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Abstract

Image-level weakly supervised semantic segmentation

(WSSS) relies on class activation maps (CAMs) for pseudo

labels generation. As CAMs only highlight the most dis-

criminative regions of objects, the generated pseudo la-

bels are usually unsatisfactory to serve directly as supervi-

sion. To solve this, most existing approaches follow a multi-

training pipeline to refine CAMs for better pseudo-labels,

which includes: 1) re-training the classification model to

generate CAMs; 2) post-processing CAMs to obtain pseudo

labels; and 3) training a semantic segmentation model with

the obtained pseudo labels. However, this multi-training

pipeline requires complicated adjustment and additional

time. To address this, we propose a class-conditional in-

ference strategy and an activation aware mask refinement

loss function to generate better pseudo labels without re-

training the classifier. The class conditional inference-time

approach is presented to separately and iteratively reveal

the classification network’s hidden object activation to gen-

erate more complete response maps. Further, our activa-

tion aware mask refinement loss function introduces a novel

way to exploit saliency maps during segmentation training

and refine the foreground object masks without suppress-

ing background objects. Our method achieves superior

WSSS results without requiring re-training of the classifier.

https://github.com/weixuansun/InferCam

1. Introduction

Recent work on 2D image semantic segmentation has

achieved great progress via deep fully convolutional neu-

ral networks (FCN) [32]. The success of these mod-

els [51, 8, 7, 52, 9] comes from large training datasets

with pixel-wise labels, which are laborious and expensive

to obtain. To relieve the labeling burden, multiple types

of weak labels have been studied, including image-level

[23, 44, 2, 16], points [3], scribbles [40, 31, 39], and bound-

ing boxes [10, 34, 25, 30, 36]. In this paper, we focus on

weakly-supervised semantic segmentation with image-level

labels, the lowest annotation-cost alternative.

Image CAM Ours

Figure 1. Our object response maps compared with baseline

CAMs. The baseline CAMs only highlight the most discrimina-

tive regions. Our proposed technique leads to response maps that

integrally cover larger object regions without re-training.

The typical way to learn from image-level labels usually

involves progressive steps: 1) an initial response map (the

class activation map (CAM) [53]) is obtained to roughly lo-

cate the objects; 2) pseudo labels are generated based on

the initial response map with post-processing techniques,

e.g., denseCRF [26], random walk [33] or an additional

network[1, 2, 41]; 3) a semantic segmentation network is

trained with the pseudo labels as supervision. The quality of

the initial response map plays an important role for image-

level WSSS, as good response maps can fill the inherent gap

between image-level labels and pixel-wise labels. However,

as the CAM highlights discriminative regions of each cate-

gory, the partial activation leads to unsatisfactory semantic

segmentation. To refine the pseudo labels from CAMs, most

recent state-of-the-art methods require additional training

steps. i.e. re-train the classification model to encourage the

CAMs to cover more object areas [4, 4, 44, 37, 50, 42], or

train additional networks [2, 1, 41] to guide the CAMs to

generate pseudo labels.

We observe that the partial activation of the CAM is be-

cause only the discriminative region is usually needed for

effective object classification. So the network is prone to

focus on the discriminative areas. However, we argue that

this does not indicate that the classifier learns nothing about

other less-discriminative patterns. We experimentally vali-

date that, assuming there is sufficient data for each category,

the trained classifier can generate activation on most areas
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of objects but unevenly distributed. We describe this partial

activation issue as an “unequal distribution of the activa-

tion”, and find that conventional inference fails to leverage

the full power of the baseline classifier. We demonstrate

that a basic classification network, pre-trained on the target

dataset without modification is sufficient to generate uni-

form activation and cover most object areas with an effec-

tive inference strategy.

