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Abstract

Detecting novel objects from few examples has become
an emerging topic in computer vision recently. However,
current methods need fully annotated training images to
learn new object categories which limits their applicabil-
ity in real world scenarios such as field robotics. In this
work, we propose a probabilistic multiple-instance learn-
ing approach for few-shot Common Object Localization
(COL) and few-shot Weakly Supervised Object Detection
(WSOD). In these tasks, only image-level labels, which are
much cheaper to acquire, are available. We find that op-
erating on features extracted from the last layer of a pre-
trained Faster-RCNN is more effective compared to previ-
ous episodic learning based few-shot COL methods. Our
model simultaneously learns the distribution of the novel
objects and localizes them via expectation-maximization
steps. As a probabilistic model, we employ von Mises-
Fisher (vMF) distribution which captures the semantic in-
formation better than Gaussian distribution when applied
to the pre-trained embedding space. When the novel objects
are localized, we utilize them to learn a linear appearance
model to detect novel classes in new images. Our extensive
experiments show that the proposed method, despite being
simple, outperforms strong baselines in few-shot COL and
WSOD, as well as large-scale WSOD tasks.

1. Introduction
In this paper we address the problem of N -way, K-shot

Weakly Supervised Object Detection (WSOD), and develop
a method with the following capabilities.

Suppose that we are given a set of N ×K previously un-
seen images consisting of K images of objects from each of
N previously unknown (novel) classes. These will be called
the “support images.” Each training image has image-level
labels, indicating which classes are present in the image.
Typically, the number of novel classes N may be up to 20
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Figure 1. Few-shot WSOD problem. Similar to the few-shot clas-
sification problem, the input training set (support set) only con-
tains image labels (car, cow and person are novel classes in
this example). The model learns to detect the target objects in the
test (query) image. Few-shot WSOD bridges few-shot classifica-
tion and object detection by learning to detect the novel objects
in the query images while only needs image-level labels for the
support images.

and the number of training images K from each class may
be 5 or 10, but there is no requirement that the number of
images in each novel class are equal.

Given this small number of support images, the algo-
rithm learns to find instances of (possibly multiple) objects
from any of the novel classes in a query image, and will put
a bounding box around all such positive instances. As
summarized in Fig. 1, our system provides a flexible ob-
ject detection algorithm that requires a very small training
set of images of novel objects, where each image is anno-
tated only with image-level labels. As such, it is suitable
for classifying and detecting objects given only the images
provided, for instance, by an internet image search for im-
ages of novel classes. In comparison to supervised few-shot
object detection approaches, e.g., [40, 39, 38, 23], where
manually labeled bounding box annotations are required,
this is a more realistic setting to learn an object detector on
novel examples with applications like robotics [15] or video
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Figure 2. The feature maps are shown as the shape of their tensors. Q, M , and C denote the number of queries, support images, and
classes respectively. A pre-trained Faster-RCNN (shown in Fig. 3) on the base dataset is used to extract P proposals from each input
image. The embeddings are grouped based on their corresponding image-level labels and each group is fed into a separate Common-
Object Localization (COL) module. COL module (shown in detail on the right) receives proposal embeddings of images of a class (Mc

is the number of images within class c) and simultaneously estimates the common class direction θc and concentration κc along with
bounding-box level labels wc via EM steps. The Object Detection module uses the top labels of wc to learn an appearance model for
each novel class in the support set. This appearance model is then tested on the testing proposals to detect novel objects in the query set.

object segmentation [21].
We first use a Faster-RCNN network to produce bound-

ing box proposals of the possible regions containing an ob-
ject with their associated feature vectors. This network is
pre-trained on a fully annotated base dataset, with bounding
boxes of objects of various classes; the base dataset does not
contain any of the novel training classes.

