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Abstract

Camera Selection Decisions (CSD) are highly useful for
several applications in a multi-camera network. For exam-
ple, CSD benefit multi-camera target tracking by reducing
the number of candidate cameras to look for the target’s
next location. The correct candidate cameras, decreases the
number of false Re-ID queries as well as the computation
time. Also, in multi-camera trajectory forecasting (MCTF)
to predict where a person will re-appear in the camera net-
work along with the transition time. These applications
require a large amount of annotated data for training. In
this paper, we use state-representation learning with a rein-
forcement learning based policy to effectively and efficiently
make camera selection decisions. We further demonstrate
that by using learned state representations, as opposed to
hand-crafted state variables, we are able to achieve state-
of-the-art results on camera selection, while reducing the
training time for the RL policy. Along with this, we use a
reward function that helps to reduce the amount of supervi-
sion in training the policy in a semi-supervised way. We re-
port our results on four datasets: NLPR MCT, DukeMTMC,
CityFlow, and WNMF dataset. We show that an RL pol-
icy reduces unnecessary Re-ID queries and therefore the
false alarms, scales well to larger camera networks, and
is target-agnostic.

1. Introduction
Camera networks are pervasive and frequently used for

various visual analytics applications like video surveillance,
crowd behavior analysis, etc. Target tracking is a crucial
task for these applications that aims to determine the po-
sition of a target at all times across the different cameras
of the camera network. The number of cameras at an air-
port, train station, malls, etc. has rapidly increased, which
makes automated tracking an essential task for visual ana-
lytics. Existing methods [30, 23] focus on executing single
camera tracking and re-identification to locate the target in
the camera network. This requires to make a large number
of queries to the camera network and a critical drawback

is large computational cost and degradation in performance
due to false alarms in re-identifying the target. Another
approach [41] is to predict the next camera so that search
space can be reduced. However, such an approach doesn’t
incorporate the indefinite transition time of the target be-
tween cameras. In many scenarios, the camera network
topology is not known, and the tracking algorithm should
be able to track the target in the absence of this knowledge.
For this, camera selection decisions [33] are shown to be an
effective approach for enabling efficient tracking in a cam-
era network. In this paper, we leverage state representation
learning (SRL) to encode the state’s history which helps to
learn a reinforcement learning based policy that achieves
better camera selection performance even on the larger cam-
era networks.

Re-identification (Re-ID) and data-association are con-
ventional ways [30, 20] used to associate individual track-
lets from different cameras to form the multi-camera trajec-
tory of a particular target. The indeterminate and unknown
transition time of the target between two field-of-views
(FOVs) makes this association problem very challenging.
Longer transition times result in more uncertainty about
the target’s location, necessitating more Re-ID queries and
thereby increasing the number of false alarms. These false
alarms are severely detrimental as they lead to incorrect tar-
get association resulting in tracking an irrelevant target. On
the other hand, a false negative from a Re-ID algorithm in
a camera frame may not be detrimental so long as the tar-
get is re-identified in one of the subsequent frames of the
camera. Therefore, to deal with longer transition times, one
could learn to decide at every time step whether to make a
Re-ID query or not, and if the former, which camera feed(s)
to query. Such an intelligent camera selection strategy has
been shown that reducing redundant querying can benefit
the multi-camera tracking performance [23, 19, 33]. We
investigate intelligent camera selection and focus on tack-
ling the problem of camera-handovers1, as we scale to larger
camera networks.

Many approaches for multi-camera target tracking em-

1The words camera-transition and camera-handover will be used inter-
changeably.
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ploy a two-step framework [23, 45, 30, 47]. First, SCT
(Single-Camera Tracking) to find the target’s trajectory
within each camera. Second, ICT (Inter-Camera Tracking),
to associate the SCT trajectories corresponding to the same
identity across camera after the target has transitioned from
one camera’s FOV to another. Previous approaches have
modeled the inter-camera transition time using static dis-
tributions like Gaussian [23] or Parzen window based non-
parametric distributions [19]. However, various factors like
target speed, congestion, etc., may influence the transition
time and make their distribution time-dependent. In [33],
the authors deal with this time-dependence by modeling a
Markov Decision Process (MDP) for intelligent camera se-
lection which uses hand picked state variables to learn a pol-
icy using RL. The learned policy selects cameras for Re-ID
queries, and adds the selected camera in a history variable
until the event of the target being found, upon which the
history variable is reset.

