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Abstract

In the field of autonomous driving and robotics, point
clouds are showing their excellent real-time performance as
raw data from most of the mainstream 3D sensors. There-
fore, point cloud neural networks have become a popu-
lar research direction in recent years. So far, however,
there has been little discussion about the explainability of
deep neural networks for point clouds. In this paper, we
propose a point cloud-applicable explainability approach
based on a local surrogate model-based method to show
which components contribute to the classification. More-
over, we propose quantitative fidelity validations for gener-
ated explanations that enhance the persuasive power of ex-
plainability and compare the plausibility of different exist-
ing point cloud-applicable explainability methods. Our new
explainability approach provides a fairly accurate, more se-
mantically coherent and widely applicable explanation for
point cloud classification tasks. Our code is available at
https://github.com/Explain3D/LIME-3D

1. INTRODUCTION
Deep neural networks (DNNs) have risen on the stage of

machine learning in recent years with prominent accuracy
and omnipotent end-to-end learning capability. Especially
in the field of computer vision, complex structured neural
networks show better image recognition performance than
humans. Despite their great success in industry, DNNs suf-
fer from the trade-off between performance and explainabil-
ity [7] due to the nonlinear model architectures. With an
increasing demand for the credibility of decision-making,
studies of explainability for black-box models have received
considerable critical attention. Existing research recognizes
that models with high explainability play a crucial role in
gaining user confidence, exposing potential biases in train-
ing data, and improving model robustness [5].

Several studies have found intimate connections between
explainability and the safety of human life in safety-critical
areas, e.g., in medicine [10, 18, 2] or autonomous driv-
ing [25, 9]. In the medical domain, decisions made by

black-box models are unreliable and thus unacceptable [28].
The same dilemma occurs in the field of autonomous driv-
ing, where algorithms that control vehicles with low trans-
parency not only lead to legal problems but also pose a po-
tential social threat [13]. Therefore, both customers and
companies benefit from the research in explainable machine
learning. Recent studies have proposed several explain-
ability approaches for explaining complex machine learn-
ing models, among which the most popular methods are
gradient-based [20, 38, 41, 4, 29, 34] and local surrogate
model-based [26, 15].

Point cloud data, as the raw data of most mainstream sen-
sors, has a significant advantage in real-time scenarios com-
pared to other 3D data formats and therefore has become
a popular research direction in recent years. Point clouds
exhibit higher structural complexity than 2D images. For
instance, convolution kernels are easily applied to images
due to their regularity, but they are not directly applicable
to point clouds. Due to the lack of adjacency of the point
cloud data, neighboring points in the point cloud matrix
have a high probability of being irrelevant to the 3D spatial
adjacency, which leads to the invalidation of the traditional
convolution kernel. [23, 24, 22] bring up solutions for point
feature extraction and make point clouds suitable for convo-
lutional neural networks. However, in contrast to the field of
2D image processing with a large number of explainability
studies [2, 37, 8, 35], most point cloud-compatible DNNs
currently remain black-boxes due to the paucity of research
investigating their working principle [12]. This indicates an
indispensable need for the explainability research on DNNs
dealing with point cloud data to ensure transparency of de-
cisions made by robots and autonomous vehicles.

As for the reliability examination of explainability meth-
ods, to date, there is no acknowledged evaluation criterion.
Most of the previous work validates the explanation results
subjectively based on human interpretation, which easily
leads to bias in the evaluation of explainability approaches.
Therefore, quantitative evaluations are increasingly recog-
nized as an essential requirement in the explainable ma-
chine learning domain.

This work proposes a point cloud-applicable local sur-
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rogate model-based approach [26, 15] investigating the ex-
plainability and reliability of point cloud neural networks.
With the help of explanations, humans gain a better aware-
ness of the underlying reasons for misclassification cases.
Besides, we quantify the plausibility of the explanations for
point cloud data through fidelity and accuracy verification
methods instead of a subjective approach based on human
interpretation. Our contribution is primarily summarized as
follows:

• We propose a local surrogate model-based explain-
ability approach for point cloud DNNs based on
LIME [26], which is more widely applicable than
gradient-based methods [12].