Our approach has two main modules: 1) A common ob-
ject localization (COL) module is used first to localize the
novel objects in the support images. 2) An object detection
module to learn novel object appearances from the anno-
tated support images. We explain each of these modules in
more details below.
COL module. To localize the novel objects in the support
images, COL finds the common object in the K images pro-
vided for each of the N novel classes. The input to the com-
mon object detector is the set of normalized feature vectors
from the images of a novel class c. This set of normalized
feature vectors corresponds to the bounding boxes provided
by the proposal network. An EM algorithm on these feature
vectors determines the mean direction and concentration of
a probability distribution on the sphere (von Mises-Fisher
(vMF) distribution) that is most likely to favour a common
object representative from each image. The closest feature
from each image identifies the bounding box containing the
common object. A distribution for a background class is
also trained, using the base dataset to steer the COL away
from selecting background objects. This common object
detector is run separately on the images from each of the N
novel classes.
Detection module. Once the novel objects are found by the
COL module, these annotations are used to train a box clas-
sifier for each novel class c. The classification is done by a
2-class (contains / does not contain the object) classification

algorithm, once again working on normalized feature vec-
tors. These bounding boxes (and their associated features)
are labeled as either positive or negative for containing the
object of the novel class. The positive bounding boxes are
those that are determined by the COL module to contain the
common object from class c; the negative samples are cho-
sen from proposals selected from the images of the other
classes. Thus, the classifier for class c is trained to distin-
guish features corresponding to bounding boxes containing
an object of class c from those that do not.

Finally, at test time, a query image is passed through the
proposal network to provide bounding boxes (and their fea-
tures). These bounding boxes are then evaluated by each
of the classifiers to determine whether they contain a novel
class object or belong to the background.

The proposed method is summarized in Fig. 2. We make
several contributions and important observations: 1) We
propose a simple yet powerful COL that uses directional
statistics for modeling. Our COL module can be built on
top of off-the-shelf pre-trained Faster-RCNN models with-
out extra parameters. We observe that by using feature vec-
tor directions in our probabilistic model, we can better cap-
ture the semantic information compared to a Gaussian prob-
abilistic model. To our knowledge, employing directional
statistics for multiple-instance learning is new. 2) We em-
ploy a detection module to extend COL to few-shot WSOD.
To the best of our knowledge few-shot WSOD has not been
studied in the literature before. 3) Despite its simplicity,
our method outperforms sophisticated few-shot COL algo-
rithms [28, 12] on PASCAL VOC [6], MS COCO [19],
and ILSVRC detection [3] benchmarks. In WSOD, our
method outperforms recent knowledge-transfer based ap-
proaches [34, 11] in both few-shot and large-scale settings.
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Figure 3. Feature Extraction. We use a pre-trained Faster-RCNN
on the base dataset to extract P proposals from each input image.
A ℓ2 normalization layer is employed to project all the features
onto the unit hypersphere.

2. Details of Methodology
2.1. Few-shot WSOD and COL Tasks Definition

The goal of our few-shot WSOD is to learn a model that
predicts bounding boxes of query set images Dtest when
given a set of support images Dtrain. Let L be the set of
classes in the support set. The support set consists of image-
label pairs (I,y) ∈ Dtrain where image-level label y ⊆ L is
a subset of classes present in the image I1. The support set is
typically a small K-shot, N -way set sampled from a large
dataset Dnovel with a variety of novel classes Cnovel. The
sampling process for few-shot WSOD follows rules that are
similar to few-shot classification problems [16, 32]. A set
of N classes L ⊂ Cnovel, called target classes, are first sam-
pled. Then, for each target class c ∈ L, K images con-
taining at least an instance of class c are sampled without
replacement to create the support set Dtrain. The query set
Dtest is sampled similarly, but unlike the support set, query
labels also contain bounding box annotations in addition to
the image-level labels, as the goal is to detect target objects
in the query data. These bounding box annotations are only
used for evaluation. Few-shot COL [28, 12] is a special case
of few-shot WSOD where there is only one target class in
the support set, i.e., N = 1.

For pre-training, the algorithm has access to a large
dataset Dbase with a set of base classes Cbase. Typi-
cally, there is no image in common between the base and
novel datasets. Moreover, the set of base classes is dis-
joint from the set of novel classes used in evaluation, i.e.,
Cbase ∩ Cnovel = ∅.

2.2. Pre-training and Feature Extraction

We pre-train a Faster-RCNN [26] on the base dataset
for bounding box and feature extraction. The overall ar-
chitecture is shown in Fig. 3. To train the network, we
use the original bounding box labels within the base dataset
to define the Region Proposal Network (RPN) and second-
stage losses of the Faster-RCNN. We adapt a class-agnostic
bounding box regression model in the second-stage to get

1In contrast to few-shot image classification, few-shot WSOD images
can have multiple labels.

one bounding box per feature proposal regardless of the
number of base classes. Once trained, we use the trained
Faster-RCNN to extract P bounding box proposals B ∈
RP×4 and their corresponding d-dimensional features F ∈
RP×d from each input image I. We also apply an ℓ2 nor-
malization layer to project all the features to the unit hy-
persphere. As discussed later, the normalization step is im-
portant as our model uses the cosine similarity measure for
better generalization.

