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Abstract

This paper presents an end-to-end self-supervised learn-
ing approach for cross-modality image registration and ho-
mography estimation, with a particular emphasis on reg-
istering sports field templates onto broadcast videos as a
practical application. Rather then using any pairwise la-
belled data for training, we propose a self-supervised data
mining method to train the registration network with a nat-
ural image and its edge map. Using an iterative estimation
process controlled by a score regression network (SRN) to
measure the registration error, the network can learn to es-
timate any homography transformation regardless of how
misaligned the image and the template is. We further show
the benefits of using pretrained weights to finetune the net-
work for sports field calibration with few training data. We
demonstrate the effectiveness of our proposed method by
applying it to real-world sports broadcast videos where we
achieve state-of-the-art results and real-time processing.

1. Introduction
Image registration and homography estimation is a well

studied computer vision problem with applications in image
mosaic, SLAM, camera calibration, and sports field reg-
istration. Homography estimation can be categorized into
single-modality homography estimation (e.g. natural image
to natural image as in image mosaic [5] and SLAM [27]) or
cross-modality homography estimation (e.g. edge template
to natural image as in sports field registration [7, 20, 24] and
robotics [19, 30]). Recently deep convolutional neural net-
works (CNNs) have been used to achieve some remarkable
results [11] for single-modality homography estimation.
However, using CNNs to address the cross-modality ho-
mography estimation problem has not been well explored.
A potential reason, as suggested by [15], is that CNNs are
strongly biased towards recognising texture which domi-
nates natural images, rather than shapes which dominate
edge templates.

Figure 1 illustrates our proposed method. Given a cross-
modality image pair IA and EB , they are fed into our ho-

mography regression network to estimate the homography
transform between IA and EB . We show that our approach
can be run iteratively to further refine the initial homog-
raphy estimate. Furthermore, inspired by [11], we also
propose a method to automatically generate cross-modality
training data from natural image datasets.

To the best of our knowledge, the method presented here
is the first approach for cross-modality homography esti-
mation. This method is ideal for scenarios where texture
or colour information is not available as in the case of edge
templates. To demonstrate the effectiveness of our method,
we apply our method to sports field registration [7, 20, 24].
Unlike others, we directly estimate the homography be-
tween the field template and the image of the sports field
with players without applying any pre-processing on the im-
age. In summary, our paper has following contributions:

• An end-to-end training approach to perform self-
supervised cross-modality homography estimation be-
tween natural images and their corresponding edge
templates.

• A carefully designed unsupervised training strategy
to train the proposed homography estimation network
even with a limited training set.

• A score regression network to estimate the alignment
error and control the number of required iterations dur-
ing homography estimation and refinement process, in
particular for applications in sports field registration.

2. Related work
Single-modality homography estimation – Homography
estimation is a fundamental task in computer vision, with
a variety of applications such as image mosaicing [5],
SLAM [27], camera calibration [36, 3, 6], template-based
tracking [9], and sports field registration [7, 20, 24]. Meth-
ods to estimate homography transformations include dense
direct approaches [26, 13, 9] and sparse feature-based meth-
ods [5, 39, 27]. Both types of approaches are limited by the
quality of local features [38], which depends on illumina-
tion conditions and the presence of textures, as well as the
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Figure 1. Illustration of our method. A homography transform matrix between the cross-modality images IA and EB is iteratively estimated
by stacking EB and IA as inputs into our proposed regression network. At each iteration the output homography is used to warp the EB

part of the network input stack. Note that EB could be an edge map of another natural image or any image such as road map or sports field
template that captures the shape information.

