frame of an input video clip are aligned
with the remaining frames using learnt spatial offsets simi-
lar to [5]. Unlike D2Conv3D, the mask propagation branch
in MaskProp only operates on two frames, and it does not
use learnt temporal dilation. STEm-Seg [1] is another ar-
chitecture that is relevant to our work. It processes an input
video clip and generates spatio-temporal embeddings that
can be directly clustered to obtain temporally consistent in-
stance segmentation masks. STEm-Seg is a bottom-up ap-
proach, and uses a decoder comprising of entirely 3D con-
volutions for this purpose. In this paper, we show that by
plugging in D2Conv3D to just the decoder of STEm-Seg
further improves its performance.

3. Method

Our proposed D2Conv3D predicts a dilation scaling fac-
tor and a modulation value for every pixel in the input fea-
ture map. Before explaining this in detail, we will first
briefly recap the details of existing 2D deformable convo-
lutions [11, 43] in Sec. 3.1:

3.1. Deformable Convolutions in 2D

Let X ∈ RH×W denote the feature map for an image
with resolution H × W (we ignore the channel dimension
for ease of notation). Let X(p) denote the value of X at
coordinates p = (py, px). Furthermore, let W denote the
weights of a given convolutional kernel with K entries, and
let S ∈ RK×2 denote the sampling region for the convolu-
tion. E.g. for a standard 3× 3 convolution, K = 9, and the
sampling region S = {(−1,−1), (−1, 0), ..., (1, 0), (1, 1)}.

In deformable convolutions [11], this sampling region is
shifted by a set of offsets predicted for every point in X
which we denote with ∆S ∈ RH×W×K×2. Zhu et al. [43]
additionally also predict a set of modulation parameters
M ∈ RH×W×K . If we let Y denote the feature map ob-
tained after applying the deformable convolution, then the
value of Y at coordinates p0 is calculated as follows:

Y(p0) =
∑
pn∈S

M(p0,pn) ·W(pn)·

X(p0 + pn+∆S(p0,pn))

(1)

Here, M(p0,pn) and ∆S(p0,pn) are used to denote
the modulation value and sampling offset, respectively, pre-
dicted for point p0 in X at sampling location pn in the ker-
nel. Thus, deformable convolutions are able to dynamically
attend to spatial locations outside of the fixed sampling re-
gion S which standard convolutions are bound to follow.

Note that Eq. 1 is a generalization of the standard convo-
lutions operation: if ∆S(p0,pn) = 0 and M(p0,pn) = 1,
the deformable convolution reduces to a standard convolu-
tion. The modulation parameters in M are sigmoid acti-
vated and thus lie in the range [0, 1], but the offsets in ∆S
are unconstrained and may be fractional. Therefore, bi-
linear interpolation is applied to sample the input feature
map [11, 43]. Points outside the feature map are assumed
to have a value of 0.

3.2. D2Conv3D - Dynamic Dilated Convolutions

The fixed grid structure of convolutions imposes useful
inductive bias for computer vision tasks due to the regular
grid structure of rasterized images. However, convolutional
filters cannot adapt to changes in the underlying geometry
of a scene. By contrast, deformable convolutions can adapt
to changes in scene geometry, but lose the inductive bias im-
posed by the fixed grid structure of a standard convolution
kernel.

For video tasks, the size of the temporal dimension of
an input spatio-temporal volume is usually orders of mag-
nitude smaller than the spatial dimensions. This means
that a trivial extension of DCN [11, 43] to the 3D (spatio-
temporal) domain often results in sampling locations that
lie outside the spatio-temporal volume of the feature map.
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Figure 2: Average percentage of sampling locations outside
the input volume during inference on DAVIS’16.
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Figure 3: Architecture of the D2Conv3D block. fd and fm
are the names of the convolution layers which produce D
and M, respectively.

D2Conv3D on the other hand, strikes a compromise be-
tween these two types of convolutions: it maintains the grid
structure of a convolutional kernel, but allows the kernel to
be dilated dynamically and independently along each of the
three dimensions. Furthermore, compared to DCNv1 and
DCNv2, sampling locations predicted by D2Conv3D are
better aligned with the input feature. This is shown in Fig. 2,
where it can be seen that D2Conv3D generates far less out
of bounds sampling locations. We refer to the supplemen-
tary material for further analysis of out-of-bounds sampling
behaviour.

