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Abstract

In this paper, we tackle sound localization as a natural
outcome of the audio-visual video classification problem.
Differently from the existing sound localization approaches,
we do not use any explicit sub-modules or training mecha-
nisms but use simple cross-modal attention on top of the
representations learned by a classification loss. Our key
contribution is to show that a simple audio-visual classifi-
cation model has the ability to localize sound sources accu-
rately and to give on par performance with state-of-the-art
methods by proving that indeed “less is more”. Further-
more, we propose potential applications that can be built
based on our model. First, we introduce informative mo-
ment selection to enhance the localization task learning in
the existing approaches compare to mid-frame usage. Then,
we introduce a pseudo bounding box generation procedure
that can significantly boost the performance of the existing
methods in semi-supervised settings or be used for large-
scale automatic annotation with minimal effort from any
video dataset.

1. Introduction
We live in an environment full of audio and visual sig-

nals. Human perception has been developed to recog-
nize semantic information from raw signals and understand
cross-modal relations. In order to achieve human-like per-
ception, modeling of audio-visual modalities is essential.
For this reason, the audio-visual learning field is growing
fast based on successful advancements in audio [19] and vi-
sual [25, 41, 18] recognition.

There are a vast amount of video data piled on the web.
However, most audio-visual datasets are not annotated, and
the annotation process is labor-intensive. Thereby, most
of the research on audio-visual learning is based on self-
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Figure 1: Localizing Sound Sources by Classifying
Videos. Sound localization appears as an outcome of video
classification model without any explicit training for this
task. The audio and visual representations learned during
training are used to find sounding objects in the scenes.

supervised or weakly supervised learning with category la-
bels to avoid a fine-grained annotation. One key idea in
audio-visual learning is to utilize audio-visual correspon-
dence with the assumption that audio and visual infor-
mation from the same source, i.e. video, are correlated.
Since audio-visual correspondence is annotation-free infor-
mation, learning by audio-visual correspondence has been
adopted in a broad range of audio-visual studies.

One typical and challenging problem in audio-visual
learning is to identify a sound source in a visual scene,
which is also known as sound source localization. A simple
and straightforward way to learn sound source localization
is to use supervision in form of sounding source segmenta-
tion mask or bounding box. However, such fine-grained an-
notation is hard to be obtained in a large scale. Recent stud-
ies introduce self-supervised or weakly-supervised learning
based on audio-visual relations such as cross-modal atten-
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tion [39, 40, 7, 27], temporal matching [43, 34, 37, 36, 35],
or semantic correspondences [38] along with audio-visual
correspondence.

In this paper, we show that a very simple audio-visual
classification model works surprisingly well on sound
source localization without any additional architectural
modification, e.g., sub-modules for localization, or complex
learning mechanisms. The classification model is trained
with cross-entropy loss. Then we apply cross-modal at-
tention to audio-visual features extracted from the classi-
fication model to predict sound source location (Figure 1).
We quantitatively validate that the sound localization per-
formance of a classification model performs on par with the
state-of-the-art methods.

The strong localization capability of a classification
model implies that the learned representation is suitable for
sound source localization. We further utilize the represen-
tation of a classification model to guide sound source lo-
calization learning in the existing methods. To this end,
we propose informative moment selection and pseudo label
generation (in the form of the bounding box) methods from
the representation of a classification model. The purpose
of the moment selection is to sample moments in a video
that captures informative audio-visual events, filtering out
uninformative or semantically mismatching moments. The
localization result of a classification model is converted to
a bounding box form to be used as a pseudo label for semi-
supervised sound source localization training in the existing
approaches. We validate a sound source localization model
guided by a classification model (via generated bounding
boxes) gains a significant performance improvement and
outperforms the competing methods with a sizable margin.

Our findings imply that semantic supervision, i.e. class
label, alone is strong information to achieve a competi-
tive sound source localization performance. This observa-
tion raises a research question on weakly supervised sound
source localization models whether the localization perfor-
mance is dominantly resulting from a classification loss or
from architectural modifications and task-oriented loss de-
signs.

The main contributions of this work are summarized as
follows:

• We show that a simple audio-visual classification
model is highly capable of localizing sound sources
and it performs on par with state-of-the-art methods.

• An informative moment selection using audio-visual
features of the classification model is proposed to en-
hance sound source localization learning.

• Pseudo labels generated by localization results of a
classification model in the form of bounding boxes
significantly improves the performance of the existing
sound source localization models.