Recently, in [34], the authors pointed out the limitation
of using the exact approach of [33] and use deep-Q learn-
ing (DQN [26]) to alleviate the challenges with larger cam-
era networks. We observe that in the absence of knowl-
edge of the camera topology, the camera history is an im-
portant state variable. It holds information about the se-
quence of previously queried cameras, which influences the
decision of which camera to select for the next query. In
this paper, we argue that hand-crafted state variables are
not representative enough and hinder the scalability of such
an approach. Therefore, we instead propose a state rep-
resentation learning [14] based approach and modify the
state-vector accordingly. A representation helps to learn
the variations and the history of observations in a low di-
mension vector and hence creates a generic state vector.
Our final state vector leverages an LSTM-based autoen-
coder (AE) to summarize the camera history of previously
queried cameras. We further show various advantages of us-
ing a learned state representation, including generalization
across camera-network datasets, accommodating a generic
DQN architecture across datasets (unlike [34]), and most
importantly reduced training speeds.

Our specific contributions are summarized below:

1. We propose a novel method for camera selection deci-
sion using state representation learning (SRL). We use
an LSTM based autoencoder (AE) for latent represen-
tation of the history vector of cameras. We will show
empirically that these representations, as opposed to
hand-crafted state variables, achieve state-of-the-art
results and train faster.

2. Our reward function helps to reduce the amount of su-
pervision in training the policy. We will show that
it achieves comparable performance with the policy
trained in a fully supervised manner.

3. The extensive experiments show that the proposed
method is superior than most state-of-the-art meth-
ods on several real datasets and it is target agnos-
tic. We will also show that it benefits two real appli-
cations, multi-target multi-camera (MTMC) tracking,
and multi-camera trajectory forecasting (MCTF) in a
camera network.

4. We demonstrate the camera selection performance
on four real datasets, NLPR MCT dataset [8],
Duke MTMC dataset [30], WNMF dataset [41], and
CityFlow dataset [43, 27].

2. Related Works
Multi-camera tracking is looked from various viewpoint

in both overlapping and non-overlapping cameras. Works
such as [18, 51, 21, 1, 3] assumed overlapping camera field-
of-views (FOVs). These require camera calibration and
knowledge of camera network topology to obtain the 3D co-
ordinates. But tracking in non-overlapping cameras is more
challenging because non-overlapping cameras are require to
handle the blind spot areas between cameras.

To resolve camera handovers in non-overlapping FOVs,
a few initial works have created a social group model [50]
to associate target tracklets, affinity model [22] of target’s
appearance for inter-camera association. Other works for-
mulate various data association methods [25, 9, 12] to re-
solve camera handovers and use graph [50, 45, 5, 16, 17,
46, 24] based approaches for inter-camera tracking. Spatio-
temporal contextual information [47], clique based meth-
ods [29, 28], part based model [40, 2] are also a few other
common approaches. Many work perform pairwise match-
ing [4, 11, 13, 15, 31, 42] of the templates to form trajec-
tories. Template re-identification [48, 42] approaches are
leading for matching target’s template with other candidate
templates. In this regard, works [19, 25] use the travel time
of the target to estimate the transition time of the camera
handover. Works [23] have estimated a transition time dis-
tribution using a Gaussian distribution. In comparison to
these works, we propose a reinforcement learning based
policy that selects a camera index where the target is likely
to reappear. This policy handles the indefinite transition
time and also reduces the number of search queries.

Recent works for multi-camera target tracking perform
tracking task in a two step framework. First, they perform
single camera tracking (SCT) and then inter-camera track-
ing (ICT) to resolve the camera handover separately. Works
such as [23, 45, 47, 10, 30, 44] use such a two step frame-
work for tracking in multiple cameras. [23] has proposed
an online method using sophisticated features of human ap-
pearance along with segmentation using change point detec-
tion. To perform ICT, they form a camera link model and
estimate the travel time using a Gaussian distribution. Other
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common approaches estimate entry-exit points across cam-
eras [25, 47] and some predict the future trajectory of the
target [41, 35, 37]. Current state-of-the-art in appearance
features is in deep learning based methods to re-identify
a target [48, 30, 20] including deep feature representation
learning, deep metric learning and ranking optimization.
[30] have proposed a weighted triplet loss to learn better
features of target’s appearance. However, their approach
makes a very large number of Re-ID queries to the camera
network and fewer false alarms are crucial for an automated
system [39, 36]. Works in [33, 34, 38, 32] have shown that
camera selections are crucial for efficient target tracking. In
this paper, we use state representation learning with RL that
achieves state-of-the-art results for camera selections. We
will show how RL can be used to train the policy in a semi-
supervised manner.