Architecture. In the 3D spatio-temporal domain of tem-
poral dimension T , features can be redefined as X ∈
RT×H×W , the sampling region of a convolution as S ∈
RK×3, and the point coordinates p = (pt, py, px). E.g. a
3× 3× 3 convolution has K = 27 entries.

Our proposed D2Conv3D is a novel type of convolu-
tion that keeps the grid structure of normal convolutions
while applying learnt dilations, and can be applied to spatio-
temporal features. In contrast to deformable convolu-
tions [11, 43] that learn K additive offsets for the sampling
region, we learn 3 multiplicative factors, one each for the
(t, y, x) dimensions, and apply them to the coordinates in

the sampling region S. D2Conv3D can thus be seen as di-
lated convolutions with dynamically learned dilation rates.
We will henceforth use the term ’dilation map’ to refer to the
set of dilated rates predicted for X, i.e. D ∈ RT×H×W×3.

To predict the dilation map, we input feature map X to
a standard 3 × 3 × 3 convolution fd followed by an elu
activation function [10] and addition by 1:

D = 1 + elu(fd(X)) (2)

This forces the values in D to lie in the range [0,∞).
We found that simply applying a ReLU activation to fd(X)
frequently results in zero gradients. By contrast, the formu-
lation in Eq. 2 produces more well-behaved gradients dur-
ing training, and also better results during inference (see
Sec. 4.4).

Separately, a 3 × 3 × 3 convolution fm is applied to X
followed by sigmoid activation to produce the modulation
map M ∈ RT×H×W×K (c.f . [43]). The value of the output
feature map Y at point p0 with D2Conv3D is then calcu-
lated as follows:

Y(p0) =
∑
pn∈S

M(p0,pn) ·W(pn)·

X(p0 + (pn ·D(p0)))

(3)

Here, with some abuse of notation, we use pn · D(p0)
to denote the multiplication of the sampling location coor-
dinates pn with the tuple of 3 dilation rates in D at point
p0.

Fig. 3 illustrates the architecture of a D2Conv3D block,
which comprises the actual D2Conv3D layer, and also the
two layers and activations required to produce M and D.
Note that, similar to Eq. 1, D2Conv3D is also a general-
ization of the convolution operation - if the modulation pa-
rameter and dilation rates are unity, D2Conv3D reduces to
a standard convolution. Moreover, it can also specialize
to a 2D, 1D, or point-wise convolution by predicting one
or more dilation rates as zero. It is therefore possible to
use an D2Conv3D block as a drop-in replacement for 3D
convolutions in existing pre-trained networks without mod-
ifying their behavior at the start of training. This can be
done by simply copying the existing kernel weights to the
D2Conv3D layer, and initializing the weights and bias pa-
rameters in fd and fm with zeros.

3.3. Qualitative Analysis

The dilation rates and modulation values predicted by
D2Conv3D when it is used as an intermediate layer in a
video object segmentation network are illustrated in Fig. 4
and Fig. 5. The visualizations shows the mean dilation rates
(second row) and mean modulation values (third row). It is
evident that the network learns to use different dilation rates
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Figure 4: Qualitative results on DAVIS’16 [25]. Depicted are results from our model (top row), mean predicted dilation
factors (middle row), and mean predicted modulation values. Lighter pixels denote higher values. Dilation factors are highest
on the object, while modulation values are highest on the object boundary. Left sequence is dance-twirl, right sequence is
horsejump-high.

to distinguish the foreground object from the background.
Dilation rates are highest inside the object, medium on the
object borders, and zero in the background. The modulation
values, on the other hand, are highest on the object bound-
aries. This indicates that the network mostly focuses on
refining the edges of the segmentation mask.

