
Deep Online Fused Video Stabilization

Zhenmei Shi
University of

Wisconsin Madison

Fuhao Shi
Google

Wei-Sheng Lai
Google

Chia-Kai Liang
Google

Yingyu Liang
University of

Wisconsin Madison

Abstract

We present a deep neural network (DNN) that uses both
sensor data (gyroscope) and image content (optical flow)
to stabilize videos through unsupervised learning. The net-
work fuses optical flow with real/virtual camera pose histo-
ries into a joint motion representation. Next, the LSTM cell
infers the new virtual camera pose, which is used to gen-
erate a warping grid that stabilizes the video frames. We
adopt a relative motion representation as well as a multi-
stage training strategy to optimize our model without any
supervision. To the best of our knowledge, this is the first
DNN solution that adopts both sensor data and image con-
tent for video stabilization. We validate the proposed frame-
work through ablation studies and demonstrate that the pro-
posed method outperforms the state-of-art alternative solu-
tions via quantitative evaluations and a user study. Check
out our video results, code and dataset at our website.

1. Introduction
Videos captured with a hand-held device are often shaky.

With the growing popularity of casual video recording, live
streaming, and movie-making on hand-held smartphones,
effective and efficient video stabilization is crucial for im-
proving overall video quality.

However, high-quality stabilization remains challeng-
ing due to complex camera motions and scene variations.
The existing video stabilization systems can be generally
categorized into image-based and sensor-based methods.
Image-based methods output a smooth camera path by ex-
tracting camera motions from sparse image features [7, 14,
18] or dense optical flow [4, 29, 31, 32, 34]. These methods
offer nonlinear flexibility on motion compensations. How-
ever, they often fail when there are complex motions such
as parallax, or no reliable features in the scene, and produce
visible non-rigid distortions and artifacts due to lack of re-
liable rigidity constraints. The sensor-based methods use
motion sensor data, e.g., gyroscope and accelerometer, to
obtain accurate motion. They are free from scene contents

and can achieve impressive stabilization results with effec-
tive distortion corrections [13, 28]. However, these methods
deliver homographies to stabilize the plane at infinity and
do not adapt to the scene depth, leading to more residual
parallax motions for close scenes.

In this work, we present an efficient deep Fused Video
Stabilization (deep-FVS) framework to fuse the two motion
sources (image content and motion sensor) and draw bene-
fits from both ends. On one hand, the network outputs a sin-
gle virtual camera pose instead of dense warping flow, and
the videos are then stabilized by warping the sensor-based
real camera motions towards this virtual pose. In this way,
the motion rigidity is naturally preserved and rolling shutter
distortion is corrected without artifacts (e.g., wobbling). On
the other hand, the network learns to jointly minimize both
camera pose smoothness and optical flow losses. Thus, it
automatically adjusts to different scenes (e.g., depth vari-
ations) to minimize the residual motions. Our network is
trained with unsupervised learning with carefully designed
loss functions and a multi-stage training procedure. Fig. 1
shows an overview of conventional methods [7, 18], recent
learning-based approaches [4, 29, 30, 32, 34], and the pro-
posed deep-FVS.

As the existing datasets [18, 29] do not record the sen-
sor data, we collect a new video dataset that contains videos
with both gyroscope and OIS data for training and evalu-
ation. Our dataset covers diverse scenarios with different
illumination conditions and camera/subject motions. The
sensor data and video frames are accurately aligned through
calibration. We evaluate the proposed solution objectively
and subjectively and show that it outperforms SOTA meth-
ods by generating more stable and distortion-free results.

This paper makes the following contributions:
• The first DNN-based framework that fuses motion sen-

sor data and optical flow for online video stabilization.
• An unsupervised learning process with multi-stage

training and relative motion representation.
• A benchmark dataset that contains videos with gyro-

scope and OIS sensor data and covers various scenar-
ios. Both the dataset and code are publicly released.

1250

Motion
Estimation Motion Smoothing/Optimization

Warp Field

DNN

Input frames Stabilized frames
(a) Conventional methods (b) Learning-based methods

Input frame Real pose history Stabilized
frame

Virtual pose history
Feedback

DNNOptical flow

+

Inputs

+ Virtual Camera
Pose

(c) Deep-FVS (ours)

Figure 1: Comparisons of existing video stabilization methods and the proposed method. (a) Conventional video stabi-
lization methods [7, 18] estimate camera motions based on image feature trajectories and find a smooth camera path to render
a stabilized video. (b) Learning-based approaches [4, 29, 30, 32, 34] learn deep networks to predict warp fields for warping
the input video. (c) The proposed Deep-FVS learns to stabilize a video by fusing the optical flow and gyroscope data.