We need the feature extracted from the full image
bounding box to initialize our COL method. This is accom-
plished by manually appending the full image bounding
box to the box proposals of the RPN, thus its feature
is extracted by the Faster-RCNN second-stage feature
extractor. We denote the first proposal in B and F , the
complete image bounding box and its feature, respectively.

2.3. Statistical Model Assumptions

Since the support set Dtrain provided to the learner is
limited, it is crucial to employ proper learning biases in the
model to combat overfitting. Inspired by the success of pro-
totypical networks [32], we design our model based on the
assumption that features of each object class form a single
cluster in the embedding space. We propose to use direc-
tional data based on the von Mises-Fisher (vMF) distribu-
tion, which arises naturally when each cluster is distributed
on the unit hypersphere. Formally, we assume features of
each foreground class follow von Mises-Fisher distribution
with mean direction θ and positive concentration parameter
κ

p+θ (x) =
1

Z
exp

(
κθ⊤x

)
s.t. ∥θ∥ = 1 , (1)

where Z is the normalizing constant and input x ∈ Rd is a
unit vector, i.e., ∥x∥ = 1 or equivalently x ∈ Sd−1. In Sec-
tion 2.4, we propose an expectation maximization algorithm
to estimate the mean direction and concentration parameter
of a novel class from the support set.

We could also use Gaussian distribution for our model
which has an analogous effect to using Euclidean distance.
We empirically show that vMF provides superior results to
Gaussian distribution when using pre-trained features. Our
results support related works in supervised few-shot learn-
ing [24, 8] where using the cosine similarity outperforms
the Euclidean distance measure. The underlying reason for
this is well-studied by Wang et al. [37]; Softmax loss used
in the pre-training tends to create a ‘radial’ feature distri-
bution where direction specifies the semantic classes while
magnitude decides the classification confidence.

Additionally, a background class distribution is learned
to steer the learner toward objects and away from back-
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Figure 4. Example of COL across three images. Data points on
the unit sphere represent feature proposals extracted from all input
images. Features extracted from each image are colored the same
(shown in white, gray, black colors). Background score function
u−
ω(x) is also shown on the unit sphere where blue and red indi-

cate the highest and lowest background scores, respectively. The
COL unit goal is to find a common object representation θ (shown
by green arrow) which is close to at least a white, gray, and black
data point. Note that the area marked with dashed circle is also
close to proposals from all three images but direction θ is favored
as it has a lower background score.

ground proposals. Let

p−ω(x) =
1

U
u−
ω(x) , (2)

represent the background class distribution where U is a
constant normalizer. As the base dataset provides a reach set
of examples for learning the background model, the back-
ground distribution is learned from the base dataset and re-
mains fixed when evaluating on WSOD examples sampled
from the novel data.

To learn the background distribution, we collect a set
of background proposals with low intersection-over-union
(IoU) score (< 0.3) to the objects within the base dataset
and use maximum likelihood estimation in [2] to find the
parameters of vMF distribution for the background data.

2.4. Few-shot COL

We first explain the method for few-shot COL with a sin-
gle novel common object within the support set and em-
ploy it for few-shot WSOD later. As shown in Fig. 4, COL
module’s goal is to find the common object representation
across a set of images with one novel object in common. Let
F = {Fi}Mi=1 denote the Faster-RCNN feature proposals
extracted from the input images where M is number of im-
ages. Each proposal has a (latent) binary label that indicates
whether the proposal tightly encloses the common object.
Namely, zij ∈ {0, 1} is the label of the j-th proposal in the
i-th image. Starting from an initial guess for the direction θ
and concentration κ parameters of the novel common class,
the algorithm alternately refines the statistical model param-
eters and label estimations in an expectation-maximization

optimization framework. We present the update rules here
and defer the derivations that bring interesting insights into
the proposed method to ??.