robustness of the objective function estimator [3, 9]. Re-
cently, deep learning methods have also been proposed for
more robust homography estimation. DeTone et al. [11]
propose to train a network to regress the homography with
4-points parameters through self-supervision data mining.
Nguyen et al. [28] propose a similar method using a pixel-
wise photometric loss as the training objective. Both meth-
ods focus on improving the robustness and inference speed
of homography estimation while maintaining an accuracy
that is comparable to traditional methods.
Cross-modality homography estimation – Few methods
have explored the particular issues of homography estima-
tion between images of different modalities [37] e.g. syn-
thetic templates, segmented images, edge maps, etc. Mutual
information maximization has been demonstrated to suc-
cessfully align multi-modal images [37, 9], but it requires
a set of effective features. Other learning methods have
been proposed to deal with choice of features. For exam-
ple, Rocco et al. [32] propose a method that estimates the
geometric transformations using a thin-plate spline model.
However, training only with natural images shows feature
bias with texture cues [15], which will not generalize well
to the multi-modal setting. Introducing synthetic data may
help in learning extracted features that use shape informa-
tion. Geirhos et al. [15] demonstrate learning a shape-based
representation by training models with images in which the
texture information is randomly replaced via style transfer.
Radenovic et al. [31] use edge maps to generate data for
learning representations for sketch-based image retrieval. In
our work, we propose a training scheme to learn shape rep-
resentations that are suited for image registration through
homography estimation.
Sports field registration – Early works on registering
sports broadcast images [29, 17, 16] rely on local feature
matching and key-frame seeking over a video. These meth-
ods typically assume the parameters to be estimated are ini-
tialized so that the transformation is close to the identity, re-

using the solution from previous frames in subsequent video
frames. Recently, [35, 7, 20, 24] address these limitations
by learning a model that can predict good initial parameters
that can be subsequently refined. These methods rely on
learning the representation between image and sports field.
Homayounfar et al. [20] use a deep network to perform se-
mantic segmentation on broadcast images, which are used
to estimate the parameters of the field and camera pose on
a Markov Random Field with geometric priors. Sharma et
al. [35] use edge images as the input representation, gen-
erating a synthetic dictionary of edge map / homography
pairs for retrieval-based homography estimation. Chen and
Little [7] build a camera pose database with synthetic data,
and treat the problem as query-based approach with field
markings from segmented image. Citraro et al. [8] use a
keypoint approach to perform camera pose estimation. The
method heavily depends on the players’ location. Sha et
al. [34] propose an end-to-end method with both segmen-
tation and STN [23]. The state-of-the-art method in [24]
proposes a two-stage method with two regression networks:
one for initial estimation and another for geometric error
estimation.

3. Method

We take a similar approach as [11], with the exception
that our network estimates homographies between colour
images and full or partial edge maps. Many problems, such
as sports field registration [24, 11] and medical image regis-
tration [4] require matching across different modalities. To
this end, instead of taking two images [IA, IB ] as the net-
work inputs, we propose to compute the edge EB of image
IB , and feed it with image IA as inputs to our homogra-
phy regression network. We follow the same spirit of deep
optical flow network [12, 22] in using image warping and
cost volume. However, instead of finding pixel-to-pixel dis-
placement, our method tries to learn the alignment between
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an image and an edge image.
Given an image IA and an edge image EB , the task is

to estimate their homography H with 4-points regression
network. In practice, we iteratively apply image warping
based on the network output of last estimated homography
to find optimal alignment between them.

Figure 2. Example network architecture. ResNet [18] is used as
the backbone, and conv2 x, conv3 x, conv4 x and conv5 x are its
four stacked building blocks.

3.1. Architecture

As shown in Figure 2, we create two separate, non-
identical processing streams (A and B) for input image IA
and edge image EB . We merge them at a later stage, and
then split them again into two separate branches, a 4-points
homography regression branch (D) and a score regression
branch (C).