2. Related Work

Conventional methods. Classical video stabilization al-
gorithms typically involve motion estimation, camera path
smoothing, and video frame warping/rendering steps [23].
Some solutions also correct the rolling shutter distortions
[6, 10, 12]. Those methods can be categorized into 3D, 2D,
and 2.5D approaches based on motion estimation.

The 3D approaches model the camera poses and estimate
a smooth virtual camera trajectory in the 3D space. To find
6DoF camera poses, several techniques have been adopted,
including projective 3D reconstruction [2], depth cam-
era [17], structure from motion [14], and light-field [27].
While 3D approaches can handle parallax and produce
high-quality results, they often entail expensive computa-
tional costs or require specific hardware devices.

The 2D approaches represent and estimate camera mo-
tions as a series of 2D affine or perspective transforma-
tions [7, 18, 22]. Robust feature tracking and outlier re-
jection are applied to obtain reliable estimation [33]. Liu
et al. [19] replace feature trajectories with optical flows
to handle spatially-variant motion. Early approaches ap-
ply low-pass filters to smooth individual motion parame-
ters [3, 22], while recent ones adopt L1 optimization [7]
and joint optimization with bundled local camera paths [18].
Some hybrid 2D-3D approaches exploit the subspace con-
straints [15] and epipolar geometry [5]. Zhuang et al. [35]
smooth 3D rotation from the gyroscope and stabilize the
residual 2D motion based on feature matching.

The above methods often process a video offline, which
are not suitable for live-streaming and mobile use cases. Liu

et al. [16] propose a MeshFlow motion model with only
one frame latency for online video stabilization. A mobile
online solution using both the OIS and EIS is developed
in [13]. In this work, we utilize the OIS, gyroscope, and
optical flow to learn a deep network for stabilization. Our
online method has only 10 frames latency and does not re-
quire per-video optimization.
Learning-based methods. With the success of deep learn-
ing on image recognition [8, 20, 24], DNNs have been
adopted to several computer vision tasks and achieved state-
of-the-art performance. However, DNN based video stabi-
lization still does not attract much attention, mainly due to
the lack of proper training data. Wang et al. [29] collect the
DeepStab dataset with 60 pairs of stable/unstable videos,
and train a deep CNN to predict mesh-grids for warping the
video. Instead of predicting low-resolution mesh-grids, the
PWStableNet [34] learns dense 2D warping fields to stabi-
lize the video. Xu et al. [30] train a generative adversar-
ial network to generate a steady frame as guidance and use
the spatial transformer network to extract the affine trans-
form for warping the video frames. Yu and Ramamoor-
thi [31] take optical flows as input and optimize the weights
of a deep network to generate a warp field for each specific
video. They further train a stabilization network that can be
generalized test videos without optimization [32]. Choi et
al. [4] learn a frame interpolation model to iteratively inter-
polate the input video into a stable one without cropping.

These learning-based methods learn to stabilize videos
from the video content and optical flow. Their performance
heavily depends on the training data and can suffer from
visible distortion for large motions (e.g., running). In con-

1251

Real pose history (10 past frames +
current frame + 10 future frames)

Stabilized frameInput frames Optical flow

LSTM

Concatenate

Warping

Losses

Gyroscope

2D conv

Virtual pose history
(10 past frames)

FC FC 4D Quaternion

Remove OIS
translations

Metadata

Figure 2: Overview of deep-FVS. Given an input video, we first remove the OIS translation to extract the raw optical
flow. We also obtain the real camera poses from the gyroscope and convert it to a relative quaternion. An encoder with 2D
convolutions embeds optical flows to a latent representation, which is then concatenated with the real and virtual camera
poses. This joint motion representation is fed to a LSTM cell and FC layers to predict the new virtual camera pose as a
quaternion. Finally, we warp the input frame based on the OIS and virtual camera pose to generate the stabilized frame.

trast, we use the gyroscope to compensate camera motions
and utilize optical flow to correct the residual motions from
scene geometry.

3. Deep Fused Video Stabilization
The overview of our method is shown in Fig. 2. We first

process the gyroscope and OIS reading so that we can query
the real camera extrinsic (i.e., rotation) and intrinsic (i.e.,
principal point offsets) at arbitrary timestamps (Sec. 3.1).
We then remove the OIS translations on the input video and
extract optical flows from the raw video frames (Sec. 4.1).
The optical flows are encoded to a latent space via 2D
convolutional layers and concatenated with the real cam-
era poses within a temporal window and the previous vir-
tual camera poses as a joint motion representation (Sec. 3.2
and 4.2). Next, we feed this joint motion representation
to an LSTM cell and a few fully-connected layers to pre-
dict a virtual camera pose at the current timestamp. Finally,
we use a grid-based warping method similar to Karpenko et
al. [10] to warp the input frame to the stabilized rolling shut-
ter corrected domain using the input camera rotations, OIS
movement, and the predicted virtual camera poses (supple-
mentary material Section 3). Our solution stabilizes a video
frame-by-frame and is suitable for online processing.