We propose an inference-time image augmentation

method to reveal hidden activation of objects and gener-

ate better object response maps for WSSS. To prevent the

risk of diverging from the well-trained classifier, we do not

re-train the baseline classifier. Instead, our method adopts

only a novel inference mechanism to deal with the unequal

distribution issue of the CAM. Specifically, we first intro-

duce a “split & unite” based image augmentation method to

encourage the network to pay attention to different parts of

objects and generate equal activation on each part. To fur-

ther push the activation to other less discriminative areas,

we present a “hide and re-inference” method, which itera-

tively mines activated regions of objects and aligns them to

an equally-distributed response map. Finally, we integrate

these two modules into a simple framework that can be used

in the inference stage of existing classifiers. As shown in

Fig. 1, our inference-time method generates more uniform

object response across the entire object. We conduct exten-

sive experiments on the PASCAL VOC 2012 dataset [12],

and both qualitative and quantitative results demonstrate the

effectiveness of our approach.

In addition, we explore a new method to leverage

saliency maps in WSSS. We argue that, since salient object

detection models are always trained by the class-agnostic

objects with center bias, directly using saliency as back-

ground cues to generate pseudo labels can deteriorate the

quality of the segmentation pseudo labels. To address this,

we propose activation aware mask refinement to further re-

fine the semantic segmentation, which uses saliency maps

as a subsidiary supervision during semantic segmentation

training along with pseudo labels. We can refine the fore-

ground object boundaries and meanwhile inhibiting sup-

pression on the activated objects in the background.

Our main contributions are summarized as follows: 1)

We identify a core issue causing the unequal distribution of

CAMs and explore a new option to refine initial response

maps during inference. 2) We propose a Class-conditional

Inference-time Module to obtain better object activation

without any network modification or re-training. 3) We pro-

pose the Activation Aware Mask Refinement Loss, a new

approach to incorporate saliency information in WSSS that

can refine object boundaries, but also prevents suppression

of background objects due to the saliency centre-bias. 4)

Our inference-time method can also be treated as an add-on

solution to the existing image-level based methods.

2. Related Work

Weakly Supervised Semantic Segmentation: A large

number of WSSS methods have been proposed to achieve

a trade-off between labeling efficiency and model accuracy,

where the “weak” annotations can be image-level labels

[23, 44, 2, 16, 34, 42, 5, 50, 6, 37, 48, 18, 47, 13, 28, 46, 45,

29], scribbles [40, 31, 39], points [3], or bounding boxes

[10, 34, 25, 30, 36, 38]. We mainly focus on image-level

label based weakly supervised models.

As the start point, the quality of the initial CAM is impor-

tant for the semantic segmentation network. Two different

methods have been widely studied to obtain a better initial

response map, including network refinement based models

and the data augmentation and erasing based techniques.

Network Refinement: [44] adopts dilated convolution

with various dilation rates to enlarge the receptive field and

transfer discriminative information to non-discriminative

object regions. [5] performs clustering on image features to

generate pseudo sub-category labels within parent classes,

which were then used to train the classification model and

generate CAMs that covered larger regions of the object.

[50] introduces discrepancy loss and intersection loss to first

mine regions of different patterns, and then merge the com-

mon regions of different response maps.

Data Augmentation and Erasing: These methods aug-

ment or erase input images to force the network to gener-

ate larger response map object coverage. [43] erases highly

activated areas from the image and then retrains the classi-

fication network to discover new object regions for classifi-

cation. [35] divides the image into a grid of patches, then

randomly hides patches to force the network to focus on

other relevant object parts. [21] leverages two self-erasing

strategies to encourage the network to use reliable object

and background cues to prohibit attention from spreading

to unexpected background regions. [4, 18] utilize mixup

data augmentation to calibrate the uncertainty in prediction,

they randomly sample an image pair to mix them together

and feed into the network, which forced the model to pay

attention to other image regions.

In general, all above methods require “re-training” the

classification model to obtain a refined initial response map.

We introduce a new method for initial response map acqui-

sition without re-training. One recent method that does not

re-train is [15], which directly generates multiple CAMs

for each image from the classifier using different input

scales, backbones and post-processing. The segmentation

model’s robustness is then leveraged to learn from the noisy

CAMs, using a learnable per-pixel weighted sum of mul-

tiple CAMs. In this paper, we explore a new alternative

option to refine the initial response maps during the CAM

inference stage of a single network without re-training.

Saliency Assisted WSSS: Saliency maps are often adopted

in WSSS [23, 21, 13, 14, 44, 24, 27, 37, 41, 43] to serve
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Image CAM Activated region Ours

Figure 2. Visualization of activated regions of the baseline CAM.