We use ResNet [18] as the network backbone and adopt
two strategies to improve the efficiency. First, since the in-
put edge image EB has only 1 channel with a lot of zero
pixels, we use a shallow network (3-layers, B as in Fig-
ure 2) with few channels for edge input processing stream.
Second, we use a relatively deep network (1 input layer and
2 stacked ResNet building blocks, A as in Figure 2) for im-
age input processing stream. We also observed that several
iterative refinements can improve homography accuracy if
there are large displacements between two inputs. Thus, we
design our method in a way to improve the running speed
with multiple iterations. To this end, for an input pair, we
only need to run the whole network with image input pro-
cessing stream A once. If more iterations are needed, we
apply the output homography to warp the input edge image
EB and reuse the features of stream A.
Regression network – We follow the recent trends [3, 11,

24] to represent the homography, H , with 4-points param-
eters. However, instead of using point offsets [11] or nor-
malized coordinates [24], we use 4 fixed points from the
reference image IA. Specifically, considering an image of
size 1280× 720, we use:

Ptsref = [(1023, 144), (256, 144),

(1023, 575), (256, 575)] (1)

which are 4 corners of a rectangle centred in the image with
a patch size of 768 × 432, as shown in Figure 4 (left). We
train the regression network to output their corresponding
four-points in the edge image EB .

The regression network is shown in Figure 2. The two in-
puts IA and EB are fed into two separate processing streams
A and B. Their outputs are concatenated as a cost volume,
which goes through two ResNet building blocks, conv4 x
and conv5 x. A linear regression layer is followed to output
4 points.
Score regression network – Although iterative refinement
improves alignment for inputs with large initial displace-
ment, each iteration has extra computational cost. For real-
time applications, we can improve speed by stopping the
refinement process early once the homography provides
‘good enough’ alignment between image and edge map.

Therefore, we add a Score Regression Network (SRN)
that estimates the quality of the homography output. The
ground truth score is calculated based on the intersection-
over-union (IoU) of the perturbed image and the ground
truth one. Since we would like to distinguish among IoU
values close to 1.0, we use IOU3 as the ground truth score
for the SRN. Training loss for the SRN is the mean squared
error between the output score and the ground truth score.
As shown in Figure 2, the SRN network is similar to the
regression network, with a score sub-branch C.

3.2. Training sample generation

As shown in Figure 3 (for simplicity, we omit the SRN
score branch), for each training image IA, we first calculate
its Canny edge E

(0)
A , and feed them as one training sam-

ple. In this case, the expected network output is the four
points Pts

(0)
ref given in Equation 1, scaled by the network

input size. Then, we randomly perturb Pts
(0)
ref into refer-

ence points Pts
(k)
ref and use them to calculate a homography

H(k) and a perspective-transformed edge image E
(k)
A . The

perturbation process is repeated several times per image to
create multiple training samples. Including the non-warped
training samples (edge E(0)

A ) in the training data is a key ele-
ment of the success of the method, since it helps the network
to learn the visual correspondence of the edge features.

We generate 7 warped edge maps per image, for a total of
N = 8 training samples per training image. The perturba-
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Figure 3. Illustration of our training data from one image. For each training image we calculate its edge image using Canny edge detection.
Then, we stack the grayscale image with the edge image channel-wise. We calculate several homographies based on perturbing 4 fixed
points and use them to get warped edge images. We stack them with the original grayscale image and feed them into the network to train.

Figure 4. Four-points perturbation. The four corner points of the
large blue rectangle are perturbed within the range of the green
rectangles. The rectangles are drawn with regard to the perturba-
tion scale. Left shows Algorithm 1, right shows Algorithm 2

tions generated for each epoch are independent in order to
avoid the risk of overfitting. In addition, we propose two ap-
proaches in preparing data, and randomly choose one when
generating the training samples for each image.
Algorithm 1, data augmentation – Our first method is
similar to [11]. However, instead of cropping two over-
lapped images within the same image border, we apply
a large perturbation to a single image, as shown on the
left of Figure 4. Specifically, we use the original image
and apply a homography to warp its edge into the second
training sample. The homography is decided by perturb-
ing each point of Ptsref (Equation 1) with up to a scale
of (0.35 × 768, 0.35 × 432) in (x, y) dimension. Among
all 7 transformed training samples, the perturbation is also
performed to simulate camera translation and zooming.
Algorithm 2, data augmentation – Our second approach is
as shown on the right of Figure 4. In this approach we aim
to avoid the warping outside of the image border. Given