During the training stage, we randomly select long sub-
sequences from the training videos, and optimize our DNN
with a set of loss functions without any ground-truth videos
or camera poses for supervision (Sec. 4.3). To stabilize the
training, we adopt a multi-stage training strategy to con-
strain the solution space (Sec. 4.4).

3.1. Gyroscope and OIS Pre-processing

In our dataset, the gyroscope (ωx, ωy, ωz, t) and optical
image stabilizer (OIS) translation (ox, oy, t) are sampled at

200 Hz, where ω is the angular velocity, and ox, oy are
the OIS movements. The camera rotation is integrated by
R(t) = Sω(t) ∗ R(t − S), where S is the sampling inter-
val (5ms). We represent the rotation as a 4D quaternion and
save it in a queue. To obtain the camera rotation at an arbi-
trary timestamp tf , we first locate the two consecutive gyro
samples a, b in the queue such that ta ≤ tf ≤ tb, and obtain
R(tf) by applying a spherical linear interpolation (SLERP):

R(tf) = SLERP(R(ta), R(tb), (tb − tf)/(tb − ta)). (1)

Similarly, O(t) is calculated from a linear interpolation be-
tween O(ta) and O(tb).

3.2. Camera Pose Representation

We represent a camera pose as P = (R,O), where R is
the camera rotation and O = (ox, oy) is a 2D offset to the
camera principal point (u, v). Given a 3D world coordinate
X , the projected point on the 2D image at timestamp t is

x = K(t)R(t)X, (2)

where K(t) = [f, 0, u+ ox(t); 0, f, v+ oy(t); 0, 0, 1] is the
intrinsic matrix with focal length f .

Given a real camera pose Pr = (Rr, Or) and virtual one
Pv = (Rv, Ov), the transformation of a point from the real
camera space to the virtual (stabilized) one is

xv = Kv(t)Rv(t)R
−1
r (t)K−1

r (t)xr, (3)

where xr, xv are the 2D image coordinates at real and vir-
tual camera spaces, respectively. In all the experiments, we
normalize f = 1511.8 for both the real and virtual cameras.

1252

4. Unsupervised Learning for Sensor Fusion

This section introduces the core of our deep fused video
stabilization network. As shown in Fig. 2, our network con-
sists of a sequence of 2D convolutional layers to encode the
optical flow, an LSTM cell to fuse the latent motion rep-
resentation and maintain temporal information, and fully-
connected layers to decode the latent representation to vir-
tual camera poses. The detailed network configuration is
provided in the supplementary material.

We first extract the OIS-free optical flow from the in-
put frames and OIS data (Sec. 4.1) and map it to a low-
dimensional representation z. Meanwhile, we extract the
past and future real camera rotation history Hr and the
past virtual rotation history Hv from the queues (Sec. 4.2).
We define the joint motion representation as [z,Hr, Hv]
and feed it into the LSTM to predict an incremental ro-
tation ∆Rv(t) to the previous virtual pose Rv(t − ∆t),
where ∆t is fixed to 40ms in our experiments and is in-
variant to the video frame rate. Note we set the virtual
offset Ov to 0. The final virtual pose is then calculated as
Pv = (∆Rv(t)Rv(t − ∆t), Ov) and used to generate the
warping grid. It is also pushed into the virtual pose queue
as the input for later frames. We can interpret the LSTM,
virtual pose prediction, and frame warping steps as a de-
coder that maps the current motion state [z,Hr, Hv] to a
stabilized frame.

4.1. OIS-free Optical Flow

Camera motions in the input videos are compensated by
the OIS to reduce the motion blur. Although the OIS move-
ment depends on the hand motion, the offset Or is differ-
ent at each scanline due to the rolling shutter and more like
a random noise (see the supplementary materials for more
discussions). It is non-trivial to let the network learn to as-
sociate the local offset with the principal point changes.

To address this issue, we remove OIS motions when es-
timating the optical flow such that the input to our model
contains only the camera and object motions. Specifically,
we denote the position of a pixel in frame n as xr,n and
its corresponding pixel in frame n + 1 as yr,n+1. The raw
forward optical flow can be represented as

F̃n+1
n = yr,n+1 − xr,n. (4)

By reverting the OIS movement at the pixel’s timestamp
(which depends on the y-coordinate due to the rolling shut-
ter readout), xr,n and yr,n+1 are mapped to xr,n−O(txr,n)
and yr,n+1 − O(tyr,n+1), respectively. The forward optical
flow is then adjusted to

Fn+1
n = (yr,n+1 −O(tyr,n+1))− (xr,n −O(txr,n))

= F̃n+1
n − (O(tyr,n+1

)−O(txr,n
)). (5)

Forward flow
!"→"$%

Backward flow
!"$%→"

Warped by Eq. 4

Warped by Eq. 4

Input frame & Warped frame &

Warped frame & + 1Input frame & + 1

)*,,)-,,

.*,,$/
.-,,$/

0"

0"$%

12

Figure 3: Optical flow loss. The optical flow loss aims to
minimize the distance between xv,n and yv,n+1 in the vir-
tual camera space. By incorporating the forward and back-
ward flows, we define our optical flow loss as in (14).