• We provide two quantitative evaluations for 3D expla-
nations: fidelity metrics and cluster flipping, which
are applied to validate the fidelity and plausibility of
surrogate model-based and all 3D explainability ap-
proaches, respectively.

• We present quantitative comparisons of our proposed
method with existing approaches for point cloud data
using the proposed evaluation approach. Besides, we
demonstrate an interesting viewpoint on the misclassi-
fied cases through our proposed approach.

The overall structure of this paper takes the form of five
sections: In section 2, we introduce the outline of exist-
ing explainability methods and 3D neural networks, and
the possibility of validating explainability approaches. Sec-
tion 3 sets out details of our explainability approaches and
the corresponding verification metrics. In section 4, we
present the qualitative and quantitative results of our pro-
posed methods. In section 5, we conclude a brief summary
and suggest future research directions.

2. RELATED WORK
This section reviews the current widely used explainabil-

ity approaches, summarizes the classical point cloud neural
network, presents existing explainability methods for point
cloud DNNs, and identifies the current possibilities for ver-
ifying the explainability approaches.

Explainability approaches: Most of the current re-
search on explainability pays particular attention to image
classification tasks. Popular methods for explaining DNNs
are gradient-based and local surrogate model-based.

Gradient-based approaches observe the process of gradi-
ent descent during forward passes. Therefore they are only
applicable to differentiable models such as neural networks.
Saliency Maps [30] is the pioneer who attempts to explain
DNNs by computing the partial derivative of each pixel of
the image as its attribution. However, vanilla gradients suf-
fer from saturation [33] and discontinuity [31]. Integrated

Gradient [34], Layer-wise Relevance Propagation (LRP) [4]
and DeepLIFT [29] solve the saturated gradient problem by
estimating the global importance of each pixel [14]. On
the other hand, SmoothGrad [31] relieves the discontinu-
ity issue by smoothing the discontinuous gradient with a
Gaussian kernel that randomly samples the input neigh-
bors and computes their average gradients. Guided Back-
propagation [32] provides sharper gradient maps by remov-
ing gradients that have negative attributions to the predic-
tion.

Another series of approaches that utilize the gradients is
activation maximization [20]. Instead of explaining individ-
ual instances (local explanation), it attempts to discover the
ideal input distribution of a given class (global explanation)
by optimizing the gradients of the inputs while freezing all
parameters of the networks.

Local surrogate model-based methods such as
LIME [26] and KernelSHAP [15] aim to track the de-
cision boundary around the selected instance by perturbing
input instances and feeding them into surrogate linear mod-
els that approximate the performance of the original one
but are more explainable due to their simplicity. Our work
aims to provide a point cloud-applicable explainability
approach based on local surrogate model-based methods as
they are applicable to arbitrary machine learning models,
which provides users with more choices.

3D convolutional neural networks: Recent develop-
ments in the field of robotics and autonomous driving have
led to an increasing interest in 3D deep learning. Processing
raw point cloud data efficiently plays an important role in
designing systems with low energy consumption and real-
time behavior since point clouds are the main data format
directly obtained from most 3D sensors. Point clouds have
higher structural complexity than 2D image data due to their
disordered peculiarity, which means a lack of neighborhood
consistency between data structures and spatial coordinates.
The inconsistency leads to an irreproducible result when
the convolution kernel is applied to raw point clouds with-
out pre-processing. As a solution, [17, 36, 21] transforms
and reorganize point clouds into voxels and extracts fea-
tures using 3D convolution kernels. [6, 16] feed the neu-
ral networks with polygonal meshed spatial information as
a substitute for the raw point clouds. However, these pre-
processing approaches are not applicable in scenarios with
real-time constraints and most of them are also not advan-
tageous for semantic segmentation tasks. [23, 24] propose
point cloud-applicable convolutional networks which con-
catenate the local features extracted by point-wise convo-
lutional kernels with the global feature simply obtained by
max-pooling layers and achieve the state-of-the-art accura-
cies on Modelnet40 [36], which is the currently most popu-
lar point cloud classification dataset and is also the one used
in our experiments.
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Explainability in 3D DNNs: Few studies have at-
tempted to investigate the explainability of 3D DNNs. Al-
though [39] refers to explainable point cloud classifica-
tion, their work addresses the disorderly properties of point
clouds using PointHop Units to adapt them to classical clas-
sifiers, which is part of the pre-processing rather than post-
hoc explanations. [40] obtains point saliency maps by sim-
ply dropping points, which is not relevant to the explain-
ability approaches. [12], the pioneer study of utilizing ex-
plainability approaches to point clouds remains crucial to
our understanding of feature sparsity of 3D models. How-
ever, they only show sparse explanations that emphasize the
importance of points at edges and corners, which is lack-
of-semantics, and the evaluation criterion of the explana-
tions is absent. In addition, the gradient-based methods
are not adapted to models without gradients, such as tree-
based models. In contrast, local surrogate model-based ap-
proaches are completely model-agnostic.