Activation is unequally distributed in the object, where the highly

activated region (CAM) is the discriminative region. However,

we observe that the less discriminative regions are still activated

covering most object areas (second and third column)

as background cue to generate pseudo labels. Recently,

[45] proposes a pseudo label generation module, which uses

saliency maps as background cues and chooses a predefined

threshold to retain the activated objects in background. [29]

directly utilizes saliency maps as supervision during clas-

sifier training to constrain object activation. [46] proposes

potential object mining and Non-Salient Region Masking to

explore objects outside salient regions. However, no exist-

ing WSSS methods directly use saliency maps during se-

mantic segmentation training.

3. Our Approach

We first analyse the baseline CAM method, then propose

the class conditional response map and a class conditional

inference-time approach based on it. Finally, we introduce

our Activation Aware Mask Refinement Loss, a novel ap-

proach to leverage pre-trained saliency maps in WSSS.

3.1. Class Conditional Response Map

For a class c, a CAM [53] is a feature map indicating the

discriminative region of the image that influence the clas-

sifier to make the decision that this object belong to class

c. Given fk(x, y), the activation of unit k in the last con-

volutional layer at location (x, y), and wc, the weights from

fk(x, y) via global average pooling, the CAM M is a map

of activation at locations (x, y) as described in [53]:

Mc(x, y) = Σkw
c
kfk(x, y). (1)

Consider a network h with parameters θ. For input im-

age I , suppose the output for class c, hθ(c|I) > τ , where

τ is the threshold probability. Recent high-performance

networks (e.g., [22, 20]) trained on large datasets (e.g.,

ImageNet) yield highly accurate classification for well-

represented classes. Hence, given positive classification for

c, we can treat Mc as an approximation to a class condi-

tional response map. Hence, we define a class conditional

response map for image I using network parameters θ as:

Rc((x, y)|I; θ) = Mc((x, y)|c, I; θ) (2)

≈ Mc((x, y)|I; θ),

where Mc((x, y)|c, I; θ) is the CAM for I in which class c

appears, and Mc((x, y)|I; θ) is the CAM for image I , given

that class c appears with high probability in the image.

Over-complete Activation

Consider Fig. 2, column two shows the baseline CAM acti-

vation, where some discriminative areas are well-activated,

but other visible object regions have weak activation, (e.g.,

the heads of the sheep versus the bodies). The third column

shows all areas with activation greater than zero, which are

large and generally include most object areas. Quantita-

tively, we obtain all activated masks for the PASCAL VOC

2012 training set and get a recall of 84% compared with the

semantic segmentation ground truth, i.e. the majority of ob-

ject regions are activated by the baseline classifier, not just

discriminative regions. We can see that the baseline classi-

fier learns most object features with sufficient training data.

However, the response is over-complete and uneven, so ex-

tracting segmentation pseudo labels is difficult.

Uneven Distribution

For discriminative training, the loss is indifferent to ex-

tensive activation across an object, requiring only a suffi-

cient global average value via pooling. Existing image-level

weakly supervised methods observe that the CAM only

shows high activation on an object’s most discriminative re-

gions [43, 35, 44, 21, 4, 18, 5, 42, 50], but they disregard

the less discriminative object regions where the activation

is suppressed. By definition, the class conditional response

map has a global average per-pixel response greater than

a threshold. Then, we can infer that a unit fk(x, y) at lo-

cation (x, y) with high activation in Rc((x, y)|I; θ) has an

appearance pattern within its receptive field that is strongly

associated with the presence of c.

Suppression of Broader Object Activation

We argue that for a particular input image, the presence

of a highly discriminative region may suppress other less

discriminative regions in Rc. Network processing is well-

understood, but let’s consider network mechanisms that

feed into Rc. The main mechanism for suppression in ear-

lier layers in modern networks (e.g., ResNet) is via batch

normalization and negative weights (ReLU output is non-

negative). Each fk(x, y) from Eq. 1 projects back into the

penultimate layer by standard convolution:

fk(x, y) = σ(Σk′∈N(x,y)
[wc

k′fk′(x, y)]), (3)

where we use σ to represent a combined ReLU activation

with Batch Normalization, and k′ indexes over the con-

vlution input units to fk(x, y). That is, the class condi-

tional response at location (x, y) is a non-linear function of
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weighted input units fk′(x, y) from the prior layer. Hence,

by a combination of negative wk′ and σ, a strong activation

from some fk′ can lead to suppression of the correspond-

ing Rc((x, y)|I
′; θ) in the class conditional map. Note that

fk′(x, y) can also be negative by the cascade of Eq. 3.