an image IA with network input size of 256 × 256, we
calculate 7 homographies by using 4-points perturbation.
We first select a square inside the image with a random
location. The size of the square is decided by a range of
(0.7× 256, 0.92× 256). Then, we perturb the 4 corners of
the square in a range of [−20, 20] to obtain the homography.
The perturbation is designed to ensure that warped image
remains within the original image border. The images are
finally warped from IA with the homographies. After gen-
erating all 8 images, we randomly choose one image I

(k)
A

to create 8 training samples by combining it with all edge
images calculated from all 8 images. The ground truth 4-
points are calculated from the homographies.

3.3. Homography inference

Iterative refinement – The network aligns image and edges
well if the initial displacement between the two modalities
is modest. For larger displacements, the output homogra-
phy tends to be less precise. Therefore at test we use an
iterative refinement approach where each new iteration is
refined with the output homography from the last iteration.
The initial regression pass estimates the coarse homography
between the input image IA and edge map EB . The output
homography is used to perform perspective transformation
on EB . Then, we feed the warped EB and IA as network
input for the next iteration. We repeat the same process for
subsequent iterations until the score from SRN is larger than
a threshold or it reaches the maximal number of iterations.

3.4. Implementation details

For the backbone of our homography network we use
ResNet [18] (tested with ResNet-18 and ResNet-50). The
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input size is 256×256. We use smooth-L1 loss for 4-points
regression and mean squared error loss for SRN score. The
network is trained jointly with both losses and all networks
are trained from scratch.
Hyperparameters – We train our networks with Adam op-
timizer [25], default parameters β1 = 0.9, β1 = 0.999 and
an initial learning rate of 0.03. We decrease the learning rate
by a factor of 10 after 5 and 10 epochs. and stop training
after 15 epochs. We use 2 GPUs to train the network with
a batch size of 256 for ResNet-18 and 128 for ResNet-50.
For each epoch, since we use 8× number of images, our
network takes more time to train.

We use OpenCV Canny edge detector to calculate edge
images. For both training and testing, we calculate maximal
image pixel value, and take its 0.3 and 0.7 as lower and
upper Canny detector threshold. We apply a 5× 5 Gaussian
filter on image before calculating edge.

4. Experiments
Evaluation protocols – Our first experiment follows the
similar evaluation method as [11]. We use ImageNet [10]
training images to train our network and use all ImageNet
test images to create 100,000 pairs of images as homog-
raphy testing data. For each image, we use Algorithm
1 (Section 3.4) to create a ground truth homography and
warp the image. The perturbation for each point is set to
a random value of [0.1 × 768, 0.32 × 768] in x-axis and
[0.1 × 432, 0.32 × 432] in y-axis. We fix the number of
refinement iterations at 4.

We compare our network performance with two base-
lines, ORB [33] and AKAZE [14] detector. For both base-
lines, we use OpenCV implementation, and the homogra-
phy is estimated with the robust feature matching RANSAC
method. In the cases where the network or either of the
baseline methods fails, we output identity matrix as homog-
raphy. We run the baseline methods with the original image
size. For network, we keep the original image IA, and cal-
culate Canny edge maps EB from warped image IB . We
resize them to 256 × 256 and feed them as network input.
Note, when calculating Canny edges, a proper mask is ap-
plied to remove the border edges due to the warping out of
the image border, because we do not want the network to
take advantage of the border edges.
Results – Figure 5 shows our testing results over 100,000
testing data. Again we follow [11] in reporting mean av-
erage corner errors over 4 points. The homography net-
work performs better than both feature-matching baselines,
even though the baselines operate on a single modality.
ResNet-50 has smaller errors than ResNet-18. As expected,
the network gives better results with more refinement it-
erations, especially from the first iteration to the second
one. This may be because the initial iteration have solved
the largest image-edge displacement, and thus alignment is

mostly complete after the second run.
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Figure 5. Homography estimation comparison with Mean Average
Corner Errors (logarithmic scale). Bars in blue denote ResNet-18
results while orange ones are ResNet-50 results
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Figure 6. Hybrid homography results (logarithmic scale)