2. Related Work

2.1. Audio-visual representation learning

The goal of audio-visual representation learning is to
learn a general representation that achieves high perfor-
mance when adapted to downstream tasks such as im-
age, audio, video classification or sound source localiza-
tion. For the purpose of large scale learning without anno-
tations, representation learning has been progressed based
on a self-supervised learning. A series of studies have
shown that audio and visual contents in a video are cor-
related, thereby a visual representation learned by sound
prediction [33] or audio representation distilled from visual
representation [4, 12] show strong performance. Later, a
variety of joint audio-visual representation learning meth-
ods are proposed with an assumption that there is a se-
mantic [2, 20, 31, 30] or temporal [32, 23] correspondence
between them. The representation learned jointly by a
simple audio-visual correspondence [2] are shown to be
more effective than the representations without joint learn-
ing [4, 33]. However, simply learning by audio-visual cor-
respondence by instance discrimination ignores similarity
of audio-visual contents between samples, i.e., videos, lead-
ing to a sub-optimal representation. In order to mitigate this
issue, clustering [20], sampling [31], weighting [30], and
hard mining [23] are proposed.

2.2. Sound source localization

Similar to audio-visual representation learning, the local-
ization of the sound source has been progressed by exploit-
ing audio-visual correspondences. In [3], an audio-visual
representation is learned by binary classification whether
the features from each modality corresponds or not. An-
other widely used approach for sound source localization is
the cross-modal attention [39, 40, 7, 27]. The cross-modal
attention [39, 40] is used to refine visual features by fea-
ture weighting with sound source probability map. Later,
the attention based methods are improved by intra-frame
hard sample mining [7] and iterative contrastive learning
with pseudo labels [27]. The aforementioned methods
localize sound source regions but do not inference cate-
gory information. In order to understand the category of
sound sources, [21] propose to use an object dictionary
and train a model with distribution matching. In addi-
tion to the localization, there has been an attempt to lo-
calize sounding objects and recover the separated sounds
simultaneously, also known as the cocktail party prob-
lem [17, 29]. The separation of sound mixture is achieved
by predicting masks of spectrogram guided by visual fea-
tures [9, 51, 50, 13, 49, 10, 1, 52, 14, 45, 42]. Furthermore, a
number of recent papers are presented on audio-visual nav-
igation for a given sound source [6, 11].
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Figure 2: Algorithm overview. The model consists of video and audio backbone networks that extract video-level features,
zV and zA, for each modality. Modality heads take these features as input based on the modality type. After training, sound
localization responses are obtained by the dot product of the visual activation from the last convolution layer of the video
network, Vt, and the audio embedding on every temporal time step t.

2.3. Video classification

Various deep learning based approaches have been pro-
posed for video classification (or action recognition) by
incorporating visual and audio modalities. The effort to
boost an accuracy of video classifiaction has been pro-
posed using attention mechanism [28], sub-sequence sam-
pling by saliency [24], mid-level fusion [22], hierarchi-
cal synchronization [48], knowledge distillation [15] and
gradient blending [46]. However, these advancements in
video classification are based on architectural modifica-
tion [28, 22, 48] and complex learning and inference strat-
egy [15]. Although there are advanced video classification
approaches, in this paper, we focus on a basic audio-visual
classification model trained by classification loss to investi-
gate the sound source localization capability of a classifica-
tion model. Our classification model follows the simplified
version of [46] where the architectural modification or com-
plex loss design is not required.

2.4. Weakly supervised audio-visual learning

Unlike a video classification task, spatial localization
(sound source localization) or temporal localization (audio-
visual event localization) require a fine grained annotation
in the form of masking, bounding box, or time stamps.
However, this is not an affordable annotation cost when the
data size is large. Weakly supervised audio-visual learning
aims to alleviate the annotation cost by leveraging category
information, i.e. video tags. Audio-visual event localiza-
tion methods are proposed using a global and local feature
fusion [26], and bi-directional attention matching between
global and local features [47]. Some other works tackle

both spatial and temporal localizations [43, 34, 37, 36, 35]
by exploiting off-the-shelf object and sound proposals [34],
cross-modal attention with a recurrent model [43, 37, 36],
or use Grad-CAM [38] to localize visually semantic re-
gions [35]. Unlike the recently proposed weakly supervised
models, we investigate that a simple classification model
without any task-specific architecture design performs sur-
prisingly well on sound source localization, competing with
state-of-the-art methods.