The backward flow is adjusted similarly. We use the
FlowNet2 [9] to extract optical flows in our experiments.
Note that with this step, our model can directly handle the
case when OIS is not supported.

4.2. Relative Rotation based Motion History

To obtain the real and virtual pose histories [Hr, Hv]
at a timestamp t, we first sample N past and future
timestamps from the gyro queue (Sec. 3.1) and obtain
the real absolute camera rotations Hr,absolute = (Rr(t −
N∆t), ..., Rr(t), ..., Rr(t + N∆t)). Meanwhile, we sam-
ple the virtual pose queue to obtain the virtual camera pose
history as Hv,absolute = (Rv(t−N∆t), ..., Rv(t−∆t)).

One key novelty here is to convert the absolute poses,
which are integrated from the very first frame, into a relative
rotation w.r.t. the current real camera pose:

Hr = Hr,absolute ∗R−1
r (t), (6)

Hv = Hv,absolute ∗R−1
r (t). (7)

The network output is also a relative rotation to the previ-
ous virtual camera pose. Therefore, our model only needs
to learn the first order pose changes and is invariant to the
absolute poses. Our experiments show that this relative ro-
tation representation leads to more stable predictions and
provides a much better generalization (Sec. 5.2).

4.3. Loss Functions

We define the following loss functions to train our net-
work. These loss functions can be evaluated without any
ground-truth. Note that we omit the timestamp or frame
index in some terms (e.g., L instead of L(t)) for simplicity.
Smoothness losses. We measure the C0 and C1 smooth-

1253

ness of the virtual camera poses by

LC0 = ||Rv(t)−Rv(t−∆t)||2, (8)

LC1 = ||Rv(t)R
−1
v (t−∆t)−Rv(t−∆t)R−1

v (t−2∆t)||2.
(9)

These two losses encourage the virtual camera to be stable
and vary smoothly.

Protrusion loss. To avoid undefined regions and exces-
sive cropping on the stabilized video, we measure how the
warped frame protrudes the real frame boundary [26]:

Lp=

N∑
i=0

wp,i||Min(protrude(Pv(t), Pr(t+i∆t))/α, 1)||2,

(10)
where N is the number of look-ahead frames, wp,i is the
normalized Gaussian weights (with a standard deviation σ)
centered at the current frame, and α is a reference protrusion
value that we can tolerate. To evaluate protrude(), we
project the virtual frame corners cropped with a ratio β on
each side to the real camera space using (3) and measure the
max normalized signed distance between the four warped
corners to the frame boundary cropped with a ratio γ. We
use β and γ to control the Lp’s sensitivity to the camera
motion. The protrusion value is clamped to 1 to disregard
very large motions and make training stable. We set σ =
2.5, N = 10, α = 0.2, β = 0.08 and γ = 0.04 in our
experiments.

Distortion loss. We measure the warping distortion by:

Ld = Ω(Rv, Rr)/(1 + e(−β1(Ω(Rv,Rr)−β0)), (11)

where Ω(Rv, Rr) is the spherical angle between the current
virtual and real camera poses, β0 is a threshold and β1 is a
parameter to control the slope of the logistic function. This
loss is only effective when the angle deviation is larger than
a threshold. We empirically set β0 = 6◦ and β1 = 100 in
our experiments.

Optical flow loss. We adopt an optical flow loss sim-
ilar to [31] to minimize the pixel motion between adja-
cent frames. As shown in Fig. 3, let xr,n and yr,n+1 be
the correspondences between frame n and n + 1 in the
real camera space. We define the transform from the real
camera space to the virtual camera space as T , and obtain
xv,n = Tn(xr,n) and yv,n+1 = Tn+1(yr,n+1) in the virtual
camera space. By incorporating the forward flow Fn+1

n and
backward flow Fn

n+1, the warped pixels can be represented
as:

xv,n = Tn(xr,n) = Tn(yr,n+1 + Fn
n+1), (12)

yv,n+1 = Tn+1(yr,n+1) = Tn+1(xr,n + Fn+1
n). (13)

Method Stability Distortion Correlation FOV

YouTube stabilizer 0.834 0.978 0.969 0.977
Grundmann et al. [7] 0.818 0.896 0.948 0.635
Wang et al. [29] 0.836 0.850 0.877 0.753
PWStableNet [34] 0.830 0.965 0.973 0.934
Yu et al. [32] 0.842 0.854 0.941 0.793
Choi et al. [4] 0.781 0.875 0.916 1.0∗
Ours (sensor only) 0.846 0.888 0.976 0.827
Ours (sensor + flow) 0.853 0.937 0.976 0.906

Table 1: Quantitative results. The best one is marked in
red and the second best one is marked in blue. ∗The FOV
ratio of Choi et al. [4] is always 1 as they generate full-
frame results. For other approaches, the FOV ratio is com-
puted from the scale components of the fitted homography
between the input and stabilized frames.