Hybrid homography estimation – Since the first iteration
of the network solves the largest errors, one may ask if it
can lead to better results when combined with traditional
ORB or AKAZE detector. Therefore , we develop a hybrid
method. We run the ResNet-18 network with IA and EB

first. Then we take its output to warp the image IB , and
use the result image and IA to estimate final homography
with feature detectors. To provide a baseline comparison,
we also run ORB twice and AKAZE twice.

The results of hybrid methods are shown on Figure 6.
Both hybrid methods give very good results, especially
network-AKAZE. This is a very interesting observation and
may give us a robust method in homography estimation
for various applications, such as wide baseline matching or
cross-examination with both network and feature matching.
Note: our method is not limited to cross-modality, and an
image-to-image model can be trained with same approach.
Illustration of network iterations – To demonstrate that
the network actually performs shape matching over several
iterations, we run our ResNet-50 network on some challeng-
ing homography estimation image pairs from [1]. The re-
sults are shown in Figure 7. The “Boston” image pair (first
row) show a large translation and relatively small overlap
between the views in the first two images, and it takes 4 it-
erations for the network to find the optimal shape matching.
The “Boat” image pair (second row) on the other hand have
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Figure 7. Edge alignment visualization of our method on homography estimation dataset. The first two columns are image pairs (a and
b), and columns 3 to 6 are results of inference iterations 1 to 4, respectively. The edges of image b gradually match the image a over the
iterations even in the presence of large translation (Row 1) as well as rotation and scale change (Row 2). The bottom row shows a failed
case where the edges match the image with local maxima. Best viewed in color.

a large scale change as well as rotation. Again, we run the
network 4 times to output accurate homography. In both
cases, the edges gradually match the outlines of the build-
ings in the “Boston” pair and the water and masts in the
“Boat” pair. Also, check the alignment of the borderline of
the water and grass in the “Boat” pair, which could be chal-
lenges for feature matching. The “Graf” image pairs (third
row) only need 2 network iterations to converge, probably
due to their relatively small pixel displacement and large
overlapped views. The “Boston Library” pair (last row)
demonstrates a failed case. The two images show differ-
ent views of a symmetrical building with very little overlap.
Nevertheless, the network seems to find a local maximal.

5. Sports field registration

In the previous section, we demonstrate that the network
can be trained to align images based on correspondences
in underlying shape information. This type of network
could potentially be applied to many registration problems

where only partial shape information is available. Here,
we demonstrate its application on sports field registration
[20, 24]. We hope that this will shed some light on future
work in this area.

5.1. Problem statement

As shown in Figure 8, the sports field registration can be
addressed as shape matching. Given an image, we want to
map its location on the field template. In fact, the relation-
ship between an image and the template can be represented
with a homography H(k). Let us assume that we have the
ground truth homography between an image and a template,
we want to train the network to output the homography with
4-points method. To this end, we can use the ground truth
homography to perform perspective transformation on the
template, and treat the warped template (Figure 8, bottom
left) as foreground image edge with the background play-
ers and non-field portions removed. Thus, we could use the
similar method as last section to learn the regression net-
work.
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H(k)

Figure 8. Warped soccer field template. The top image is a soccer
field template. The bottom left shows the warped template ob-
tained by the ground truth homography. The bottom right presents
an image aligned with the warped template. In our method, the
warped template is treated as the edge of foreground image with
the background players and none-field-views removed.