In the E-step, the algorithm uses the current model pa-
rameters to estimate soft labels w, where wik ∈ [0, 1] is
the soft label for the k-th proposal within the i-image, via
attention over the proposals within the image

wik =
p+θ (Fik)/p

−
ω(Fik)∑P

j=1 p
+
θ (Fij)/p

−
ω(Fij)

(3)

where Fij ∈ Sd−1 is the feature of the j-th proposal in Fi.
Recall that u−

ω is our trained background scoring function
introduced in Eq. (2). In this step, the proposal with a high
cosine similarity to the current direction θ and a low back-
ground score gets the highest label value within each image.
For the vFM distribution, E-step is done using a linear layer
and a softmax (lines 3-5 in Algorithm 1).

In the M-step, the direction θ and concentration κ are
updated given the new labels

θ ← r

∥r∥
, κ← d∥r∥

where r =
1

M

M∑
i=1

w⊤
i Fi =

1

M

M∑
i=1

P∑
k=1

wikFik ,
(4)

where d is the feature dimension. Note that as we only need
to know the multiplication of κ and θ, the update rule sim-
plifies to κθ ← dr. Intuitively, one can see x̃i = w⊤

i Fi

as the common object representation within the i-th image;
x̃i is estimated by computing the weighted average over all
the proposals where the contribution of proposals are con-
trolled by their soft labels. Given x̃i, the novel class direc-
tion θ is estimated as the mean of the common object rep-
resentations, similar to the prototypical networks [32], and
the estimated mean is projected back onto the unit hyper-
sphere. Updating κ is more involved and is numerically dif-
ficult where d and κ are large. We propose several approx-
imations in ?? and show that the approximation in Eq. (4)
achieves the best performance in practice.

Algorithm 1 summarizes our COL method. The prob-
lem is solved in an iterative fashion by alternating between
E-step in Eq. (3) and M-step in Eq. (4) until convergence.
Following the common practice in WSOD [25, 34, 22], we
use the bounding box feature extracted from the complete
support images to initialize our model. Recall that we use
the first proposal in Fi to represent the complete image fea-
ture. Thus, the initialization step can be written as

(κθ)init ←
d

M

M∑
i=1

Fi1. (5)

We remark that our initial direction is similar to what is used
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Algorithm 1: Common Object Localization
Input: F = {F1, . . . , FM}, u−

ω

Output: Common class mean direction θ and concentration κ
1 κθ ← d

M

∑M
i=1 Fi1 // Initialization

2 for t← 1 to T do // Iterations
3 for i← 1 to M do // E-step
4 oij ← κθ⊤Fij − log u−

ω(Fij) ∀j ∈ [1, P ]
5 wi ← softmax(oi) // Update Soft labels

6 r← 1
M

∑M
i=1 w

⊤
i Fi

7 κθ ← dr // M-step

as class mean in prototypical networks [32]. What makes
us different is EM steps that refine the estimated mean by
focusing on the common objects and discarding background
parts of the image.

Finding the Common Object in the Query Set For a
single feature proposal x ∈ Sd−1 extracted from query im-
age I, our goal is to estimate the class label c ∈ {0, 1}which
indicates if the query proposal tightly encloses the target
object. Given the estimated common object mean θ, con-
centration κ, and the background class distribution p−ω , we
compute conditional class distribution function P (c|x) ∝
P (c)p(x|c) where P (c) and p(x|c) are the class prior and
likelihood, respectively. Assuming P (c = 1) = α, and us-
ing the background and vMF foreground class likelihoods,
the conditional class distribution is written as

P (c|x) ∝

{
exp

(
κθ⊤x− log u−

ω(x)
)

c = 1

λ c = 0 ,
(6)

where λ = (1−α)/α×Z/U encapsulates all the constants
(Z is vMF normalizer.) Equivalently, proposal x can be
classified via a softmax over the logits

logit(c|x) =

{
κθ⊤x− log u−

ω(x) c = 1

log λ c = 0 .
(7)

We set λ = 1 for all the COL experiments. Changing λ
adjusts the confidence values but keeps the order of the final
scores the same, therefore, its value does not affect the mean
Average Precision (mAP) or Correct Localization (CorLoc)
metrics.

2.5. Few-shot WSOD

For the task of WSOD where we have more than one
target class, our COL algorithm is first used to label in-
stances of each class. Once the support set is labeled, an
off-the-shelf few-shot object detection model can be used
for learning novel classes. Inspired by the success of the
recent few-shot object detection method in [38], we employ
a single layer cosine similarity classifier for learning.