For networks with deep residual structures it would be

difficult to trace back through the cascading and residual

activation to find the exact pixels that have led to this sup-

pression of CAM locations that may otherwise have positive

features. Instead, we propose a class conditional inference-

time approach to solve this issue. We aim to generate a more

uniform distribution of activation across the visible object.

3.2. Class Conditional Response Map Inference

We assume an initially well-trained classification net-

work hθ, which we do not re-train. Instead we propose class

conditional inference, whereby we augment I at inference

time to remove regions that may suppress the response of

other object parts to mine the class-conditional object acti-

vation. Concretely, we perform this by computing the class

conditional response map Rc(x, y|I
′; θ), where I ′ is an aug-

mented image. By removing pixels in I associated with

high activation, we aim to explore other regions of being

suppressed. A high response on Rc(x, y|I
′; θ) for some lo-

cation where the activation was not high for Rc(x, y|I; θ) is

likely to indicate an appearance pattern that is strongly as-

sociated with the object, but was suppressed by the regions

that visible in I , but not I ′. In this section we describe our

implementations of this by class conditional Split & Unite

Augmentation, and Iterative Inference.

Split & Unite: Image Augmentation

To address the unequal distribution of object activation, we

propose a class conditional split & unite inference strategy

to investigate different parts of the object, and align their

activation. A naive approach would be to randomly divide

the image by a grid and perform inference on each grid cell.

But it is likely that some cells would not contain the ob-

ject, and have a higher chance of false positive responses on

small regions.

Instead, we first apply conventional inference with the

baseline classifier to obtain Rc((x, y)|I; θ). As we assume

a well-trained model θ, the initial high CAM activation will

generally fall on the discriminative region of the target ob-

ject. Then we calculate the centre of mass of the original

CAM to obtain a center point about which we split the im-

age into four patches, as shown in Fig. 3. We find the centre

of mass generally falls on the class, in which case some part

of the object appears in each of the four sub-images.

With the classifier fixed, we then compute

Rc((x, y)|Ii; θ) where i indexes each split, Although

the unequal distribution of the object activation in the

baseline CAM leads to only highly discriminative regions

being highlighted, by separate inference, object discrim-

1 2

3 4

1 2

3 4

Baseline CAM Ours

1 2

3 4

1 2

3 4

Figure 3. Our split & unite augmentation methods. During infer-

ence, we split the image into patches with each patch containing

a part of object, and then we reprocess each patch to find its class

conditional response map.

ination is computed individually in each patch with any

suppressing elements in the other patches removed so we

can locate more discriminative areas on different object

parts. For example, see the first row of Fig. 3 showing

the split for images with one object class. Without the

highly activated sheep head in the patch #2, other parts

of the sheep are highlighted in patch #1, #3 and #4. For

images with two object classes, we refine our split strategy,

as shown in second row of Fig. 3, we calculate centres of

mass for both class’s CAM, then we use these two center

points to obtain a rectangle inside the image (displayed

as the red central area). We use the four corners of this

rectangle as a split point to crop the original image into four

patches. The central rectangle (red area) is retained in all

four patches, as shown in the “Splits” column. Each split

generally contains different parts of both object classes.

Then we run inference on each patch in turn, and merge

the four response maps, we take the max activation for the

overlapping central rectangle area. For images with three

or more classes, we split the images by the CAM mass

center for each class separately.

Furthermore, our split & unite method could also be

used as a common image augmentation method to assist

re-training the classification model. Specifically, we feed

each patch individually into the classification model to train

the network with the same image-level ground truth as the

original image. i.e. we use different object parts to train the

classifier instead of the entire object, thus the classifier will

naturally pay attention to more object parts during infer-

ence. We show further experimental results of in Sec. 4.3.