3. Approach
3.1. Problem Formulation

The goal of our model is to localize sound sources that
are visible in a video as a natural outcome of video classifi-
cation. Most of the existing works [1, 2, 3, 7, 27, 35, 39, 40]
use either audio-visual correspondence or contrastive learn-
ing based methods to reveal the sounding object location
and the correlation between audio and visual signals. Dur-
ing these training schemes, they incorporate positive and
negative samples.

Different from the aforementioned methods, we investi-
gate the possibility of sound localization as a result of multi-
modal (audio-visual) video classification without using any
explicit sub-modules or training mechanisms and we have
only access to a video-level class information.

3.2. Architecture

Similar to [46], we build our multimodal video classi-
fication model with individual modality heads, e.g., audio,
vision, audio-visual, and multi-task learning as in Figure 2.
Differently, we design our backbone two-stream networks
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to represent the entire video with temporally more fine-
grained features (per-frame) for each modality.

Backbone Networks. Given video clip V with its corre-
sponding audio A, our backbone networks extract features
for each modality. We use a two-stream architecture similar
to other existing audio-visual learning works. Our backbone
networks take an entire sequence of video and audio frames
and extract features per frame for each modality. The video
network is a spatio-temporal network, similar to MCx [44],
that is the mixed convolution networks starting with 3D
convolutions and followed by 2D convolutions. It takes a
video V of T frames as input and generates a video embed-
ding zV with dimensions T×D. The audio network, similar
to [1], takes the log-mel spectrogram A of 10T frames and
passes it through 2D convolution layers to extract an audio
embedding zA with dimensions T ×D similar to video fea-
tures. Thus, there is a corresponding audio feature for every
video feature and we do not need any replication or tile op-
erations to match audio and video feature dimensions.

Modality Heads. As shown in Figure 2, our model con-
tains individual modality heads. Defining i the index of
each head, the head takes zV and zA from backbone net-
works and outputs video-level prediction Oi. We explain
each modality head detail below.

• Audio-Visual Head. This head is designed to inte-
grate audio and visual signals by performing temporal
aggregation to each frame features from both modal-
ities. The integrated audio-visual feature zav can be
computed as follows:

zav =
1

T

T∑
t=1

concat(zVt , z
A
t ), (1)

where concat denotes the concatenation of two vec-
tors and t denotes time step. The multi-modal head
feature zav is obtained by temporal aggregation over
all time steps T by average pooling.

• Vision Head. Vision head assigns zero-valued au-
dio features for each visual frame feature and applies
Eq. (1) to compute zvision.

• Audio Head. Conversely to the vision head, audio
modality head assigns zero-valued visual features to
each audio frame feature and computes zaudio with
Eq. (1).

3.3. Training

With the proposed backbone networks and modality
heads, we obtain different representations from each modal-
ity head by given identical inputs. To make each head pro-
duce the final C-class prediction output Oi, letting i be the

index of each head, separate fully-connected layers are used
as in Figure 2. Thus, we propose multi-task joint learning
with multiple objectives. This training methodology uses
individual heads with their loss functions and supervisory
label, where the same single label is given for each task.
Considering this as a classification problem, cross entropy
loss for each modality head is computed as:

Li(Oi, y) where Oi = FCi(zi), (2)

where i ∈ {vision, audio, av}, L is the cross entropy
loss, FC is the linear classifier, O and y are the prediction
output and ground-truth label respectively. The final learn-
ing objective of the network is minimizing the sum of indi-
vidual losses:

Lmulti = Lvisual + Laudio + Lav. (3)

where each loss has equal weight. This type of losses
(auxiliary losses) are commonly used in multi-task learning
schemes and we use it for multimodal learning as in [46].

3.4. Sound Localization

After training our model with the video classification
objective, we leverage backbone features, zV and zA, to
have sound localization results as a natural output without
any explicit sound localization operation or module during
training. Considering backbone features have T × D di-
mensions, sound localization responses can be computed
as αt = Vt·zAt , Vt∈RH′×W ′×D is the visual activation
from the last convolution layer of video backbone net-
work and zAt is the audio embedding at moment t within
a video [40, 1]. As recent work [7] uses 3 sec. audio seg-
ments around mid-frame, we compute the 3 sec. time av-
erage of localization responses around the reference time t.
The final sound localization result is computed as follows:

αfinal =
1

|K|
∑
i∈K

αi, (4)

where K = [t − d

2
, t +

d

2
] and d is the duration, e.g., 30

for 3 seconds when the video frame rate is 10fps. It is note-
worthy that our sound localization computation is different
than Grad-cam [38, 5] based approaches as it is cross-modal
attention by using learned audio and visual features.