3. Proposed Method

In this section, we will explain the formulation of camera
selection decisions using Markov Decision Process (MDP),
the neural network model for camera selection policy and
its training.

3.1. Camera Selection as an MDP

We formulate the camera selections as an MDP (Markov
Decision Process) which is defined as a tuple of elements
(S,A, f, R, γ), where S is the state space, A is the action
space, f(st, st+1) is the state transition function, R(s, a) is
the reward function and γ is the discount factor. We model
the camera selection problem as a finite horizon discounted
sum reward problem.
The individual elements of the MDP are described below:
State: In a camera network, we have access to the ini-
tial location (bounding box) of the target in a given cam-
era frame [49, 34]. The location of the target is repre-
sented as (c, b), where c is the camera index (encoded
by a one-hot vector) and b is the bounding box (repre-
sented as [x, y, w, h]>). To include the direction of mo-
tion of the target, we include the deltas of the bounding box
(∆bt = bt − bt−1) in the state vector. To handle inter-
camera transitions of the target, we include a time-progress
variable τ that monitors the timesteps elapsed since the
last time the target was observed. Additionally, we also
maintain a history ht of past actions (camera selections) as
part of the state vector. The final state is given by the set
st = (c, b,∆b, τ, ht). It is worth emphasizing that the cam-
era history in its raw form is a sequence of one-hot encoded
vectors representing the cameras queried, so we use an au-
toencoder model to learn latent embeddings that are fixed-
length representations for this state variable. These repre-
sentations capture the variations in the environment [14]
and hence help to achieve better performance.

Action: The action space is encoded as A =
{0, 1, . . . , N − 1, C×}, where N is the number of cameras
and an action C× is included as a ‘null camera’, suggest-
ing that the target is making an handover and is not visible
in the camera network. The policy selects an action C× to
indicate that no Re-ID queries need to be made.
Reward: We define a reward function for each state action
pair.

rt+1(st, at) =


+1 at = yt & τ > 20
+0.5 at = yt & τ ≤ 20
0.01 at = yt = C×

−1 otherwise

(1)

at is the action taken and yt is the ground truth camera.
τ is the transition time and it is thresholded to distinguish
the occlusions and the camera handovers. We found from
NLPR and Duke datasets that the occlusions were not more
than 2 sec so we threshold this at 20 frames. The camera
handovers lasts for more than 20 frames which are few in
the whole trajectory, hence a higher reward is provided. A
smaller reward value is given for the action C×, which hap-
pens to be the most frequent action for ICT.
State transition function: With st as the state at time t,
the policy selects an action at ∈ A. The next state is up-
dated based on the camera selection. If the target is found
at the selected camera, then the location (c, b) is updated.
If not, then τ is incremented and the last policy decision is
appended to the history ht. The latent representation of ht
is used in the state vector.
Q-learning: In reinforcement learning, an agent interacts
with its environment by executing an action at ∈ A at time t
by which the environment transitions into the next state st+1

and provides a reward rt+1 to the agent. We use Q-value
function Q(st, at) which is the expected discounted sum
reward which the agent receives starting from state st and
taking action at at time t. The optimal Q-values Q∗(st, at)
are defined when an optimal policy π∗ is followed. Our
state-space is continuous and huge and hence we learn a
parameterized Q-values Q∗(s, a|θ) using a neural network.