Recent studies in deep learning and computer vision
achieve impressive results [7, 20, 24, 34] in sports field reg-
istration. Among them, [24] is closely related to us. It re-
lies on two decoupled regression networks. Interestingly, its
second error network also stacks the image with the warped
template as input. However, we approach the problem from
a very different perspective. Instead of specifically learning
to minimize errors with only one perturbation, we train the
network to learn shape matching with the ground truth sam-
ple and several perturbed noise samples. As a result, our
network only needs up to 4 iterations to achieve the optimal
results during inference, while [24] often runs the optimiza-
tion for 400 iterations.

5.2. Sports registration network

We use similar method as [24] in using two decoupled re-
gression networks. We train a coarse model M(0) (without
SRN branch) to find approximate homography H(0) with
an input pair of image and full template (the top image as
shown in Figure 8). Then, we train a second model M(1)
to do several refinements based on H(0).

We feed image and full field template as input to train
model M(0). We perturb the full template with few pixels
(less than 20) to avoid always training the network with the
same one. For model M(1), we prepare our training data
in the same way as Algorithm 1. Specifically, we use one
warped template (decided by ground truth homography) and
7 warped templates with perturbation. Each of the 8 tem-
plates is fed with a copy of the field image, forming 8 train-
ing samples. During inference, we first use model M(0)
with an input pair of image and full template to estimate the

Figure 9. Sample of a 4K hockey arena image aligned with the
warped template.

initial homography. We then perform the iterations based on
initial estimate. Note, to perform the inference with video,
we could skip the model M(0) for subsequent frames, and
use the homography from last frame to do the refinement.

5.3. Experiments

To evaluate our method, we follow state-of-the-art meth-
ods [20, 24, 34, 7] in using WorldCup soccer dataset [20],
Hockey dataset [20] and Volleyball dataset [7].
WorldCup soccer dataset – The WorldCup soccer dataset
is very small, which has only 209 training images and 186
testing images. We follow [24] to split 209 images into 170
training data and 39 validation data. The testing is evaluated
with the best model based on the performance on 39 vali-
dation images. To increase the data, the training/validation
images are horizontally flipped.

To reduce the risk of overfitting on such small data, in
addition to using ResNet-18 with fewer parameters, we de-
velop a method to increase the randomness from the training
data. For each training image, we use Algorithm 2 (Sec-
tion 3.2) to generate an extra 7 images. We shuffle all gen-
erated images plus the original ground truth data and use
Algorithm 1 (Section 3.2) to create 8 training samples per
image. We use all of them as a training epoch, and perform
such operation for each epoch. Note, with data augmenta-
tion, each epoch includes around 20K training samples, and
the samples are different in each epoch.
Volleyball dataset – The Volleyball dataset [7] is collected
from the volleyball action recognition dataset of Ibrahim et
al. [21]. The dataset includes total 47 games, with 10 im-
ages per game. We follow [7] in choosing 24 games for
training/validation and 23 games for testing. We follow the
same training/testing strategies as WorldCup soccer dataset
in using 22 games as training data and 2 games as validation
data to find the optimal model for testing.
Hockey dataset – The Hockey dataset [20, 24] has a large
variety of data with 1.67M images. In this test, we only ran-
domly sample 3000 ground truth images from the dataset
and combine them with the synthetic training data. We col-
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Method Whole IoU Part IoU
mean median mean median

So
cc

er

[20] 83 – – –
[8] 90.5 91.8 – –
[34] 88.3 92.1 93.2 96.1
[24] 89.8 92.9 95.1 96.7
Ours1 92.76 94.1 96.4 97.78
Ours2 93.16 94.87 96.61 97.84

H
oc

ke
y [20] 82 – – –

[24] 96.2 97.0 97.6 98.4
Ours 95.49 96.39 97.99 98.44

Vo
lle

y-
ba

ll

[7] – – 97.6 98.8
Ours 96.03 97.29 99.71 99.78

Table 1. Comparison with state-of-the-art results. Best results are
shown in bold. Ours2 represents the results of pretrain model
finetuned with our homography network model, and Ours1 are
from no pretrain model.