Learning is performed on one target class c ∈ L at a
time. Let vc ∈ Rd denote the classifier weight for class c.
The classification score for this class is computed as

sc(x) =
τv⊤

c x

∥vc∥
, (8)

where x ∈ Sd−1 is the ℓ2 normalized feature proposal ex-
tracted by our Faster-RCNN model and τ is temperature hy-
perparameter. For class c, the input training set Dtrain is
split into positive images Dc

train of images that have the tar-
get class and negative setDtrain\Dc

train, images without the
target class. Then, we label Dc

train by running the COL al-
gorithm on the positive images and select the proposal with
the highest soft label from each image as the common object
representative. All the proposals in the negative set are used
as negative examples. Finally, vc is learned by minimizing
the sigmoid cross entropy loss over the positive and nega-
tive proposals. We use the L-BFGS optimizer with strong
Wolfe line search for faster convergence.

At the test time, test proposal x from the query set Dtest

is scored using the classifiers learned for each novel class.

3. Related Work
Multiple-instance learning methods such as MI-SVM [1]

have been extensively used for large-scale weakly super-
vised object detection. In a standard multiple-instance
learning framework, latent bounding box labels and the
appearance model are estimated jointly in an alternating
optimization process with the constraint that at least one
bounding box should be positive in each image. Al-
ternating optimization combined with the modern deep
neural network architectures is a dominant technique in
the literature showing the state-of-the-art performance in
WSOD [25, 34, 9, 31]. Ilse et al. [13] propose an attention-
based deep multiple-instance learning architecture where
bag label probability distribution is learned by neural net-
works. More related to our work are a class of WSOD
algorithms that use knowledge transfer from a fully an-
notated base dataset to aid WSOD for a set of novel
classes [25, 34, 11, 4]. In [34], a class-agnostic object-
ness score is learned from the base dataset and is utilized to
guide the multiple-instance learning optimization by steer-
ing toward objects and away from the background. These
methods rely on a relatively large dataset to learn novel cat-
egories.

Co-localization [18], co-segmentation [17, 35], and co-
saliency [43] methods have the same kind of output as
weakly-supervised object localization but they typically do
not utilize negative examples. More recently, several meth-
ods were developed for localizing the common novel ob-
ject under the few-shot setting [28, 12, 29]. Shaban et
al. [28] learn a pairwise potential function between propos-
als of the base classes and use this pairwise metric to solve
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a minimum-energy labeling problem over a bidirectional
graphical model to co-localize novel classes. SILCO [12]
finds the common object by computing a dense similarity
map between each support image and the query while only
exploring the similarity among support images using their
coarse image-level features via a global average pooling.
Although using global average pooling reduces the compu-
tation, ignoring the dense similarities among support im-
ages negatively affects the common object localization.

Few-shot learning has gained a lot of attention in image
classification [5, 27, 20, 7, 36]. Prototypical networks [32]
use the mean of embedded support examples to represent
novel class prototypes and classify query examples by com-
paring their distances to the class prototypes. More re-
cently, Qi et al. [24] propose a weight imprinting process
to learn the prototypes on the unit hypersphere. Learning
on the unit hypersphere has been employed by other few-
shot learning algorithms for better generalization [8] and to
stabilize the training [38]. Most recently, Yang et al. [42]
propose to make the distributions more Gaussian by trans-
forming the features of the support set and query set using
Tukey’s Ladder of Powers transformation [33]. It is shown
that Tukey’s normalization significantly improves the per-
formance of few-shot prototypical learning. As the scope
of these methods is limited to supervised learning, we com-
pare different normalizations and transformations used in
the literature for the weakly-supervised task of COL in Sec-
tion 4.4.

4. Experiments
We evaluate the proposed method in few-shot COL and

WSOD problems. We compare our work (vMF-MIL) with
Greedy Tree [28] and SILCO [12], two state-of-the-art
methods for the task of few-shot common object localiza-
tion.

To the best of our knowledge there is no WSOD al-
gorithm for few-shot setting in the literature. However,
WSOD with knowledge-transfer methods [25, 34, 11, 4] are
closely related to our work. We describe a slightly modified
version of [34], called MI-SVM in our experiments, in ??,
and discuss its differences to the proposed method. The MI-
SVM baseline is not applicable to the COL problem as it
always requires negative examples for training. To compare
MI-SVM against other COL methods, we provide MI-SVM
with an extra set of K negative images that do not have the
target class when sampling the support set.