Refined Iterative Inference Module

In the Split & Unite module, the classifier still focuses on

discriminative regions in each patch, so we extend our in-

ference method by introducing the iterative erasing mecha-

nism. Iterative training by erasing the high activation is an

adopted technique in the WSSS. For example, [43] proposes

an iterative training scheme, in each iteration the high acti-
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Figure 4. We iteratively remove the highly activated regions from

the image, and feed the new image back to the fixed classifier.

vation regions are erased then the image is fed back to train

the classifier again. But it has the risk that all objects are

erased while network is still updating with false positive,

also the re-training time is greatly increased. In this sec-

tion, we propose a refined inference-only iterative module

to further improve the object activation maps. Our module

is supported by our analysis in Sec. 3.1, which requires no

re-training, avoid the risks of existing iterative erasing tech-

niques and can achieve better results.

Refer to Fig. 4, we first feed the original image into the

classifier and produce response map, revealing the highly

discriminative areas. Then these highly discriminative ar-

eas are erased with mean colour value of the original im-

age. The augmented image is then fed back to the classi-

fier for next inference iteration. No training is performed

as the pixels corresponding to the discriminative region are

removed. With these object features absent, without sup-

pression, weaker activation will be naturally driven to shift

to high activation. We iterate this inference process and

then add the newly generated activation map of every itera-

tion together to obtain the final response map. As shown in

Fig. 4, new object areas are activated progressively in each

iteration without updating the network.

Our Inference Module

Finally, refer to Fig.5, we integrate our split & unite and iter-

ative inference together into a unified inference-only frame-

work. We first split the image into 4 splits and feed them

into the classifier in parallel to encourage more object ac-

tivation on each split. Then we perform iterative inference

on each of them respectively as shown in the green block.

Finally, we combine each split together into our final object

response map. The split & unite module and iterative in-

ference module mutually benefit each other to balance acti-

vation across different object parts and densely cover larger

object areas. Our class-conditional module can be seemed

as an add-on module. It can be seamlessly utilized in the

inference stage of any pre-trained classification networks.

As the proposed inference module requires no re-training,

Classifier

|

Iterative inference module

Ours

Baseline CAM

Image
Pre-trained

classifier

Object

Activation map

Class-conditional

Inference Module

Figure 5. The framework of our proposed inference method. As

shown, we split the image into 4 splits and do iterative infer-

ence(green block) on each split in parallel, then we combine the

4 splits together into our final object response map.

it saves all re-training time and is much easier to imple-

ment. In our experiments section, we compare with existing

methods, and the results show that we achieve comparable

performance with the state-of-the-art methods while most

of them rely on re-training the classification model.

3.3. Activation Aware Mask Refinement Loss

Saliency information is used by many approaches in

image-level WSSS to refine object boundaries and obtain a

background mask [37, 24, 27, 16, 17, 21, 23, 44, 41]. Com-

monly, a pre-trained off-the-shelf salient object detection

model is adopted to generate class-agnostic saliency masks

on the segmentation dataset. Then the saliency masks are

used during pseudo label generation, normally they are mul-

tiplied by a manually chosen parameter and concatenated

onto the activation maps as background. High activation

pixels are then used to obtain pixel-wise pseudo labels.

However, we observe that since saliency detection mod-

els are usually trained by class-agnostic objects with cen-

ter bias, the saliency maps may falsely detect non-object

salient areas in the foreground, and tend to ignore non-

salient objects in the background (see Fig. 7), Thus, it may

introduce errors into pseudo-labels and harm segmentation

training. Some desired object regions are ignored and some

non-object regions are falsely detected in the saliency maps.

However, saliency maps are still required by WSSS to sup-

port finding accurate foreground object boundaries. To

address this issue, we propose a new method to leverage

saliency information in WSSS, including a new saliency

loss. The use of CAMs to obtain pseudo-labels without

saliency maps is unchanged. Then we use the pseudo la-

bels together with the provided saliency maps to train our

semantic segmentation model. As shown in Fig. 6, we keep
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Image CNN
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Figure 6. Top: the convention saliency guided WSSS training.