4. Experiments
4.1. Datasets

We train our method on VGGSound [8] dataset and test
on VGG-SS [7] and SoundNet-Flickr [39] test sets for quan-
titative analysis. Additionally, AVE [43] is used for train-
ing and visualization for qualitative analysis only. VG-
GSound is a recently released audio-visual dataset contain-
ing around 200K videos. The AVE is an audio-visual

3311



Method cIoU AUC

Attention10k [39] 0.185 0.302
AVEL [43] 0.291 0.348
AVobject [1] 0.297 0.357
LVS [7]† 0.303 0.364
Ours 0.322 0.366

Table 1: Quantitative results on the VGG-SS test set.
All models are trained on VGG-Sound 144k and tested on
VGG-SS. † is the result of the model released on the offi-
cial project page and the authors report 3% drop in cIoU
performance comparing to their paper.

dataset formed for audio-visual event localization. Datasets
that are used for quantitative analysis, VGG-SS and Flickr-
SoundNet-test, have spatial localization annotations and
contain around 5K and 250 samples, respectively.

4.2. Implementation Details

The input audio is 10 seconds. We sample audio data
with 16kHz sampling rate. As recent studies[48, 1] do,
we compute log-mel spectrogram with size of 1000 × 80.
We use MC3-18[44] as the video network and it takes 100
frames, 10 sec. video at 10fps, of size 112 × 112 as in-
put. Thus, T = 100 time steps in Section 3.1. We train
the network using SGD optimizer with starting learning rate
1 × 102 and reduce it by a factor of 10 if validation accu-
racy does not increase for 3 epochs. See Supp. for network
architectures.

4.3. Quantitative Results

We first compare our sound localization results with ex-
isting approaches on the VGG-SS dataset. All of the meth-
ods that are used for comparison are trained with the same
amount of training data. As shown in Table 1, even though
our method is not trained with the sound localization ob-
jective, it still outperforms (0.303% vs. 0.322%) or gives
comparable results to explicitly trained sound localization
methods. We extend the comparison to another existing
method [43], which is similar to our proposed method, that
uses video labels but also incorporates audio-visual atten-
tion module into training. Our proposed architecture gives
a higher performance in this comparison as well. These
results justify that the proposed method has the ability to
localize sound sources as a natural outcome of the model
without explicit learning mechanisms or specialized mod-
ules in any video based dataset, i.e. VGGSound and AVE.

In order to see the effect of architectural design choices
and training multi-modalities with single optimization, we
report ablative evaluation in Table 2. As [46] explains that
naive training of multi-modalities jointly by late fusion is
not optimal for video classification task, our ablation study

Method cIoU AUC

Single Multi-Modal 0.307 0.355
Shared FC 0.313 0.359
Individual FCs 0.322 0.366

Table 2: Ablation Study. We investigate the effects of ar-
chitectural choices in the proposed method.

also shows similar trend on sound localization task that Sin-
gle Multi-Modal setting performs lower than multi-task set-
tings. Single Multi-Modal setup here is designed as using
the only audio-visual head with single classification loss op-
timization by disabling audio, and vision heads in Figure 2.
Additionally, we try another setting that uses multi-task
learning with multi-modality heads, as in Eq. (2), but using
one Shared FC layer rather than Individual FCs. Since this
architecture is still not a single optimization model, it per-
forms better than Single Multi-Modal but gives lower per-
formance than our design choice as one Shared FC layer
suffers from handling different modality outputs at once.

4.4. Qualitative Results

In qualitative comparisons, we mainly visualize the lo-
calization response of our method and compare it with other
existing methods based on the used test set.

VGG-SS. We visualize the attention maps of VGG-SS
test samples in Figure 3 and compare them with the state-
of-the-art [7] method on this dataset. Our results are more
accurate in comparison to the competing approach. As seen
in the orchestra example that includes both orchestra people
behind and the musician who is playing cornet, our method
focuses on the location that cornet sound comes from as it
is the sound source. However, LVS [7] attends to a wider
area that contains the entire stage.