Our goal is to minimize ||xv,n−yv,n+1||2 so they stay close
in the stabilized video. This can be measured by:

Lf = |Xn|−1
∑
Xn

||xv,n − Tn+1(xr,n + Fn+1
n)||2+

|Xn+1|−1
∑
Xn+1

||yv,n+1 − Tn(yr,n+1 + Fn
n+1)||2, (14)

where Xn is the set of all pixel positions in frame n except
those fall into undefined regions after warping.
Overall loss. Our final loss at a timestamp t is the weighted
summation of the above loss terms:

L = wC0LC0 +wC1LC1 +wpLp +wdLd +wfLf , (15)

where wC0 , wC1 , wp, wd and wf are set to 2, 40, 2, 1 and 1
respectively in our experiments.

At each training iteration, we forward a sub-sequence
with 100 frames to evaluate the losses and accumulate gra-
dients before updating the model parameters.

4.4. Multi-Stage Training

For the virtual camera poses, there is a trade-off between
following the real camera motion and staying stable. Al-
though we have defined loss terms in (15) to constrain the
solution space, it is difficult for the network to learn this
non-linearity - the training cannot converge when we opti-
mize all the loss terms simultaneously.

We adopt a multi-stage training to address this issue. In
the first stage, we only minimize LC0 , LC1 , and Ld to en-
sure that our model can generate a meaningful camera pose.
In the second stage, Lp is added to reduce the undefined re-
gions in the output. In the last stage, Lf is included to en-
hance the overall quality. We train each stage for 200, 100,
and 500 iterations. To improve the model generalization,
we adopt a data augmentation by randomly changing the
virtual camera poses (within ±6 degrees) to model possible
real-virtual pose deviations in the test sequences.

1254

GENERAL ROTATION PARALLAX DRIVING PEOPLE RUNNING

St
ab

ili
ty

D
is

to
rt

io
n

C
or

re
la

tio
n

FO
V

ra
tio

Figure 4: Per-category quantitative evaluation. We com-
pare the stability, FOV ratio, distortion, and correlation with
state-of-the-art methods [4, 7, 29, 32, 34] on each category.

5. Experimental Results
In this section, we show that our deep-FVS achieves

state-of-the-art results in quantitative analysis (Sec. 5.1) and
a user study (Sec. 5.1). We then validate the effectiveness
of the key components in the proposed framework by ab-
lation study (Sec. 5.2). We strongly encourage readers to
watch the source and stabilized videos (by our and existing
methods) in the supplemental materials.

5.1. Comparisons with State-of-the-Arts

Experimental settings. We compare our deep-FVS with
conventional methods [7]1 and YouTube stabilizer (based
on [6]), and 4 recent learning-based methods [4, 29, 32,
34]2. We collect 50 videos with sensor logs using Google
Pixel 4 (1920 × 1080 resolution with variable FPS). The
video dataset covers a wide range of variations, such as
scenes, illuminations, and motions. The sensor data are
accurately calibrated and timestamp-aligned with frames
(Google Pixel 4 is ARCore certified [1]). We split our
dataset into 16 videos for training and 34 videos for testing,
where the test set classified into 6 categories: GENERAL,
ROTATION, PARALLAX, DRIVING, PEOPLE, and RUNNING.
Fig. 4 shows a few sample frames from each category. 8-
fold cross-validations are used on the training video set for
parameter tuning. Due to the lack of training code [4, 32]
or requirement on groundtruth data [29, 34], we use the
off-the-shelf trained models for comparisons as did in pre-
vious works (e.g. [32, 34]). Grundmann et al. [7] does not

1We use a third-party implementation from https://github.
com/ishit/L1Stabilizer.

2The source code of [4, 29, 34] are publicly available. We obtain the
source code of [32] from the authors.

require training.
Quantitative comparisons. We use three commonly used
metrics [4, 18, 29, 32, 34]: Stability, Distortion, and FOV
ratio, and define a Correlation score, to evaluate the tested
methods (please refer to the supplemental materials on their
definitions). Note that the distortion measures the global
geometry deviation from the input frames, while the corre-
lation evaluates the local deformation.