Bottom: our activation-aware mask refinement training, where ob-

ject activation and saliency information are visible to the network.

both labels visible to the network, so the saliency maps can

refine foreground object boundaries, but we inhibit suppres-

sion of activated objects in the background. More formally,

our segmentation loss is defined as:

Lseg = Lseg + α(eτ − 1)Lsal (4)

The first term Lseg is the cross entropy loss between seg-

mentation prediction and our activation-generated pseudo

labels. The second term Lsal denotes the binary cross en-

tropy loss between the background channels of the predic-

tions and the saliency maps. We incorporate a modulat-

ing factor τ (called the conflict temperature) with tunable

weight α > 0. Intuitively, as two noisy signals (pseudo

labels and saliency maps) in the supervision pair have con-

flict areas as shown in Fig. 7, they will compete with each

other. We use τ to control the competition between two

supervision terms. τ is defined as the mean intersection-

over-union (MIoU) between our pseudo label background

channel and the saliency maps. If τ is low, it indicates the

saliency map is not consistent with the pseudo background,

and so the saliency maps will harm segmentation training,

so the weight of the saliency loss Lsal is diminished. Con-

trarily, if MIoU is high, then the saliency loss is enhanced

to refine the object boundaries. In summary, our activation-

aware mask refinement loss proposes an adaptive mecha-

nism to refine segmentation training. Saliency information

is fully explored to refine the foreground object boundaries

but not harm activated objects in the background.

4. Experiments

4.1. Implementation Details

In this section, we introduce implementation details of

the proposed method and the following procedures to gen-

erate semantic segmentation results. We evaluate our ap-

proach on the PASCAL VOC 2012 dataset [12] with the

background and 20 foreground object classes. The official

dataset consists of 1446 training images, 1449 validation

and 1456 test. We follow common practice, augmenting the

Image Saliency map Pseudo label Ground truth

Figure 7. Conflicts between saliency maps and our activation-

generated pseudo labels, where the “Pseudo label” is the

activation-generated pseudo label. As shown in the first row, our

activation correctly detects the TV monitor but the saliency map

ignores it. In the second row, the saliency map falsely highlights

the banner but ignores the bus.

Training Set Validation Set

Method CAM CAM + RW CAM

Baseline [2] 48.0 58.1 46.8

Mixup-CAM [4] 50.1 61.9 x

SC-CAM [5] 50.9 63.4 49.6

Ours 52.2 64.2 50.7

Table 1. Performance comparison in mIoU(%) of the initial re-

sponse maps on the PASCAL VOC training and validation set.

Mixup-CAM [4] and SC-CAM [5] are two state-of-the-art meth-

ods, and x means the paper does not report this number.

Baseline split & unite Iterative Inference mIoU

X 48.0

X X 49.9

X X 50.2

X X X 52.2

Table 2. The ablation study for each part of our method to validate

effectiveness of the proposed strategies.

training set by adding images from the SBD dataset [19], to

form a total of 10582 images.

Object Response Map Generation

In our pipeline, we use the weights of the baseline clas-

sification model provided by [2], pre-trained on ImageNet

[11], and fine-tuned on PASCAL VOC 2012, without any

re-training. Similar to [2] and others, our baseline classifier

uses the ResNet-38 backbone with output stride = 8, global

average pooling, followed by a fully connected layer. In

the iterative inference module, we empirically choose 0.7

as threshold for high activation, and remove high activation

regions in each inference iteration. We stop iteration when

the new activation is smaller than 1% of the image.

Semantic Segmentation Generation

After obtaining response maps using our method, follow-

ing recent work [42, 5, 4, 37, 6], we adopt the AffinityNet

random walk [2] to refine response maps into pixel-wise se-

mantic segmentation pseudo labels. Also, we apply fully

connected random fields [26] to refine the pseudo-label ob-

ject boundaries. Finally, we use the generated pseudo la-

bels and saliency maps as supervision to train the popular

Deeplab semantic segmentation framework with ASPP [8]

using the ResNet-101 backbone network. We use saliency
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Figure 8. Sample results of initial response maps and ours. Baseline CAMs tend to only highlight discriminative areas. Our approach helps

balance object activation across different object parts and densely cover larger object areas. For images with multiple classes, we can get

better activation for all classes, and we combine them in the activation for convenience of reading.