The original version of Greedy Tree selects only one pro-
posal from each image in the support set and does not per-
form detection on a new query image. To make it compat-
ible with other methods, we add a simple inference step to
Greedy Tree. Let O = {x1, . . . ,xM} denote the set of se-
lected proposals, one from each image in the support set.
We score feature proposal x from the query image as a sum

of its pairwise similarities to all the selected proposals, i.e.,
score(x) =

∑M
j=1 r(x,xj), where r is the learned pairwise

similarity function by Greedy Tree. The computed score
measures the negative change in the energy value if x were
added as a new node to the graph labeling problem used
in [28].

In all the methods, we first hold out 20 base classes for
validation and hyperparameter tuning and then re-train on
all the base classes with the best found parameters. For
evaluation, we compute the correct localization (CorLoc)
rate [4] and mean Average Precision (mAP) with IoU over-
lap threshold of 0.5 on the query image.

4.1. Common Object Localization

We use the official implementations of SILCO and
Greedy Tree for this experiment. To have a fair comparison
with SILCO, we employ Faster-RCNN with a VGG16 [30]
backbone architecture for feature extraction in both Greedy
Tree and our method.

We evaluate on a popular MS COCO 2014 [19] split used
in few-shot object detection methods [38, 23, 40, 41, 14],
named COCO60. In the COCO60 split, 60 categories
disjoint with the PASCAL VOC dataset are used as base
classes and the remaining 20 classes are used as novel
classes. This allows us to also perform a cross-dataset eval-
uation on the PASCAL VOC07 [6] test set. We evaluate the
performance of each method over 2000 randomly sampled
tasks.

Table 1 and Table 2 summarize the results on PASCAL
VOC and MS COCO datasets, respectively. Despite its
simplicity, our method outperforms all the methods by a
large margin, followed by Greedy Tree and SILCO. Specif-
ically, we gain between 10% to 20% relative improvement
in mAP metric against the second best performing method.
The proposed method and Greedy Tree both estimate latent
proposal-level labels of the support images to find the com-
mon object. However, SILCO explores the dense similarity
between each support image and the query image while us-
ing coarse image-level features via a global average pool-
ing to estimate the relation of support images. This exper-
iment confirms that estimating proposal-level labels within
the support images is quite important for common object
localization.

4.1.1 Direct Comparison to Greedy Tree

To ensure a fair comparison, we also compare our common
object localization unit to Greedy Tree by exactly follow-
ing the original experimental protocol in [28]. Their algo-
rithm utilizes a split of the COCO 2017 dataset with 63 base
classes for training and 17 held-out novel classes for testing
the algorithm. The trained model is also tested on a sub-
set of the ILSVRC 2013 detection dataset with 148 novel
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Table 1. CorLoc (top) and mAP (bottom) performance of different few-shot common object localization methods on VOC07 test set. All
of the models are trained on COCO60 and evaluated on a test query with K = 5 images in the support set. The best and second best
performing methods are shown in bold and gray backgrounds respectively. ∗MI-SVM receives K extra negative images.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv CorLoc

MI-SVM∗ [34] 29.4 13.2 53.7 32.7 12.9 70.4 66.4 67.4 15.7 81.6 10.0 67.6 67.1 27.1 10.1 16.7 84.2 38.9 43.5 41.1 42.5
SILCO [12] 51.0 30.3 50.7 34.5 11.3 72.2 63.6 58.9 11.2 86.8 6.7 56.9 51.9 49.2 13.0 16.7 52.6 41.1 46.8 34.2 42.0

Greedy Tree [28] 35.3 21.1 59.7 34.5 24.2 77.8 73.4 61.1 23.1 89.5 15.0 64.7 73.4 25.4 12.8 13.3 100.0 64.2 61.3 46.6 48.8
vMF-MIL (ours) 62.7 42.1 53.7 49.1 6.5 68.5 73.8 69.5 19.4 97.4 36.7 65.7 82.3 40.7 21.7 15.0 94.7 64.2 69.4 31.5 53.2

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

MI-SVM∗ [34] 17.7 7.7 31.6 10.6 4.3 46.5 40.1 53.3 3.6 56.8 3.3 56.3 42.3 17.1 1.7 8.1 37.9 25.9 27.3 19.2 25.6
SILCO [12] 33.0 13.4 34.5 14.8 3.9 48.8 38.4 55.5 4.0 52.8 4.5 54.2 36.3 27.3 3.3 7.7 27.0 31.3 36.7 23.5 27.5