The results of all test videos are summarized in Table 1,
and Fig. 4 plots the average scores for the 6 categories.
Overall, our method achieves the best stability and corre-
lation scores. The YouTube stabilizer and Choi et al. [4]
generate nearly uncropped or full-frame results, while our
FOV ratio is comparable to PWStableNet [34]. We found
the quantitative gaps in existing metrics do not fully reflect
large visual differences. For example, YouTube stabilizer
keeps frames nearly uncropped but outputs relatively un-
stable videos. PWStableNet [34] produces lots of residual
global motions and temporal wobbling, which are not cap-
tured by the distortion score. Our method generally obtains
better stability and correlation scores on challenging ROTA-
TION, RUNNING, and PEOPLE categories.
Qualitative comparisons. We provide visual comparisons
of stabilized frames in Fig. 5. Both Yu et al. [32] and Choi et
al. [4] use optical flows to warp the frames and often gener-
ate local distortion (03:20 in demo video). Choi et al. [4]
produce severe artifacts when the motion is large (04:55
in demo video). Grundmann et al. [7] estimate a global
transformation, and Wang et al. [29] predict low-resolution
warping grids. The results of both methods have less lo-
cal distortion but are not temporally stable as the motion
is purely estimated from the video content (03:56, 06:02 in
demo video). In contrast, we fuse both the gyroscope data
and optical flow for more accurate motion inference and ob-
tain stable results without distortion or wobbling.

Fig. 6 shows the averaged frame of 11 adjacent frames
from a short clip, where the input video contains only hand-
shake motion. Ideally, the stabilized video should look
static as it was captured on a tripod. Our result is the
sharpest one, while the averaged frames from other ap-
proaches [4, 7, 29, 32, 34] are blurry, demonstrating that our
result is more stable than others (03:35 in demo video). We
highly encourage readers to watch the full video compar-
isons in the demo to better evaluate the stabilization quality.
User Study. We conduct a user study to evaluate human
preferences on the stabilized videos. As it is easier for a user
to make a judgment between two results instead of ranking
multiple videos, we adopt the paired comparison [11, 25]
to measure the subject preference. In each test, we show
two stabilized videos side-by-side and the input video as a
reference. We ask the participant the following questions:

1. Which video is more stable?
2. Which video has less distortion?

1255

Input frame Yu et al. [32] Choi et al. [4] Ours

Input frame Grundmann et al. [7] Wang et al. [29] Ours

Figure 5: Visual comparisons. Non-rigid distortion, local artifacts and temporal wobbling are observed in Yu et al. [32] and
Choi et al. [4], and large rotation deviation observed in Grundmann et al. [7] and Wang et al. [29] (which also exhibits local
distortions). Our method is free of such issues. Please refer to our supplemental videos on the full results of all the methods.

Input frame Grundmann et al. [7] Wang et al. [29] PWStableNet [34]

YouTube stabilizer Yu et al. [32] Choi et al. [4] Ours

Figure 6: Stability comparisons. We take a video with almost no camera motion except handshakes and average 11 adjacent
frames. Our average frame is sharper than other methods, indicating that our result is more stable. Please refer to our
supplemental videos on the full results of all the methods.

3. Which video has a larger FOV?
In total, we recruit 50 participants online, where each

participant evaluates 18 pairs of videos. The videos are
shuffled randomly when presenting to each user. All the
methods are compared the same number of times.

Table 2 shows that our method is preferred in more than
95% of comparisons regarding the stability and 93% re-
garding the visual quality (less distortion). Our results have
larger FOVs than Grundmann et al. [7] and Wang et al. [29]
as these two approaches apply excessive cropping to avoid
the irregular boundaries. Our FOV is comparable to PW-
StableNet [34] as users cannot tell the difference (≃ 50%).
Yu et al. [32] generates results with a large FOV in most
cases, but applies excessive cropping when the video mo-
tion is large (e.g., running). Choi et al. [4] generates full-
frame results but at the cost of visible distortion. YouTube
stabilizer applies lightweight changes to preserve most of
the input content, but the results are less stable. The user
study demonstrates that our method generates more stable

More stable Less distortion Larger FOV

vs. Grundmann et al. [7] 98.4±2.3% 95.9±3.5% 82.1±6.9%
vs. Wang et al. [29] 98.4±2.3% 95.1±3.9% 77.2±7.5%
vs. PWStableNet [34] 91.1±5.1% 89.4±5.5% 48.0±9.0%
vs. Yu et al. [32] 92.7±4.7% 93.5±4.4% 38.2±8.7%
vs. Choi et al. [4] 96.7±3.2% 97.6±2.8% 27.6±8.0%
vs. YouTube stabilizer 96.7±3.2% 88.6±5.7% 23.6±7.6%

Average 95.7±1.5% 93.4±1.8% 49.5±3.6%

Table 2: Results of user study. Our results are more stable
with less distortion and overall a comparable field-of-view.

results with fewer visual artifacts and distortions, while the
amount of cropping is similar to other approaches.