Class number 1 class 2 classes 3+ classes Total

Baseline 46.6 50.9 41.4 48.0

SC-CAM[5] 49.5 53.5 43.5 50.9

Ours 49.8 55.3 44.7 52.2

Table 3. Model performance with respect to number of categories.

maps from [24], α in Eq. 4 is empirically set to 0.08.

4.2. Improvement on Initial Response Map

In Table 1, we show initial response map (CAM) perfor-

mance, using best mean IoU, i.e. the best match between the

response map and segmentation ground truth under all dif-

ferent background thresholds. We also report pseudo-label

results after applying the random walk refinement (CAM +

RW). Note that our results are obtained with the baseline

classifier without any re-training, all improvements come

from our proposed class conditional inference. As shown

in Table 1, our initial response maps are significantly im-

proved over baseline [2] on both training and validation sets.

We also compare response maps generated by recent state-

of-the-art methods [4, 5], and observe a a clear margin.

Our better initial response maps lead to better perfor-

mance of downstream tasks: generating pixel-wise pseudo-

labels and final segmentation results. After refining the

response map into pseudo labels that are used to train a

semantic segmentation model, we also achieve significant

improvement over the baseline and outperform competing

methods, as shown in “CAM+RW” column in Table 1. This

validates that, by direct inference without fine-tuning, our

method can substantially improve object activation and gen-

erate better response maps than competing methods with re-

trained classification models. In Fig. 8, we show qualitative

examples compared with baseline CAMs, showing that ours

can activate substantially more object parts and uniformly

cover larger regions of the objects.

In Table 2, we show an ablation study, how each of our

modules improves the initial response maps. The improve-

ment mainly stems from more dense coverage of objects,

we test each module independently. Our split & unite aug-

mentation improves the baseline CAM by 1.9%. The iter-

Training Set Validation Set

Baseline 48.0 46.8

Ours (Direct inference) 52.2 50.7

Ours + split&unite re-training 52.7 51.8

Ours + SC-CAM[5] 53.3 51.5

Table 4. The effectiveness of our model as an “add-on” to re-

trained classifier.

ative inference module has an improvement of 2.2% com-

pared with baseline. It validates that both our modules pro-

vide manifest improvement over the baseline CAM. Inte-

grating them together, we achieve a significant improve-

ment over the baseline by 4.2% on our initial response map.

Finally, we report performance improvements for differ-

ent numbers of classes appearing in an image in Table 3.

As shown, we achieve consistent improvements over com-

peting methods on images with all class numbers, demon-

strating the effectiveness and generality of our method.

4.3. Ablation: Integrating with Re­training

Our method can be directly used as an add-on inference

module with any existing re-trained classifier to obtain a

better initial response map. First, as discussed in Sec. 3.2,

our split & unite augmentation can be used in the training

stage as a data augmentation method. We follow the meth-

ods described in Sec. 3.2 to augment the training set to feed

different parts of the object into the classification model to

train the network, so the network will update its weights to

pay attention to more object parts. Refer to Table 4: fine-

tuning the classifier with our split & unite augmentation fur-

ther improves the initial response map performance.

In addition, we perform our inference-time data aug-

mentation on the re-trained CAM of (SC-CAM [5]) to re-

fine their produced CAM. SC-CAM [5] introduced a sub-

category clustering method to force the network to activate

in more categories, leading to enlarged activation regions.

We then perform our inference-time approach on their re-

trained classifier. As shown in Table 4, we (Ours + SC-

CAM) improve their performance significantly by 2.4%.

This validates that our inference method can be used as an

add-on solution to integrate with existing re-trained classi-

fiers to further refine the object activation maps. .
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Figure 9. Qualitative results of our semantic segmentation results.