Greedy Tree [28] 26.0 8.7 37.4 11.5 7.5 52.4 47.7 45.8 7.4 61.1 4.5 47.3 50.7 15.6 2.3 5.0 40.0 46.3 47.3 25.7 29.5
vMF-MIL (ours) 36.7 20.6 38.1 14.2 1.9 55.4 50.2 56.5 7.4 71.4 9.5 56.2 63.4 16.8 4.9 3.4 39.3 43.0 51.2 23.0 33.1

Table 2. CorLoc(%) and mAP(%) results of different methods for
the task of common object localization on novel object classes on
the COCO60 dataset with support set size K = 5 and K = 10.
∗MI-SVM receives K extra negative images.

Model K = 5 K=10
CorLoc@0.5 mAP@0.5 CorLoc@0.5 mAP@0.5

MI-SVM∗ [34] 30.5 15.9 33.2 16.2
SILCO [12] 29.7 14.8 31.3 15.8

Greedy Tree [28] 32.7 16.0 33.8 16.4
vMF-MIL (ours) 35.7 19.6 38.2 20.2

classes that have no overlap with the base classes. In Greedy
Tree, a Faster-RCNN with ResNet50 [10] backbone is first
trained on the base classes and used to extract features from
all the images. To allow a fair comparison, we use the same
feature set provided by the authors. To mimic common
object localization during training, we sample tasks with
N = 1 and K = 8 for training.

Similar to [28], we evaluate our model over 1000 ran-
domly sampled tasks each containing K = 8 images with
an object class in common. For each image, the proposal
with the highest soft label in Eq. (3) is returned as the com-
mon object. We report the class-agnostic CorLoc ratio on
COCO and ILSVRC datasets in Table 3 and compare it with
the results in [28]. vMF-MIL outperforms Greedy Tree by
2.20% and 1.75% in MS COCO and ILSVRC datasets, re-
spectively.

Table 3. Class-agnostic CorLoc(%) with 95% confidence interval
of the methods in [28] compared to our method. All methods use
K = 8 positive images for finding the common object.

method COCO ILSVRC13

TRWS [28] 64.53± 1.05 52.95± 1.09
ASTAR [28] 64.54± 1.05 52.89± 1.09

Greedy Tree [28] 64.65± 1.05 53.00± 1.10
vMF-MIL (ours) 66.85± 1.03 54.75± 1.09

4.2. Few-shot WSOD

We train our model on COCO60 for the task of few-
shot WSOD with different N -way, K-shot problems and
compare it with the knowledge-transfer MI-SVM model

described in ?? on PASCAL VOC 2007 and MS COCO
novel classes in Table 4. To highlight the importance of
EM refinement, we also train our model with full image
prototypical initialization without EM refinement. In both
datasets, vMF-MIL outperforms MI-SVM in all the scenar-
ios, demonstrating the strong generalization ability of our
learning approach.

Table 4. mAP(%) of different few-shot WSOD methods on
COCO60 and PASCAL VOC datasets.

Method Dataset N = 5 N = 10 N = 20
K = 5 K=10 K=5 K=10 K=5 K=10

Prototypical Init
VOC07

16.01 17.93 10.56 11.02 5.41 6.72
MI-SVM [34] 17.99 20.27 12.09 13.07 7.04 8.32

vMF-MIL (ours) 21.22 22.01 14.54 15.83 8.83 10.19

Prototypical Init
COCO60

8.90 9.28 4.65 6.07 2.99 3.26
MI-SVM [34] 11.40 11.60 7.30 7.80 2.97 3.70

vMF-MIL (ours) 12.35 13.19 8.53 10.07 4.23 4.85

Iterations

0

10

20

30

40

0 1 2 3 4 10 20

VOC07 COCO60

mAP vs. iterations

Figure 5. mAP(%) vs. number of EM iterations in common object
localization task with K = 5 on COCO60 and VOC07 datasets.
The performance reaches a plateau at step 4.