5.2. Ablation Study

Importance of using relative poses. As the same motion
patterns can be converted to similar relative poses, it is eas-
ier for the model to infer the motion pattern from rotation
deviations instead of the absolute poses. Using the relative

1256

(a) Analysis on relative pose

(b) Analysis on LSTM

(c) Analysis on loss functions

Figure 7: Ablation studies on relative poses, LSTM and
losses. (a) The model using relative poses can output more
stable poses and follow the real camera motion well. (b)
Without LSTM, our model cannot learn motion patterns
well and often generate unstable prediction. (c) The protru-
sion loss Lp reduces the undefined region, and the optical
flow loss Lf further improves the smoothness.

poses also makes the model training more numerically sta-
ble. Fig. 7(a) shows that our method with relative poses
can follow the real camera poses well for a PANNING case.
In contrast, the model using absolute poses deviates away
from the real motion.
Importance of LSTM. The LSTM unit carries the tempo-
ral information (e.g., motion state) and enables the model to
output state-specific results. With the temporal information,
the LSTM can also reduce high-frequency noise and gener-
ate more stable poses. As shown in Fig. 7(b), when replac-
ing the LSTM with an FC layer, the output poses contain
more jitter, resulting in less stable videos.
Importance of optical flow loss. We compare the sensor-
only stabilization results in stage 2 and the full fused re-
sults with the optical flow term Lf in stage 3 (Sec. 4.4).
The optical flow loss enables the model to adapt to scene
content (e.g. parallax), which can improve stability and in-
crease the FOV as shown in the last two rows of Table 1.

0 20 40 60 80 100 120 140

600

800

1000

1200

1400

1600

1800

2000

Ho
riz

on
ta

l p
os

iti
on

Figure 8: Feature trajectories before and after stabiliza-
tion. Grey: input video. Blue: our method with sensor only
(stage 2). Red: our method with sensor and optical flow
fusion (stage 3). Our final fused model produces the most
stable trajectories which also better follow the real motion.

We also visualize the feature trajectories detected from the
KLT tracker [21] in Fig. 8. Our method with sensor and op-
tical flow fusion (red curves) can follow the original camera
motion well and maintain the smoothness.
Importance of other losses. Fig. 7(c) shows the x-axis
virtual rotation for a RUNNING case. We see a step-by-step
stability improvement (smoother motion curves) after intro-
ducing each loss.

We also provide the comparisons of execution time in the
supplementary material.

6. Limitations and Conclusion
In this work, we present deep Fused Video Stabiliza-

tion, the first DNN-based unsupervised framework that uti-
lizes both sensor data and images to generate high-quality
distortion-free results. The proposed network achieves
high-quality performance using joint motion representation,
relative motion history, unsupervised loss functions, and
multi-stage training. We have demonstrated that our method
outperforms state-of-the-art alternatives in both quantitative
comparisons and user study. We released the source code
and the video dataset to facilitate future research.

Unlike image-based methods, our framework requires
additional sensor data. Fortunately, most modern smart-
phones have a well-synchronized sensor and camera sys-
tem [1] which makes the requirement minimal. Our model
does not support hard FOV preservation. To address this,
one can tune the protrusion loss and apply post-processing
to pull the virtual camera back toward the real motion when
the virtual camera pose deviates from the real pose too
much. Our experiments also show a discrepancy between
the existing metrics and user preference. Closing this gap
with more human perception studies will enable more effec-
tive learning-based solutions. Also, extending stabilization
to further correct relative motions due to parallax is another
interesting future work.

1257

References
[1] ARCore supported devices. developers.google.

com/ar/discover/supported-devices, 2021. 6,
8

[2] Chris Buehler, Michael Bosse, and Leonard McMillan. Non-
metric image-based rendering for video stabilization. In
CVPR, 2001. 2

[3] Hung-Chang Chang, Shang-Hong Lai, and Kuang-Rong Lu.
A robust real-time video stabilization algorithm. Jour-
nal of Visual Communication and Image Representation,
17(3):659–673, 2006. 2

[4] Jinsoo Choi and In So Kweon. Deep iterative frame interpo-
lation for full-frame video stabilization. ACM TOG, 39(1):1–
9, 2020. 1, 2, 5, 6, 7

[5] Amit Goldstein and Raanan Fattal. Video stabilization using
epipolar geometry. ACM TOG, 31(5):1–10, 2012. 2

[6] Matthias Grundmann, Vivek Kwatra, Daniel Castro, and Ir-
fan Essa. Calibration-free rolling shutter removal. In ICCP,
2012. 2, 6

[7] Matthias Grundmann, Vivek Kwatra, and Irfan Essa. Auto-
directed video stabilization with robust l1 optimal camera
paths. In CVPR, 2011. 1, 2, 5, 6, 7

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[9] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In CVPR,
2017. 4