4. Experiments on Video Saliency
To justify the efficacy of D2Conv3D, we apply it as a

drop-in replacement for convolution layers in the 3D CNN
architecture proposed by Mahadevan et al. [24]. Subse-
quently, we conduct several ablations and also compare our
results to existing state-of-the arts. The experimental eval-
uation is performed on the validation set of the DAVIS’16
Unsupervised Video Object Segmentation benchmark [25].
The task here is to perform foreground segmentation of the
’salient’ regions of the video. Here, saliency is subjectively
defined as regions which undergo motion changes signif-
icant enough to capture the attention of the human eye.
Note that even though the word ’unsupervised’ occurs in
the benchmark name, this is a fully supervised task where
labeled training data is provided.

4.1. Network Architecture

We build on the baseline network architecture proposed
by Mahadevan et al. [24] which has a compact encoder-
decoder architecture composed entirely of 3D convolutions.
It accepts an input video clip and outputs a foreground prob-
ability map for each pixel in the input clip. The encoder
is an efficient channel-separated 3D variant of ResNet-
152 [31] from which feature maps are extracted at four dif-
ferent spatially downsampled scales (4x, 8x, 16x, 32x). The
decoder is made up of three so-called Refinement modules
which upsample the given input feature map and combine it
with the encoder feature map at the corresponding scale. To
process arbitrarily long videos, the input video is split into

multiple 8-frame clips with an overlap of 3 frames between
successive clips. The output probability maps for the over-
lapping frames are subsequently averaged to get the final
pixel foreground probabilities. We refer the reader to [24]
for more details of the baseline.

Our Changes. We replace all convolution layers in the
first two Refinement modules with D2Conv3D. These two
modules are the ones which upsample the current feature
map and combine it with the encoder features at the 16x
and 8x spatially downsampled scales. We will henceforth
refer to these modules as rf1 and rf2.

Moreover, we apply GroupNorm [36] to the outputs of
the convolution layers in order to improve the gradient flow
to deeper network layers. It should be noted that D2Conv3D
is slower than a standard convolution, so it is infeasible to
apply it to high resolution feature maps (e.g. at the 4x spatial
scale). We chose rf1 and rf2 as the replacement locations
since this yields a good trade-off between performance and
speed. We found that replacing layers in the encoder only
provides a minor improvement that does not justify the in-
creased computation/memory overhead.

4.2. Training

We initialize the encoder with weights from a publicly
available model which is trained for video action classifica-
tion on Kinetics400 [20] and Sports-1M [19]. The weights
of layers which predict offsets and modulation parame-
ters are initialized to zero. All other weights in the de-
coder are initialized randomly. The network is trained for
20 epochs on 8-frame clips sampled randomly from the
DAVIS’17 [27] training set without any data augmentation.
We use the Lovasz-Hinge loss [2] and train the network us-
ing using the Adam optimizer [21] with a learning rate of
10−5, which is reduced by a factor of 0.1 after 10 epochs.
Additionally, we employ gradient clipping by limiting the
L2-norm of the gradient to a maximum value of 10.
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Variant Mod. J&F FPS Mem. (GB)

Baseline [24] – 82.2 – –
Revised Baseline – 83.5 4.96 1.92

ASPP – 82.6 4.50 1.96
DCNv1 [11] ✗ 84.4 4.41 1.95
DCNv2 [43] ✓ 84.8 4.36 1.96

(I) S (|D| = 1) ✓ 84.2 4.49 1.94
(II) S (|D| = 2) ✓ 84.3 4.46 1.94
(III) S+T (|D| = 3) ✗ 85.0 4.46 1.93
(IV) S+T (|D| = 3) ✓ 85.5 4.46 1.94

Table 1: Ablation on offset modality. Runtime and
memory were measured during inference on an NVIDIA
GTX1080ti. Mod: Modulation, S: spatial, S+T: spatio-
temporal

4.3. Ablations on Deformations

We report the results of our first set of ablations in Tab. 1.
The most comparable baseline setting from [24] which uses
the same (pre-)training data as we do achieves a J&F score
of 82.2. For a fair comparison, we re-train this baseline with
our training settings and added normalization layers. This
’Revised Baseline’ achieves a J&F score of 83.5.

ASPP. Here, we replace the convolution layers in rf1 and
rf2with ASPP blocks [7], which comprise multiple dilated
convolutions in parallel, but with a fixed dilation rate. Do-
ing so actually reduces the J&F score from 83.5 to 82.6.