The optimal Q-values are learned by iteratively updating
the parameters θ using deep Q-learning [26]. An optimal
policy utilizes these Q-values to select an optimal action
given the target current state as:

π∗t (st) = argmax
a

Q∗(st, a) (2)

3.2. System Architecture

The proposed architecture is shown in figure 1. The ar-
chitecture consists of three important parts. First, the auto-
encoder based learned state representation vector, obtained
by encoding the action history into a single fixed length
vector. Second, the neural network based policy function,
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Figure 1. The DQN architecture used to learn the camera selection policy. It shows the neural network model that learns the policy which
takes as input the different state variables and the LSTM based Autoencoder (E-Encoder, D-Decoder) which encodes the action history
(ht) in a fixed length latent representation (Z).

which learns to select a camera given the initial location
of the target. Third, the re-identification (Re-ID) algorithm
which utilizes the policy-based camera selection to find
whether the target is present in the selected camera frame.
For this, we extracted target features from existing Re-ID
algorithm [6] and then a matching is established with candi-
date targets using cosine similarity. The threshold and other
parameters are explained in the results sec 4.3.1.

Learned State Representation: The state variable cap-
turing the past action history of the policy is an important
part of our model. The history encodes previous camera
selection decisions and it influences the decision of which
camera to select for the next query. A long history is nec-
essary to make well-informed camera selection decisions.
History vector in its raw form (sequence of one-hot encoded
vectors) has high cardinality and state vector becomes very
large for larger camera networks. Therefore, we make use
of an LSTM-based autoencoder to learn a fixed-vector rep-
resentation for this sequence of past actions.

The AE structure is shown in figure 1, and it is trained
using the cross-entropy loss. The input given is an action
sequence a1:T = c1, c2, . . . , cT , where each ci is a one-hot
vector. The latent vector is the encoder’s last layer cell state
at time T . The latent vector preserves the information of
the sequence, which is used to reconstruct the input using
the decoder. We need not retrain or fine-tune the AE for
another dataset, as we observed during our experiments that
the AE generalizes well across different datasets. The only
requirement is that the number of cameras at test timeNtest

should be smaller than that at train time Ntrain. We can
then encode the past action history by zero-padding the one-
hot encoded vector to make it of sizeNtrain. Ablation study
on LSTM parameters is shown in supplementary doc.

Camera Selection Policy Model: The architecture in
figure 1 shows the neural network model which repre-

sents the policy for camera selections. The neural net-
work model contains three fully-connected layers with size
(2048,1024,256) and ReLu activation function. The output
layer is equal to the number of actions (N + 1) with linear
activation to represent the Q-value function Q(st, a),∀a ∈
A. We use the MSE loss and Adam optimizer to learn the
optimal weights for the policy using deep-Q learning. The
action history is represented by the auto-encoder which is
trained separately from the policy network.

We used the epsilon-greedy exploration strategy [26]
during training and the policy is learned using deep Q-
learning with experience replay (ER). ER is a technique
to store the previous experiences of the policy to prevent
catastrophic forgetting in the neural networks. For back-
propagation, these experience are sampled from the replay
buffer to create a minibatch. The minibatch should be di-
verse enough to contain experiences of different situations
to learn an optimal policy. In case of camera selections, we
observed that the experiences having the action C× were
frequent which creates an imbalanced minibatch and hence
biases the policy to the most frequently occurring action. To
create a diverse minibatch, we segregated the replay buffer
into three buffers, first, to store the experiences for most
frequent action C×, second, for the experiences ended in
positive reward and third, the experiences ended in a neg-
ative reward. Then we sampled the experiences uniformly
from all replay buffers to create a minibatch of all possible
experiences. Let the minibatch be B = (st, a, st+1, rt+1)
which is used to generate an empirical estimate of the ex-
pected loss L(θt), shown in eqn. 3

L(θt) =
1

|B|

|B|∑
i=0

[(rt+1 + γmaxaQ(st+1, a))−Q(st+1, a|θt)]2

(3)
where (rt+1 + γmaxaQ(st+1, a)) is the target and
Q(st+1, a) is the output of the neural network.This error
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Figure 2. Figure shows the modification in the reward function
(equation 1) for semi-supervised training.

is also referred to as TD (temporal-difference) error and is
minimized by backpropagation to learn the optimal weights
of the policy network.