AVE. Our algorithm can work on any video dataset with
label information. Thus, we train our network on the
AVE [43] dataset as well. However, since this dataset does
not contain spatial localization annotation, we can only
show the qualitative results. Figure 4 shows qualitative re-
sults compare to the method that this dataset is introduced.
As it can be seen, not only our results are more accurate,
they also cover a wider area of the sounding objects.

Other Results. At first glance, it may look like our
method attends to the moving areas or spots in the visual
scene rather than the context of the sound. It should be
noted that our network outputs accurate results even on
video clips that have a fixed frame during the entire video as
in Figure 5. This means that our method localizes a visual
region guided by sound regardless of a motion cue.
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Figure 3: Sound Localization Results on VGG-SS and comparison with LVS [7].

Figure 4: Sound Localization Results on AVE and comparison with AVEL [43].

Figure 5: Sound Localization Responses on Fixed-frame
Videos. These video samples contain one fixed frame dur-
ing the entire 10 sec. video. Results show that our network
does not only focus on moving spots but object contexts as
well.

5. Applications

5.1. Informative Moment Selection

Recent work [7] uses the center frames of the videos
for sound localization training on the VGGSound dataset.
However, using a mid-frame can bring noisy, non-
informative frames/segments for training as in Figure 6. Ex-
amples in the first row show that the audio segment corre-
sponding to the mid-frame may not contain an informative
audio signal. Also, the second row depicts that mid-frame
may contain inappropriate visual signals. Thus, knowing
which frame/segment in the video is useful and informa-

tive for sound localization training is an important issue to
tackle. Thus, we pose a problem to select an informative
time step within a video to use as an alternative to a mid-
frame in training.

Our backbone networks enable us to have audio and vi-
sual features at fine temporal time steps within a video. We
can select a time step that has the highest correlation score
between audio and visual features and use this time step as
an alternative to the mid-frame. The assigned task here is
performed by finding the time steps (moments) that have
the highest correlation scores between audio and visual fea-
tures, zV and zA respectively. Correlation scores are com-
puted by pairwise dot products between audio and visual
embeddings [16, 1] at the same time step and computed as
Sav[t] = zVt ·zAt . Later, time steps in Sav are sorted by
top-k(Sav) and alternative frames to mid-frame is selected.
In this paper, we used top-1 moment for training. Figure 6
shows some of the selected moments.

To show that these alternative selected moments to mid-
frames are beneficial, we report sound localization results
as a comparison on Flickr-SoundNet and VGG-SS datasets.
We use the publicly available method [39] as a baseline by
modifying its audio and visual networks, replacing them
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Bowling impact Playing squash

Figure 6: Qualitative results of mid-frame vs. our selected moment. LVS[7] uses middle frames for training. The red
dashed lines are the mid frame moment, and the blue depicts our selected moment. The black dashed boxes contain the proper
information in the audio modality. The first row shows the samples that mid frames have insufficient audio information, e.g.,
silence or noise. The second row visualizes the mid frames with in-appropriate visual signals whereas our selected moments
are proper.

Training frame Test set cIoU AUC

Top-1(Ours) VGG-SS 0.264 0.318
Mid-Frame VGG-SS 0.256 0.315
Top-1(Ours) Flickr 0.764 0.597
Mid-Frame Flickr 0.749 0.590

Table 3: Quantitative results of Top-1 moment vs. mid-
frame. The modified [39] model is trained on VGGSound
with mid-frame or Top-1 moment selection and tested on
VGG-SS and Flickr-SoundNet test sets.

with ResNet-18. See Supp. for details. We fix the training
set to be VGGSound with the full data. Table 3 shows the
results. Top-1 selected moments give 1.5% higher accuracy
compare to the mid-frame inputs on Flickr-SoundNet. Sim-
ilarly, alternative moment inputs perform better than mid-
frame on the VGG-SS dataset though the performance gap
is smaller (0.8%). Our analysis confirms that our proposed
approach has ability to pick informative moments within a
video to use in training phase of existing sound localization
methods.

5.2. Automatic Bounding Box Generation for
Sounding Objects

Having high quality bounding box annotations for
sounding objects is very important not only for evaluating

audio-visual localization algorithms but also for enabling
semi-supervised learning approaches [39, 40]. However, as
in other fields, having annotations on a large scale is time-
consuming and costly. Automating this process, even with-
out human level precision, will be useful for further research
in this community such as it can provide a good starting
point for faster manual annotations or provide large number
of samples for semi-supervised methods. We use our au-
dio and visual features’ correlations for automatic bounding
box generation on VGGSound [8].