[10] Alexandre Karpenko, David Jacobs, Jongmin Baek, and
Marc Levoy. Digital video stabilization and rolling shutter
correction using gyroscopes. Stanford University Computer
Science Tech Report, 1:2, 2011. 2, 3

[11] Wei-Sheng Lai, Jia-Bin Huang, Zhe Hu, Narendra Ahuja,
and Ming-Hsuan Yang. A comparative study for single im-
age blind deblurring. In CVPR, 2016. 6

[12] Chia-Kai Liang, Li-Wen Chang, and Homer H Chen. Anal-
ysis and compensation of rolling shutter effect. IEEE TIP,
17(8):1323–1330, 2008. 2

[13] Chia-Kai Liang and Fuhao Shih. Fused video
stabilization on the Pixel 2 and Pixel 2 XL.
https://ai.googleblog.com/2017/11/
fused-video-stabilization-on-pixel-2.
html, 2017. 1, 2

[14] Feng Liu, Michael Gleicher, Hailin Jin, and Aseem Agar-
wala. Content-preserving warps for 3D video stabilization.
ACM TOG, 28(3):44:1–44:9, 2009. 1, 2

[15] Feng Liu, Michael Gleicher, Jue Wang, Hailin Jin, and
Aseem Agarwala. Subspace video stabilization. ACM TOG,
30(1):4:1–4:10, 2011. 2

[16] Shuaicheng Liu, Ping Tan, Lu Yuan, Jian Sun, and Bing
Zeng. Meshflow: Minimum latency online video stabiliza-
tion. In ECCV, 2016. 2

[17] Shuaicheng Liu, Yinting Wang, Lu Yuan, Jiajun Bu, Ping
Tan, and Jian Sun. Video stabilization with a depth camera.
In CVPR, 2012. 2

[18] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled
camera paths for video stabilization. ACM TOG, 32(4):78:1–
78:10, 2013. 1, 2, 6

[19] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun.
Steadyflow: Spatially smooth optical flow for video stabi-
lization. In CVPR, 2014. 2

[20] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 2

[21] Bruce D Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. Van-
couver, British Columbia, 1981. 8

[22] Yasuyuki Matsushita, Eyal Ofek, Weina Ge, Xiaoou Tang,
and Heung-Yeung Shum. Full-frame video stabilization with
motion inpainting. IEEE TPAMI, 28(7):1150–1163, 2006. 2

[23] Carlos Morimoto and Rama Chellappa. Evaluation of image
stabilization algorithms. In ICASSP, 1998. 2

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In NeurIPS, 2015. 2

[25] Michael Rubinstein, Diego Gutierrez, Olga Sorkine, and
Ariel Shamir. A comparative study of image retargeting. In
ACM TOG. 2010. 6

[26] Fuhao Shi, Sung-Fang Tsai, Youyou Wang, and Chia-Kai
Liang. Steadiface: Real-time face-centric stabilization on
mobile phones. In ICIP, 2019. 5

[27] Brandon M Smith, Li Zhang, Hailin Jin, and Aseem Agar-
wala. Light field video stabilization. In ICCV, 2009. 2

[28] Damien J Thivent, George E Williams, Jianping Zhou,
Richard L Baer, Rolf Toft, and Sebastien X Beysserie. Com-
bined optical and electronic image stabilization. US Patent
9,979,889, 2018. 1

[29] Miao Wang, Guo-Ye Yang, Jin-Kun Lin, Song-Hai Zhang,
Ariel Shamir, Shao-Ping Lu, and Shi-Min Hu. Deep online
video stabilization with multi-grid warping transformation
learning. IEEE TIP, 2018. 1, 2, 5, 6, 7

[30] Sen-Zhe Xu, Jun Hu, Miao Wang, Tai-Jiang Mu, and Shi-
Min Hu. Deep video stabilization using adversarial net-
works. Comput. Graph. Forum, 37(7):267–276, 2018. 1,
2

[31] Jiyang Yu and Ravi Ramamoorthi. Robust video stabilization
by optimization in cnn weight space. In CVPR, 2019. 1, 2, 5

[32] Jiyang Yu and Ravi Ramamoorthi. Learning video stabiliza-
tion using optical flow. In CVPR, 2020. 1, 2, 5, 6, 7

[33] Fang-Lue Zhang, Xian Wu, Hao-Tian Zhang, Jue Wang, and
Shi-Min Hu. Robust background identification for dynamic
video editing. ACM TOG, 35(6):1–12, 2016. 2

[34] Minda Zhao and Qiang Ling. Pwstablenet: Learning pixel-
wise warping maps for video stabilization. IEEE TIP, 2020.
1, 2, 5, 6, 7

[35] Binnan Zhuang, Dongwoon Bai, and Jungwon Lee. 5D video
stabilization through sensor vision fusion. In ICIP, 2019. 2

1258