Semi-supervised Training To train the neural network
model without full supervision, the reward function in equa-
tion 1 is modified keeping other variables same for training.
The reward is given after skipping a few frames. For exam-
ple, if the reward is given after n frames then the discounted
reward is accumulated to the previous n−1 frames. The dis-
counted reward is computed using discount factor γ = 0.9.
The figure 2 shows the reward given to the neural network
during training phase. The figure shows 10 steps of train-
ing phase and cameras selected by the policy in the second
row. The third row shows the reward given after every 5
frames (n = 5) using reward function defined in equation 1.
The last row shows the reward is discounted for all previous
frames where a reward is not given. At any time step ti, a
discounted reward (γn−i.r) is given if policy selects same
camera as the camera where reward (r) is given otherwise
a 0 reward is given. The impact of number of frame-skip is
shown in the next section. A Re-ID method is also not used
during training when a reward is not given, where a bound-
ing box is picked using intersection-over-union (IOU). A
bounding box in the current frame which has 0.6 or more
IOU with the previous frame’s bounding box is selected for
that frame.

4. Results
We will now describe the experimental setup, perfor-

mance evaluation for camera selection and target tracking.

4.1. Experimental Setup

Datasets: We have used NLPR MCT data set [23],
DukeMTMC [28], CityFlow [43, 27], and WNMF [41]
dataset to evaluate the proposed method for camera se-
lections. These datasets are detailed in the table 1. The
CityFlow dataset has multiple scenarios, we select two large
scenarios (scenario 4 having 25 cameras and scenario 5 hav-
ing 19 cameras).. All datasets were used at 10 FPS and
WNMF at 5 FPS. The training and testing splits and evalu-

Table 1. Details of the datasets used for training and performance
evaluation. The table shows the number of cameras (#Cameras),
duration of the videos, frame rate (FPS), the number of targets
(#Target) captured in each dataset.

#Cam Duration FPS #Target
NLPR-Set1 3 20 min 20 235
NLPR-Set2 3 20 min 20 255
NLPR-Set3 4 3.5 min 25 14
NLPR-Set4 5 24 min 25 49

DukeMTMC 8 1hr 25min 60 2834
CityFlow S04 25 17.97 mins 10 71
CityFlow S05 19 2hr 3mins 10 337

WNMF 15 600 hrs 5 -

ation experiments are taken from the state-of-the-art meth-
ods [10, 45, 23, 33, 34] and we show comparison with vari-
ous methods through these experiments.
Performance metric: We evaluate camera selection, inter-
camera tracking, and multi-camera multi-target tracking
performance separately. To evaluate camera selection per-
formance, we use precision (P) and F1 scores [33]. To eval-
uate the inter-camera tracking and multi-camera tracking
performance, we use commonly used Multi-Camera Track-
ing Accuracy (MCTA) metric [23]. Readers are requested
to see [28, 23] for details about the MCTA metric.

To quantify the computational performance, we use
number of frames polled (F metric) [34]. For inter-camera
tracking (ICT), we define the measure Percentage Cam-
era Handover (PCH) as the percentage of target transitions
(from CameraCi toCj , i 6= j) that are correctly detected by
using the learned policy. This is included because missing
more target transitions hurts overall tracking performance
and hence PCH should be higher for better performance.

4.2. Camera Selection Decisions

4.2.1 Impact of State-Representation on Performance

In this experiment, we study the state-representation in de-
tail by observing the impact of sequence length on the cam-
era selection performance. For this, we generate all possi-
ble sequences of length 10, 20, and 50 on various datasets
to train the LSTM based encoder-decoder. We observed
that AE trained on the sequences of larger dataset (CityFlow
with 40 cameras in total) can also encode the sequences of
the smaller datasets (DukeMTMC and NLPR). To use AE
on smaller datasets, zeros are padded to the one-hot vector
of smaller dataset representing a camera index.

Table 3 shows the impact of sequence length on the cam-
era selection performance on NLPR-Set4. We quantify the
impact in terms of PCH metric on the testing set and the
number of episodes required to train the policy. In RL, all
states between initial and terminal state is one episode. For
example, one game of chess. We created multiple configu-
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Table 2. Camera Selection performance of our proposed method and its comparison with state-of-the-art approaches using precision (P)
and F1-score (F1) metrics. CityFlow-S05 and S04 are scenario-5 and scenario-4 of the CityFlow dataset. Ours-SS is our method with
semi-supervised (SS) training.