Explanation plausibility verification: Although there
are many studies in the literature on the outcome of ex-
plainability methods, an acknowledged quantitative assess-
ment for those approaches is absent [7] because explana-
tions are subjective to humans. [1] argues that a feasible
explanation should be sensitive to the weights of models
and the data generating process, and proposed an alternative
evaluation approach by randomizing the network weights
as well as the labels and inspecting the sensitivity of the
saliency maps. However, this approach tends to only ben-
efit the gradient-based explainability methods and validates
invalidity instead of feasibility. [11] strive to observe the
improvement of the core performance of the network and
the confidence they can generate for the users of the sys-
tem when processing image data. [4, 27, 19] propose an
intuitive and efficient pattern to verify the explanations by
flipping the pixels that contribute positively or negatively
(or approximately zero) to a particular class and record the
verified prediction scores. Nevertheless, the flipping opera-
tion of this method could be optimized to some extent while
processing point cloud data, which we will discuss in sec-
tion 3.

3. EXPLAINABILITY APPROACHES FOR
POINT CLOUDS

A significant advantage of surrogate model-based meth-
ods is that they are more widely applicable. In this section,
we describe in detail our explainability approach, i.e. local
surrogate model-based method for point cloud data based
on LIME [26]. In addition, we elaborate the quantitative
evaluation approach for point cloud explanations, which
consider the local fidelity and plausibility of existing point
cloud explainability methods. Note that as the surrogate
model-based explainability approach is model-independent,
the evaluation metrics are suitable for other data types be-

sides point clouds as well.

3.1. Local surrogate model-based explainability ap-
proaches for Point Clouds

Local surrogate model-based explainability approaches
aim to generate an explanation for a classifier f and a spe-
cific instance x from the data set X . To apply these methods
to point cloud data, some pre-processing is necessary.

Algorithm 1 Pre-processing of Local surrogate model-
based methods for point clouds

function 3D K-MEANS WITH FPS(P, nc,maxIter)
Input: P → N × D point clouds, nc → number of

clusters, maxIter →Max iterations
#Output indicates which cluster each point belongs to

Output: C → 1×N matrix
#Sample nc points from P

Centers← FPS(c from P )
#Find the nearest cluster center for each point

while maxIter do :
for i in nc do

EDMatrix← ∥P,Centers∥2
minDis← argmin (EDMatrix)

#Point belongs to the nearest cluster, update the centers
for j in nc do

P [Cj ]←Where minDis == j
newCenters←Mean(P [Cj ])

Centers← newCenters
return C

3.1.1 Pre-processing with FPS

For explaining a point cloud input with size P utilizing lo-
cal surrogate model-based explainability approaches, each
point p ∈ P is considered as a feature individually. How-
ever, to avoid explosive computational complexity and to
organize the disordered point cloud data, we group the
points into super-points C as features to be perturbed. We
initialize a user-defined parameter nc, indicating the num-
ber of clusters. To ensure uniformity and strengthen se-
mantics we employ Farthest Point Sampling (FPS) to se-
lect nc points from P and group all p according to spa-
tial coordinates using 3D K-Means Clustering such that
∀p ∈ P : p ∈ Ci. The pseudo-code is presented in Al-
gorithm 3.1.