Instead of using visual object detectors and manual im-
age annotations as in [7, 39, 40], we use the attention map
results of informative moments, i.e., top-k time steps that
are computed based on the correlation of audio and visual
features in the entire video. To get more accurate bounding
boxes, we select the top-1 time step that has the highest cor-
relation score and compute the attention map. Then, bound-
ing boxes for sounding objects are generated as follows: 1)
binarize the attention map with thresholding and it results
in connected segments of pixels, and 2) draw a bounding
box around the single largest segment. We emphasize that
some of these automatically computed annotation boxes are
not as precise and accurate as they can be in human annota-
tion (second row of Figure 7). However, they are sufficient
to use in sub-tasks, such as helping human annotators for
faster annotation or semi-supervised sound localization. We
show qualitative results of our automatic bounding box gen-
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Figure 7: Qualitative Results of Automatic Bounding Box Generation. Our method accurately generates bboxes for
sounding objects to use in sub-tasks, such as faster human annotation and semi-supervised sound localization.

Training set Test set cIoU AUC

w/o bbox VGG-SS 0.264 0.318
w/ bbox VGG-SS 0.382 0.393
w/o bbox Flickr 0.764 0.597
w/ bbox Flickr 0.805 0.617

Table 4: Performance evaluation of VGG-SS and Flickr-
SoundNet test sets with auto generated bboxes. The
modified [39] model is trained on full VGGSound together
with 2.5K pseudo-bboxes generated from our proposed
method. Results show that our auto generated bboxes sig-
nificantly boost the performance.

eration in Figure 7. As it can be seen, giving these bounding
boxes to the annotators can be helpful in reducing down the
time of annotation drastically.

To further demonstrate the usefulness of our auto gener-
ated bounding boxes, we use bounding boxes in the exist-
ing semi-supervised sound localization approach [39, 40].
Since this kind of learning setup requires a set of super-
vised samples that have ground truth sounding area, it is not
easily applicable to different and new datasets or scaling
up the number of supervised samples requires tremendous
effort. Existing datasets have either only test set with anno-
tation [7] or have supervised training set in a single dataset
with a small amount of data [39]. By using our method, we
can address these shortcomings. Firstly, we automatically
build a new set of samples with pseudo bounding boxes on
recent VGG-Sound dataset. It contains 2500 samples. How-
ever, it can be easily extended to any number. Later, we use
the modified version of [39], introduced in Section 5.1, by
incorporating our auto generated annotations. Table 4 shows
the quantitative results of semi-supervised learning setup.
Even though these boxes are automatically generated, not
as precise as human annotations, they are still useful to give
informative cues to the model in semi-supervised learning
setting as it shows 11.8% and 4.1% improvements on VGG-
SS and SoundNet-Flickr respectively. This shows that our
auto generated bounding boxes are indeed informative and

they can significantly boost the sound localization perfor-
mance of the relatively older methods on standard bench-
marks, and even surpass the state-of-the-art methods. To
the best of our knowledge, there is no other recent work
that provides annotated training samples for the VGGSound
dataset and reports semi-supervised performance on VGG-
SS. It is also noteworthy that our method enables to gener-
ate any number of samples with their bounding box in any
video based dataset.

6. Conclusion

We present a multimodal video classification model that
learns sound source localization as a natural outcome of the
model. Unlike previous sound localization models, we do
not use any explicit training mechanism or sub-module for
this task. However, it achieves on par performance with
state-of-the-art methods. Moreover, we propose interest-
ing potential applications that can be built based on our
model. Firstly, we introduce informative moment selection,
an alternative to mid-frame usage, for enhancing the sound
source localization learning in the existing approaches. Sec-
ondly, we introduce an automatic bounding box generation
ability of our model for sounding objects. This can be po-
tentially very useful to the community as it provides a good
starting point for faster human annotation for dataset con-
struction or use these bounding boxes to boost the perfor-
mance of the existing sound localization methods in semi-
supervised setting. With the moment selection or bounding
box generation, we show that an accurate sound source lo-
calization model can be trained and it leads to significant
performance improvements.

The empirical analyses in our paper demonstrate that cat-
egory supervision with the simple learning process achieves
competitive performance with competing sound source lo-
calization models. This motivates us to take a closer look
at weakly supervised sound source localization methods to
examine whether a dominant learning signal attributes to
category supervision or task-oriented techniques. In future
work, we will analyze the significance of each sound source
localization oriented technique with and without category
supervision.
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