NLPR Set-1 NLPR Set-2 NLPR Set-3 NLPR Set-4 Duke MTMC CityFlow-S05 CityFlow-S04
P F1 P F1 P F1 P F1 P F1 P F1 P F1

Exhaustive 0.24 0.37 0.22 0.34 0.10 0.19 0.11 0.19 0.042 0.11 0.05 0.10 0.01 0.03
Neighbor 0.36 0.37 0.32 0.34 0.14 0.25 0.18 0.29 0.042 0.33 0.32 0.49 0.22 0.36

CamSel [33] 0.95 0.86 0.94 0.82 0.64 0.72 0.61 0.66 Out of Memory Out of Memory Out of Memory
nStep [34] 0.76 0.75 0.69 0.81 0.60 0.70 0.73 0.78 0.49 0.55 0.40 0.40 0.45 0.48

Ours 0.92 0.92 0.92 0.93 0.68 0.76 0.72 0.71 0.91 0.91 0.82 0.81 0.84 0.84
Ours-SS 0.86 0.89 0.82 0.86 0.66 0.75 0.62 0.68 0.87 0.90 0.80 0.79 0.81 0.82

Figure 3. The re-identification calls made by different methods on
DukeMTMC dataset.

Table 3. PCH on NLPR-Set4 when trained without AE and with
AE. AE(same) represents AE is trained on same dataset, AE (N )
represents that AE is trained on a bigger dataset with sequence
length N .

Configuration Episodes PCH
Without AE 25587 53.6
AE (same) 21704 65

AE (10) 25588 62.4
AE (20) 24883 64
AE (50) 25549 64.8

rations to test impact of AE, like training the policy without
AE, using AE trained on the training set of the same dataset
which is named as AE(same), finally using AE which is
trained on a larger dataset named as AE(Num) (with se-
quence length equals Num). AE(same) train fastest and
achieves highest PCH. AE(num) achieves similar perfor-
mance but train little slow than AE(same). Training with-
out AE couldn’t improve PCH beyond 53.6. AE(num) is
selected as final configuration because it avoids retraining
and has comparable performance. We choose final sequence
length to be 20 for all further experiments because PCH for
sequence length 20 and 50 is very close but recall for length
20 (78%) is higher than length 50 (74%). PCH with AE
is significantly higher than without AE which means using
state-representation learning not only trains policy faster but
also provide better performance.

Figure 4. Figure compares the Percentage Camera Handover
(PCH) of our method with state-of-the-art method.

4.2.2 Camera Selection Performance

We first evaluate the performance of our camera selection
policy in terms of Precision (P), F1-score (F1) metrics. For
this experiment, we use the initial location of the target to
make the initial state and history vector is represented by
AE with a sequence of all zeros as input. The proposed
policy selects a camera from the initial state and then if the
target is found in the selected camera then the state is up-
dated accordingly using the state-transition function. The
selected camera is appended in the action history and a rep-
resentation is taken from AE for next decision. For this
experiment, the target is re-identified using ground truth to
evaluate the camera selection decisions alone. The camera
selection performance is shown in the table 2. We com-
pare the performance with state-of-the-art methods [33, 34]
and other baseline methods Neighbor, Exhaustive. Exhaus-
tive queries all cameras at all times. Neighbor assumes that
the camera network topology is known and queries only the
neighboring cameras. Our proposed policy performs better
on various cases especially on the larger datasets. The fig-
ure 3 shows the number of Re-ID queries made by different
methods on DukeMTMC dataset and our proposed policy
makes very fewer queries than other related and baseline
methods (CamSel [33] goes out of memory for this case).

The figure 4 shows the PCH captured by our method
and nSteps [34] which is the state-of-the-art camera se-
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Table 4. Camera selection performance for semi-supervised train-
ing on NLPR Set-4.

frame-skip P R F1 PCH
20 0.498 0.569 0.507 0.6
10 0.594 0.752 0.634 0.592
5 0.621 0.839 0.677 0.736
2 0.67 0.84 0.72 0.728

lection method on these dataset. PCH is computed as the
percentage of target transitions (from Camera Ci to Cj ,
i 6= j) that are correctly detected by using the learned pol-
icy. Missing more target transitions hurts overall tracking
performance, and increased chances of not finding the tar-
get again. The figure shows that our proposed method leads
to an absolute improvement of 39% for NLPR-Set4 and
35% for DukeMTMC datasets over nSteps method. This
increase is substantial for NLPR-Set4 and DukeMTMC that
have higher target transition times.