3.1.2 Vanilla LIME applied for point clouds

Same as processing 2D images [26], LIME for point cloud
data also satisfies the following constraint:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)
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where f and g denote the classifier and the explainable
model for a local instance x respectively, πx denotes the
proximity measure between samples z to the input x (lo-
cality around x), and Ω(g) denotes the complexity of the
explainable model. LIME tries to minimize the locality-
dependent loss argminL(f, g, πx) by approximating g to
f . It takes samples z around x and feeds the perturbed sam-
ples z′ into f to obtain a faithful surrogate model g that
approximates f , also, it regularizes the complexity of the
surrogate model g to guarantee that it is still explainable to
humans.

As with most 2D image datasets, our 3D dataset for ex-
periments has 40 different label categories, in which ex-
plainability is hardly guaranteed even for linear surrogate
classifiers. Therefore, we train a linear regressor that ap-
proximates the prediction score of the corresponding cate-
gory from the neural network. We sample z ∈ Z by ran-
domly flipping component clusters from x and feed the per-
turbed samples Z into the regressor g to obtain the predic-
tions g(z). To minimize L(f, g, πx), a kernel filters the gen-
erated samples Z around x based on the similarity between
z and x proportionally (the fewer clusters being flipped the
higher the weight). The surrogate model is subsequently
trained with the weighted samples Z using linear regres-
sion. Due to the simplicity and transparency of linear mod-
els, it is explainable and understandable to humans and in-
tuitive as to which parts (clusters) have positive/negative at-
tributions to a particular prediction according to the param-
eters of the surrogate linear regressor.

3.1.3 Variable input size flipping (VISF)

LIME generates adjacent perturbation samples by flipping
the corresponding clusters of the original instance. There
are three widely-used flipping methods for a target cluster
regarding 2D images: zero clearing all the included pix-
els, replacing those pixels with the average of the selected
cluster (or the whole image), or reversing the sign of their
coordinates. However, we argue that the above three op-
erations can barely eliminate all information of the target
cluster. For instance, although all pixel values are zeroed
out, the contours formed by zeros remain on the data matrix
and may still be learned by the neural networks. For a point
cloud instance P ∈ RN×D, the pixel values represent 3D
spatial coordinates, and the above alternatives are likely to
form a highly overlapping point set, resulting in uncertainty
to determine whether the prediction fluctuations of the neu-
ral network are merely caused by flipping operations (see
Fig S4 for intuitive visualizations).

To address the above problem, we simply discard the
points contained in the target cluster ci from the original
instance as a means to completely ablate the information of
the target cluster, i.e. si = P\ci ∈ R(N−∥ci∥)×D. This ap-

proach is only applicable for point cloud neural networks.
Recall the architecture of point cloud networks, where the
final symmetric function (i.e. the max-pooling layer) is used
to extract the global feature from disordered point clouds
while the local features in the lower layer are weighted by
numerous 1× 1 convolutional kernels, which allows the in-
put size of the network to be arbitrarily reshaped without
obstructing the inference. Notably, the variable input size
flipping is both extendable in explaining and verification
process (section 3.2.2).

3.1.4 Attribution summarizing

For explainability methods that return the importance of
each spatial coordinate axis, the most popular and intuitive
attribution summarization process is to simply sum them
up:

Cp =
∑

(C1, C2, C3) (2)

Where C1∼3 stand for the attributions in each of the three
spatial axes. Different summarizing patterns have varied
impacts on the explanations, which is worthy of further ex-
ploration.