Deformable Convolutions. Next, we use 3D extensions of
existing deformable convolutions in rf1 and rf2. Using
DCNv1 [11] improves the J&F by 0.9% over the revised
baseline (83.5 → 84.4), while using DCNv2 [43] provides a
1.3% improvement (83.5 → 84.8). This clearly shows that
dynamically adapting the convolution sampling locations is
beneficial for video segmentation tasks.

D2Conv3D Variants. Finally, we replace the convolutions
in rf1 and rf2 with variants of dynamic dilated convo-
lutions. In (I), a single dilation rate is predicted for the
two spatial dimensions, fixing the temporal dilation to 1.
This improves the J&F from 83.5 in the revised baseline
to 84.2, but still lags behind DCNv1 and DCNv2. In (II) we
allow different dilation rates for the two spatial dimensions,
but the temporal dilation remains fixed. Doing so yields an
insignificant improvement of 0.1% J&F over variant (I).

In variant (III), we predict separate dilation rates for the 3
spatio-temporal dimensions, but do not predict modulation
parameters. This variant achieves 85.0 J&F which is 1.5%
higher than the revised baseline (83.5), and 0.6% higher
than DCNv1 variant (84.4) which also does not use modula-
tion parameters. Finally, variant (IV) is the full D2Conv3D
with modulation parameters (as explained in Sec. 3.2). This
achieves a J&F score of 85.5 which is 2% higher than the

Activation None 1 + ReLU ReLU 1 + elu

J&F 83.8 83.9 85.1 85.5

Table 2: Ablations on dilation map activation function.

revised baseline, and 0.7% higher than the second-best per-
forming DCNv2 variant. The fact that variant (IV) achieves
a 1.8% higher J&F compared to variant (II) shows the ef-
fectiveness of the dynamic temporal dilation rate predicted
by the network.

In light of these results, we can see that for video seg-
mentation tasks, D2Conv3D out-performs 3D extensions of
existing deformable convolutions despite having fewer pa-
rameters (our dilation map D has 3 channels, whereas the
offset maps for DCNv1 and DCNv2 have 81 channels for a
3× 3× 3 convolution). This justifies our earlier claim that
D2Conv3D allow the network to adapt to geometric scene
variations in the input features while retaining the useful in-
ductive bias associated with the grid shaped structure of a
convolutional kernel.

4.4. Ablations on Dilation Activation Function

Tab. 2 examines the effect of using different activation
functions to predict the dilation map D. Using no activa-
tion achieves a J&F score of 83.8. Note that this setting
allows the network to predict a negative dilation rate, which
mirrors the convolution kernel along that dimension. ’1 +
ReLU’ restricts the range of dilations to [1,∞). Looking at
Fig. 4, we see that the network often specializes D2Conv3D
to a point-wise convolution for background regions by pre-
dicting very small dilation rates (close to zero). Since ’1 +
ReLU’ disallows such behavior, the J&F reduces by 1.2%
to 83.9 compared to the 85.1 achieved by just applying a
ReLU. Finally, our chosen ’1 + elu’ activation (85.5 J&F)
out-performs ReLU (85.1 J&F) by 0.4% due to improved
gradient flow for small dilation rates.

4.5. Comparison with State of the Art

Tab. 3 shows the results of our method (baseline [24]
with D2Conv3D) in comparison to existing state-of-the-art
approaches on the validation set of the DAVIS’16 Unsu-
pervised Video Object Segmentation. Our method achieves
85.5 J&F using a clip overlap of 3 frames during infer-
ence. If this overlap is increased to 7 frames, the J&F
increases to 86.0 at the cost of slower run-time.

Our method out-performs the current state-of-the-art RT-
Net [29] (85.2 J&F) by 0.8% even though RTNet uses
CRF post-processing and optical flow as an external cue.
In fact, almost all other works either train on significantly
more data [1, 24], or use additional performance improve-
ment cues such as optical flow [29], CRF postprocess-
ing [35, 22, 29] or other heuristics [38, 41]. By contrast, we
use only the DAVIS’17 dataset for training and use no other
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Figure 5: Qualitative results on OVIS [28]. Depicted are results from our model (top row), mean predicted dilation factors
(middle row), and mean predicted modulation values. Left side: embedding decoder. Right side: semantic segmentation
decoder.