4.2.3 Semi-supervised Training

To show that camera selection policy can be trained with
limited supervision, we provide reward after skipping a few
frames as explained in sec 3. Table 4 shows the Precision
(P), Recall (R), F1-scores (F1), and Percentage camera han-
dover (PCH) for different number of frames skipped before
providing reward on NLPR-Set4 dataset. Finally, we choose
a frame-skip value of 5 for all datasets for making camera
selections. By using a reward every 5 frames, the annota-
tion cost is reduced by 5 times. The camera selection per-
formance on all datasets is shown in table 2 as Ours-SS.

4.3. Benefits of Camera Selection Decisions

4.3.1 Multi-Camera Target Tracking

In multi-camera target tracking, we need to identify the po-
sition of a target at all times across all cameras as it is mov-
ing in the camera network. For this, the initial position of a
target and the state representation of zero-initialized action
history are used to make the initial state. The initial state is
then used by the learned policy to select a camera where the
target is expected to reappear at the next time instant. If the
target is present in the selected camera frame then the next
state is updated using the state-transition function (sec 3).
The procedure is repeated until the video sequence ends.
For re-identification, we have used pre-trained model of
ABDNet [6] for DukeMTMC dataset. We used same model
for all other datasets of NLPR to avoid re-training for Re-
ID. For this, Re-ID features of all candidate targets are ex-
tracted using the pre-trained model and then matched with
the template features of the target using threshold based co-
sine similarity. If the distance is less than the threshold than
the target is found otherwise not. A threshold of 1.8 is used

(check supplementary doc for detailed analysis). Please
note that our method is single target multi-camera tracking
approach and to make it work for multiple targets, we run
multiple parallel pipeline of our method starting from the
initial location of the target.

Camera selections inherently improves the tracking per-
formance as shown in the table 5 which shows tracking per-
formance on NLPR and DukeMTMC dataset using MCTA
metric. The methods in the table are separated based on how
these methods resolve the camera handover (re-identifying
the target). In the table, Self means that the methods have
proposed their own approach to resolve the camera han-
dover, GT signifies that methods use ground truth for re-
solving the handover, and Re-ID means that a Re-ID method
in [6] is used. There are two experiments as in the litera-
ture [23, 10, 7, 45, 47]. In first, only the inter-camera track-
ing (ICT) performance is evaluated. For this, detection and
single camera tracking are taken from the ground truth. For
our method, the camera selection decisions are taken at all
times during ICT and a Re-ID query is made when a non-
C× camera is selected. In second (ICT+SCT), only the de-
tections are taken from ground truth. In this, the policy is
used at all times both when the target is transitioning and
moving in a particular camera FOV. A Re-ID query is re-
solved accordingly using ABDNet [6] as explained above.
The table shows that our method is better on most of the
datasets especially that have higher number of cameras. The
approach Neighbor is a baseline method where we assume
that the camera topology is known and only the neighboring
cameras are queried, our policy achieves better performance
than this baseline on all cases. Hence, this intelligent cam-
era selection strategy improves the tracking performance.

4.3.2 Multi-Camera Trajectory Forecasting

Multi-Camera Trajectory Forecasting (MCTF) is a task
where the future trajectory of an object is predicted in a
camera network [41]. This requires to identify the next cam-
era where the target re-appears, the transition time, and the
target’s location in the identified camera. Our framework
is used in the same manner as used in target tracking in a
camera network in section 4.3.1. The camera selection pol-
icy gives the next camera where the target will re-appear,
the length of C× selection gives the transition time, and the
Re-ID block gives the location of the target in next camera.

We compare the performance with several baseline
methods as described in [41]. These baselines focus only
on the next camera prediction and ignore the transition time.
Hence, we introduce another baseline method where we use
an LSTM based approach for making camera selection de-
cisions in a sequential manner as compared to direct predic-
tion. This baseline is trained as an encoder-decoder using
supervised learning. It selects a camera each timestep and
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Table 5. Average MCTA values for ICT alone and both SCT-ICT case on NLPR MCT and DukeMTMC dataset. The results are separated
based on the type of association method. Self means a method uses its own association, GT represents ground truth, and Re-ID signifies
that a Re-ID method is used for association. We used ABDNet [6] for Re-ID. Mem means that the method goes out of memory.