lected 2000 4K hockey images from 5 different arenas, and
obtain ground truth homographies by choosing their corre-
sponding points with template, see Figure 9. From them, we
croped 500K synthetic ground truth images (1280×720) by
using similar algorithms as Algorithm 2 (Section 3.2). The
training is performed the same way as that in Section 3.4.
We use same testing data as [24].
Results – To evaluate our method, we strictly follow the
testing setups as [24] on WorldCup and Hockey datasets, as
well as [7] on Volleyball dataset. For all tests, if not spec-
ified otherwise, we set maximal iteration count to 4 and an
early stopping score threshold of 0.98. We use the evalua-
tion code [2] of [24] for reporting our results.

To demonstrate the effectiveness of our method, we fine-
tune the network with two different pretrained weights. One
(backbone) is from weights of the ImageNet [10] classi-
fication model, and another one is from our homography
network model (Section 3.4). We name the first one as
no pretrain model and the second one as pretrain model.
Again, we use Adam optimizer with default parameters.
However, for no pretrain model, we start with a learning
rate of 0.03, divide it by 10 at 1.5k and 3.5k epochs, and
terminate training at 4k epochs. For pretrain model, we
start with a learning rate of 0.05, divide it by 10 at 150 and
350 epochs, and terminate training at 500 epochs. For both
models, testing is evaluated with best training epoch model
chosen based on the performance on validation images.

Table 1 shows the comparison of our method with the
state-of-the-art results. The results of [8, 20, 24, 34] are
taken from their respective papers. For soccer our results are
reported when the SRN score is set as 0.98, with the average
iteration number of 2.98. For all the tests, we achieve signif-
icantly better results than state-of-the-art with 2.66 increase
for mean IoUwhole and 1.51 increase for mean IoUpart.

Note: [8] also reports better results with manually anno-
tated player locations as keypoints for homography compu-
tation. One very important observation is pretrain model
performs better than no pretrain model. In addition, it
takes 420 training epochs to find best pretrain model with
validation data vs. 1600 training epochs for no pretrain
model. This demonstrates the effectiveness of our method
and its potential usage on transfer learning on limited data.

The Volleyball dataset shows camera views covering
most of the field. Our method performs better than the base-
line method [7] with almost perfect results on IoUpart. For
Hockey dataset we achieve better performance on IoUpart,
and a little worse on IoUwhole than [24]. Note, instead of
using 1.67M training data as [24], we only use 3K broad-
casting data plus synthetic data.

We also evaluate our SRN model on [24]. We first run
[24] code [2] on WorldCup dataset with its default 400 it-
erations, and then use our SRN model to decide the output
homography with a score threshold of 0.97. Our method re-
duces the iterations to 299.4 without loss of accuracy with
mean IoUpart = 95.3 and mean IoUwhole = 90.0.
Inference – For evaluation, we split the model into two
models, a 4-points regression model and a SRN model. For
up to 4 iterations per image, we only run the image stream
branch, A in Figure 2. The Nvidia TensorRT is used for ac-
cessing the features. The 4-points model runs first, and its
output homography is used to warp the template as the in-
put for the edge stream branch, B in Figure 2, to evaluate the
score from the SRN model. Our method can achieve over
100fps running on an Nvidia Tesla T4 GPU using FP16.

6. Conclusions

We presented a new method to train an end-to-end CNN
to perform cross-modality homography estimation. Our
training approach does not require any labelled data and we
have shown the benefits of combining our method with tra-
ditional feature based registration methods to achieve better
results. Testing on sports field registration datasets shows
the effectiveness of the end-to-end self-supervised network
to achieve state of the art results for cross-modality image
registration. Experimental results indicate that our method
outperforms state-of-the-art registration techniques using
only a small number of labelled samples of about 240 im-
ages.
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