Method J&F J -mean F-mean

3D-CNN [16] 77.8 78.3 77.2
AGNN∗‡ [35] 79.9 80.7 79.1
COSNet‡ [22] 80.0 80.5 79.5
STEm-Seg∗ [1] 80.6 80.6 80.6
ADNet∗§ [38] 81.1 81.7 80.5
MATNet† [42] 81.6 82.4 80.7
DFNet∗§ [41] 82.6 83.4 81.8
3DC-Seg∗∗ [24] 84.5 84.3 84.7
RTNet†‡ [29] 85.2 85.6 84.7

Ours 85.5 84.9 86.0
Ours (dense) 86.0 85.5 86.5

Table 3: Quantitative results on the DAVIS’16 unsuper-
vised validation set. †Optical flow ‡CRF post-processing
∗Multi-scale inference ∗∗large-scale pretraining §heuristic
post-processing

external cues, augmentations or post-processing techniques.
Also note that our F score (86.5) is significantly higher than
the second-highest (84.7), indicating that D2Conv3D can
produce highly accurate object boundaries.

5. Multi-Instance Segmentation in Video

To show the generalization capability of D2Conv3D, we
evaluate on four other benchmarks involving multi-instance
segmentation in videos.

5.1. Network Architecture

We extend the network architecture of STEm-Seg [1],
which is a single-stage approach that segments multiple ob-
ject instances by clustering per-pixel embeddings in a given
input video clip. STEm-Seg also has an encoder-decoder
architecture, but unlike [24], it only has 3D convolutions in
the decoder. For our experiments, we replace the convolu-
tion layers in the two ’deepest’ blocks of the decoder (which

process the 32x and 16x down-sampled feature maps) with
D2Conv3D. Furthermore, in order to reduce training time,
we use a lighter ResNet-50 encoder backbone compared to
the ResNet-101 used in the original paper [1]. All other
details, including the training schedule, are kept identical.

5.2. Benchmarks

We compare the performance of STEm-Seg enhanced
with D2Conv3D on four popular, challenging benchmarks
for multi-instance segmentation in videos. These are briefly
described below:

KITTI-MOTS. KITTI-MOTS [34] is an extension of
the popular KITTI dataset for Multi-Object Tracking
(MOT) [13] which requires pixel-precise object masks as
opposed to bounding boxes, hence the name MOTS (Multi-
Object Tracking and Segmentation). It contains 21 lengthy
videos captured from a moving vehicle wherein the task is
to segment and track all car and pedestrian object instances.
Performance is primarily assessed using the ’sMOTSA’
measure [34], which is an extension of the CLEAR MOT
metrics [3] to account for pixel-precise segmentation masks.

DAVIS’19 Unsupervised. The DAVIS 2019 Unsuper-
vised Video Object Segmentation benchmark [6] requires
all salient objects in the video to be segmented and tracked
over time. The training and validation sets comprise 60 and
30 videos, respectively. Similar to the DAVIS’16 Unusper-
vised benchmark, the evaluation metrics here are the J and
F scores, which are averaged into a single J&F metric.
For this benchmark however, the J&F is computed sepa-
rately for each object instance.

YouTube-VIS. The YouTube Video Instance Segmentation
dataset [37] consists of 2,883 videos with a total of more
than 130k object instances. Here, in addition to segmenting
and tracking object instances over time, a class label (from
one of 40 known classes) also has to be assigned to each
predicted instance. The evaluation measure is mean Aver-
age Precision (mAP).
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Car Pedestrian
Conv Type sMOTSA MOTSA MOTSP IDS sMOTSA MOTSA MOTSP IDS

Baseline 66.6 76.6 87.5 67 38.5 54.4 77.1 33
DCNv1 68.7 78.8 87.7 79 35.4 51.1 76.0 54
DCNv2 67.5 77.7 87.6 86 38.7 54.2 76.5 28
D2Conv3D 69.7 80.0 87.6 66 42.6 58.3 76.7 46

Table 4: Performance improvements on KITTI MOTS. Baseline is STEm-Seg [1] with a ResNet50 backbone.