Inter-camera tracking (ICT) Single-camera tracking + ICT
Approach Association Set-1 Set-2 Set-3 Set-4 Duke Set-1 Set-2 Set-3 Set-4 Duke

[47] Self 0.9152 0.9132 0.5163 0.7152 - 0.8831 0.8397 0.2427 0.4357 -
[8] Self 0.7425 0.6544 0.7369 0.3945 - 0.7477 0.6561 0.2028 0.2650 -
[7] Self 0.6617 0.5907 0.7105 0.5703 - 0.6903 0.6238 0.0848 0.1830 -

[10] Self 0.3203 0.3456 0.1381 0.1562 - 0.8162 0.7730 0.1240 0.4637 -
[23] Self 0.9610 0.9264 0.7889 0.7578 - - - - - -
[45] Self 0.835 0.703 0.742 0.385 - 0.8525 0.7370 0.4724 0.3778 -

CamSel [33] GT 0.8210 0.7498 0.9099 0.8993 Mem 0.8235 0.7503 0.9134 0.9118 Mem
nSteps [34] GT 0.9016 0.8741 0.9038 0.8074 0.8027 0.9018 0.8806 0.9058 0.7871 0.8191

Ours GT 0.968 0.963 0.914 0.759 0.902 0.966 0.961 0.906 0.776 0.894
Neighbor Re-ID 0.6405 0.3627 0.2618 0.5386 0.6784 0.5119 0.2564 0.1445 0.4426 0.5487

Ours Re-ID 0.9292 0.8806 0.8426 0.7808 0.8855 0.7639 0.7594 0.3547 0.5258 0.7308

Table 6. The camera selection performance on WNMF dataset.
The baseline methods are taken from dataset baselines [41] and
LSTM (Cam. Sel.) is a camera selection based baseline.

Accuracy(%)
Model Top 1 Top 3

Shortest real-world distance 46.8 92.2
Most frequent transition 65.7 91.8
Most similar trajectory 69.7 94.5
Hand-crafted features 70.7 94.1

Fully-connected network 73.4 95.1
LSTM (Pred.) 74.4 94.2
GRU (Pred.) 75.1 94.9
Ours (Pred.) 79 94

LSTM (Cam. Sel.) 63.1 91.5
Ours (Cam. Sel.) 93.28 96.27

if the selected camera is c× then nothing changes otherwise
the bounding box location of the target is picked using a
Re-ID method. This baseline is named LSTM (cam. sel.).

The performance comparison of these baselines with our
method is shown in table 6. The table shows top-1 and top-
3 accuracy for next camera prediction. The table shows
all baselines from the dataset results [41] and our meth-
ods. LSTM (pred.) is a method which predicts the next
camera using an LSTM, Ours (Pred.) is our method used
for prediction which achieves 4% better top-1 accuracy than
other baselines in prediction. In this, the first non-c× cam-
era is used as the next camera from the sequence of selected
cameras. Whereas, when our method is used as a selection
framework (Ours (cam. sel.) in table) then its top-1 accu-
racy is 18% more than the second best baseline.

Another important task to perform in MCTF is identify-
ing the transition time. The total time-steps when c× is se-
lected by the policy or till when the target is not re-identified
is the transition time for our method. This is shown in fig-

Figure 5. Figure shows the difference in the transition time cap-
tured of multiple tracks/targets of WNMF dataset.

ure 5. It shows the ground truth (oval markers) and pre-
dicted transition time (cross marker). The difference in tran-
sition time is represented by vertical lines. Overall, 80% of
the tracks have a difference of less than 10 frames.

5. Conclusion

We proposed a novel method to make camera selection
decisions using DQN approach in reinforcement learning.
We encoded the action history using LSTM based Auto-
Encoder (AE) that helped to learn the policy faster that also
achieves better performance. Through various other exper-
iments, we showed that our method achieves better camera
selection and tracking performance on larger camera net-
works such as DukeMTMC and CityFlow dataset. Later, we
showed that our method trains in a semi-supervised manner
and achieves comparable performance.
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