4.4. Semantic Segmentation Performance

In Table 1, we show the refined pseudo labels generated

by our initial response maps. We then use the pseudo labels

and our activation aware mask refinement loss to train a seg-

mentation network on PASCAL VOC dataset. As per com-

mon practice, we use the densely connected CRF [26] to re-

fine the semantic segmentation predictions as post process-

ing. We show final predictions in Fig. 9, clearly showing

the effectiveness of our approach. In Table 5, we compare

our method with recent work. We report performance on

both the validation and test set of the PASCAL VOC 2012

dataset [12]. As shown, our method outperforms all others

on the test set, and is comparable with state-of-the-art on

the validation set. Note that most other methods require ad-

ditional re-training steps to obtain better object activation,

our method is easier and faster to implement. Further, we

remove the saliency guidance in Fig. 6 from our framework,

leading to the cheapest model (no re-training, no saliency),

and achieve mIoU(%) on PASCAL VOC validation set and

testing set as 66.2 and 66.3 respectively, which is compa-

rable with re-training based model RRM [48] and slightly

worse than AdvCAM [28].

4.5. Discussion: Computation­time

We argue that current WSSS multi-training schemes are

complicated and inelegant, so we propose to improve WSSS

performance without further increasing computation time.

First, our saliency loss is a subsidiary supervision calculat-

ing the binary cross entropy loss during segmentation train-

ing, the increased time complexity is negligible, and most

SOTA approaches already incorporate saliency to generate

pseudo labels. Second, although re-training time is saved,

our class conditional inference module requires once-off

additional inference-time computation to generate pseudo-

labels, we give a quantitative analysis here. To obtain acti-

vation maps on the PASCAL VOC train set (1464 images)

our method takes 40 minutes compared to 13 (factor of 3,

e.g., an extra 3.5 hours for the 10582 image Augmented

dataset). On the other hand, re-training the baseline clas-

sifier as performed by most others requires 6 hours on the

same GPU settings (note that competing methods have ad-

Method Re-

training

Extra

data

Val Test

MDC[44] VGG16 X S 60.4 60.8

DSRG[23] ResNet101 X S 61.4 63.2

Affinity[2] ResNet38 61.7 63.7

SeeNet [21] ResNet101 X S 63.1 62.8

IRNet [1] ResNet50 X 63.5 64.8

BDSSW [17] ResNet101 S 63.6 64.5

CIAN [16] ResNet101 X S 64.1 64.7

SEAM[42] ResNet38 X 64.5 65.7

FickleNet[27] ResNet101 X S 64.9 65.3

OAA [24] ResNet101 X S 65.2 66.4

Mixup-CAM [4] ResNet101 X 65.6 x

BES [6] ResNet101 X 65.7 66.6

SC-CAM [5] ResNet101 X 66.1 65.9

CONTA[49] ResNet101 X 66.1 66.7

MCS [37] ResNet101 X S 66.2 66.9

RRM[48](two step) ResNet101 X 66.3 66.5

EME[15] ResNet101 S 67.2 66.7

ICD[13] ResNet101 X S 67.8 68.0

AdvCAM [28] ResNet101 X 68.1 68.0

NSRM[46] ResNet101 X S 68.3 68.5

EDAM[45] ResNet101 X S 70.9 70.6

EPS[29] ResNet101 X S 70.9 70.8

Ours ResNet101 S 70.8 71.8

Table 5. Semantic segmentation performance comparison on the

PASCAL VOC 2012 val and test sets. We report the methods that

re-train the classification model for better response maps. Also,

the methods that utilize extra saliency masks to generate pseudo

labels are marked with “S”.

ditional augmented images, and/or network enhancements

meaning their re-training takes at least this long). Thus, our

inference-time method still greatly saves overall time to ob-

tain high-quality activation maps. As future work, we will

refine our method to further reduce the inference time.

5. Conclusion

In this paper, we propose a novel inference method

that helps generate better object response maps without re-

training the baseline classifier, and a new method to utilize

saliency information in WSSS. Specifically, we propose two

inference-time modules to generate dense object response

maps. Firstly, we develop an augmentation method and let

the classifier inference on different image parts individually

so as to shift the activation to more object areas. Secondly,

we propose an iterative inference that encourages the classi-

fier to progressively mine more object parts by hiding high

activation areas during inference. Whereas most current

state-of-the-art methods require multiple training steps, our

method directly generates response maps using the baseline

classifier. We show that our algorithm produces a better ini-

tial response map with less computation. In addition, our

activation aware mask refinement loss provides a new way

to incorporate saliency information in WSSS which further

improves final semantic segmentation performance.
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