Conv Type J&F J -mean F-mean

Baseline 63.4 60.3 66.5
DCNv1 [11] 63.2 59.7 66.6
DCNv2 [43] 64.6 61.0 68.2
D2Conv3D 64.6 60.8 68.5

Table 5: Performance improvements on DAVIS’19. Base-
line is STEm-Seg [1] with a ResNet50 backbone.

Dataset Conv Type mAP AP50 AP75 AR1 AR10

YVIS

Baseline 30.6 50.7 33.5 31.6 37.1
DCNv1 [11] 31.7 50.8 34.0 31.9 37.8
DCNv2 [43] 29.4 48.1 31.8 30.4 36.1
D2Conv3D 32.3 51.3 34.7 32.2 38.1

OVIS

Baseline 14.3 31.5 12.4 10.2 20.7
DCNv1 [11] 15.9 34.0 13.2 10.8 22.4
DCNv2 [43] 14.9 31.6 13.8 10.5 21.5
D2Conv3D 15.2 33.8 13.7 10.6 22.2

Table 6: Performance improvements on YoutubeVIS
(YVIS) and OVIS. Baseline is STEm-Seg [1] with a
ResNet50 backbone.

OVIS. Occluded Video Instance Segmentation [28] com-
prises 5,233 videos with labeled masks for 25 known object
classes. The dataset is similar to YouTube-VIS in that it
also uses mean Average Precision (mAP) as the evaluation
measure, but is more challenging since it comprises longer
videos where objects undergo significant occlusion.

5.3. Results

We compare the results of STEm-Seg with D2Conv3D
against the original baseline [1], and also against the case
where 3D extensions of DCNv1 [11] and DCNv2 [43] are
used instead of D2Conv3D. On all four benchmarks, us-
ing D2Conv3D in the decoder improves the results over the
baseline, whereas DCNv1 and DCNv2 perform inconsis-
tently, sometimes even degrading performance.

On the MOTS task (Tab. 4), using D2Conv3D leads to a
significant performance increase. For the car class, DCNv1
and DCNv2 improve the sMOTSA score over the baseline
by 2.1 and 0.9, respectively, whereas D2Conv3D yields a
more profound improvement of 3.1. For the pedestrian
class, D2Conv3D improves the sMOTSA score over the

baseline by 4.1 (38.5 → 42.6), whereas DCNv1 actually re-
duces the sMOTSA by 3.1 (38.5 → 35.4) and DCNv2 yields
only a minor 0.2 improvement.

On DAVIS’19 (Tab. 5), D2Conv3D improves the J&F
to 64.6, which is 1.2% higher than the baseline (63.4).
The 3D extension of DCNv2 achieves similar performance,
while DCNv1 performs slightly worse than the baseline.
Both D2Conv3D and DCNv2 significantly improve the F
measure, which indicates that modulating kernel weights
improves the networks ability to accurately predict the con-
tours of object instances.

On YoutubeVIS and OVIS (Tab. 6), D2Conv3D im-
proves over the baseline by 1.7% and 0.9% mAP, respec-
tively. This indicates that D2Conv3D improves segmenta-
tion quality for complex scenes with several occluded ob-
jects. DCNv1 improves result on YouTube-VIS by 1.1%
mAP and achieves an even greater improvement on OVIS,
where it boosts the mAP from 14.3 to 15.9, outperforming
D2Conv3D by 0.7%. On the other hand, DCNv2 improves
over the baseline on OVIS, but performs worse on Youtube-
VIS. We note that our training schedule for OVIS may be
sub-optimal since OVIS was not evaluated in the original
paper [1] and we simply used the same training setup and
hyper-parameters as for YouTube-VIS.

6. Conclusion
In this paper, we presented D2Conv3D, a new type of

dynamic 3D convolution, and justified its efficacy by ap-
plying it to two different network architectures and five dif-
ferent video segmentation tasks. Furthermore, we showed
that D2Conv3D out-performs 3D extensions of existing de-
formable convolutions because it experiences fewer out-of-
bounds sampling locations and preserves the useful induc-
tive bias associated with rectangular convolutional kernels.
Future work could explore shifting the kernel center posi-
tion, and additional types of kernel shape deformation.
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