4.3. Large-Scale WSOD

Although our method is designed for low-shot settings,
it is interesting to evaluate its performance in the standard
WSOD setting as well. Related to our work is transfer
learning approaches for large-scale WSOD [34, 11] with
ImageNet detection as the standard benchmark. Typically,
the first 100 classes are used as the base dataset and the
remaining 100 classes with 65k images are used as novel
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objects. We follow the setup in [34] and use the pre-
trained Inception-Resnet Faster-RCNN model and weights
provided by the authors to extract proposals, features, and
the objectness scores. We apply our EM algorithm to the
extracted features and use u−

ω(x) = α(1−obj(x)) for each
proposal x where obj(x) is the Faster-RCNN objectness
score and α is a hyper-parameter we tuned for the task. To
our surprise, vFM-MIL outperforms [34] in Table 5 while
being about 100× faster. We believe this result can be fur-
ther improved by relaxing some of the assumptions in our
statistical model as overfitting may not be as significant
in large-scale settings. For instance, we can learn a sepa-
rate concentration parameter for each novel class in the EM
steps. Furthermore, we can utilize the novel dataset to up-
date the background scoring function u−

ω . We defer these
improvements and further analysis to the future work.

Table 5. Large-Scale WSOD on ImageNet Detection.
Model CorLoc@0.5 Time (min.)

LSDA (JMLR 2016) [11] 28.8 -
Uijlings et al. (CVPR 18) [34] 74.2 900 (estimated)

vMF-MIL (ours) 76.5 10

4.4. Ablation Study

To understand which parts of the proposed method are
critical for common object localization, we analyzed results
in Table 2 with K = 5 for each of the important compo-
nents of the proposed method in Table 6. These compo-
nents are: initializing θ and κ using features extracted from
the complete image (Prototypical Init), updating θ, updat-
ing κ, and learning background distribution p−ω to steer the
algorithm toward objects. The first entry (#1) in Table 6
shows that there is a huge performance gap when the back-
ground model is not used. This is expected, since without
using the background model it may localize non-object pat-
terns such as grass, water, building, etc. with similar ap-
pearances as the common object. Comparing the third entry
(#3) with #5 and #6 reveals that updating both θ and κ in
the EM refinements is important and that increases CorLoc
by 4.8% and mAP by 6.3%. The fourth entry shows the im-
portance of initialization; the EM steps are only effective if
θ is initialized with the complete image proposal otherwise
EM reaches a low quality local minimum.

The second part of Table 6 shows the advantage of us-
ing vMF to Gaussian distribution in the EM algorithm (see
?? for the details). Tukey’s transformation [33] furthur im-
proves the performance of the Gaussian model but vMF dis-
tribution still exhibits the best performance. We believe this
is because feature vectors’ direction better captures the se-
mantic information.

Finally, we illustrate the performance improvement vs.
the number of EM steps in Fig. 5. In both VOC07 and

Table 6. Ablation study on COCO60 dataset. #1-6 show the im-
portance of initialization, iterative EM updates, and learning the
background model. #7-9 compare different statistical models in
the EM algorithm.

# Random Init Prototypical Init Update θ Update κ p−ω CorLoc mAP

1 ✓ ✓ 1.9 0.6
2 ✓ 22.8 9.3
3 ✓ ✓ 30.9 13.3
4 ✓ ✓ ✓ 30.1 14.2
5 ✓ ✓ ✓ 34.8 18.6
6 ✓ ✓ ✓ ✓ 35.7 19.6

Gaussian Tukey+Gaussian vMF

7 ✓ 29.8 13.9
8 ✓ 34.0 17.3
9 ✓ 35.7 19.6

Iteration 2 Iteration 3Iteration 1

Figure 6. Bounding box adjustments at each iteration for the
common object localization experiment on COCO60 with K = 5.
Only the top prediction in the query image is shown (in pink color)
for each iteration. Ground-truth bounding boxes of the target
classes are shown in green. EM refinements improve the target
object localization in the query image.

COCO60 datasets, mAP reaches a plateau showing that the
algorithm converges quickly. Qualitative results in Fig. 6
depict successful cases where EM refinements improve the
top prediction.

5. Conclusion
We have presented vMF-MIL, a multiple-instance learn-

ing framework to address the problem of few-shot common
object localization and WSOD. vMF-MIL uses a simple in-
ductive bias in learning to combat the overfitting issue in
few-shot learning. Specifically, instances of each class are
assumed to form a cluster on a unit hypersphere, where the
mean corresponds to the class prototype. Our experiments
on few-shot common object localization illustrate the ad-
vantage of our simple approach over several state-of-the-art
methods, improving the few-shot WSOD performance com-
pared with the strong MI-SVM baseline.
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