3.2. Plausibility verification for 3D explanations

3.2.1 Local fidelity metrics

The fidelity indicates the prediction coherence between the
original black-box model and the surrogate one, which is
formulated as:

F =

∑
1 (f(Z) = g(Z))

∥Z∥
(3)

Nevertheless, instead of a classifier we utilize a linear re-
gressor as the surrogate model, which returns the predic-
tion score only associated with the predicted class. We thus
compare the batched similarity between regression scores
g(Z) ∈ R|Z| and the prediction scores of the corresponding
logits unit of the network f(Z) via several loss and coeffi-
cient measurements:

• Mean loss: Lm =
∣∣∣∑∥Z∥

i ( f(Z)i
∥Z∥ )−

∑∥Z∥
i ( g(Z)i

∥Z∥ )
∣∣∣

• Mean L1 and L2 loss: L1 =
∑∥Z∥

i ( |f(Z)−g(Z)|
∥Z∥ )

and L2 =
∑∥Z∥

i ( (f(Z)i−g(Z)i)
2

∥Z∥ )

• Weighted L1 and L2 loss:

Lω
1 =

∑∥Z∥
i ( |f(Z)i−g(Z)i|·ω

∥Z∥ )

and Lω
2 =

∑∥Z∥
i ( (f(Z)i−g(Z)i)

2·ω
∥Z∥ )

• Weighted coefficient of determination:

R2
ω = 1−

∑∥Z∥
i (f(Z)i−g(Z)i)

2∑∥Z∥
i (f(Z)i−fω(Z))2
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• Weighted adjusted coefficient of determination:

R̂2
ω = 1− (1−R2

ω)
[

∥Z∥−1
∥Z∥−∥g∥−1

]
where ω indicates the weights derived from the ker-

nel, ∥Z∥ denotes the number of observed samples, ∥g∥
is the number of parameters of g and fω(Z) indicates the
weighted average. Lm,L(ω)

1 and L
(ω)
2 measure the discrep-

ancy in predicted scores while R2
ω indicates the correlation

between the prediction scores of the proxy model and the
output of the neural network. In general, better agent ap-
proximations possess lower loss and higher decision coef-
ficients with the predictions of neural networks. However,
R2

ω is sensitive to the number of samples and prone to posi-
tive bias under a small sample size [3]. We therefore intro-
duce R̂2

ω , which takes into account the size of variables and
samples. Note that R̂2

ω has the meaningful range between
(−∞, 1] under the assumption that ∥Z∥ > ∥g∥, while the
opposite case may exist in our experiments, it is therefore
only referable for the case ∥Z∥ > ∥g∥ in the experiment.

3.2.2 Method-independent explanation verification

Fidelity metrics are only suitable for surrogate model ap-
proaches. Additional measuring methodologies are re-
quired for the reliability of non-surrogate-based explain-
ability methods such as gradient-based saliency maps. Ac-
cording to the hypothesis of the local accuracy of additive
feature attribution [15]:

f (x) = g (x′) = ϕ0 +

M∑
i=1

ϕixi (4)

the output of original model f (x) is composed by linear
summation of the individual feature attributions ϕi. One
of the most intuitive ways to verify an explainability ap-
proach is to eliminate features with certain attributions ϕi

(normally positive or negative) according to their generated
explanations and observe whether the output of the model
f(x) exhibits corresponding variations:

f (x)− f (x\i)

{
⩾ 0 if ϕixi ⩾ 0

⩽ 0 if ϕixi ⩽ 0
, i ∈M (5)

where ϕixi denotes the attribution of flipped feature and
f (x\i) denotes the output of the model after flipping fea-
ture i.

Nevertheless, in point cloud DNNs, the sensitivity of
prediction scores for batch data is difficult to observe quan-
titatively due to the unevenly distributed prediction scores
(the logits before the softmax) from different instances.
Therefore, we normalize the variability of the predicted

scores to facilitate its presentation in the form of an aver-
age prediction scoreline, which is formulated as

Savg =
1

n

n∑
i=0

Si − Simin

Simax

(6)

where Si denotes each score in the ith test (including pos-
itive, negative and random perturbation series), Simin and
Simax

denote the minimum and maximum values in the cor-
responding evaluation run respectively.

In addition, due to the use of clustered points, we deter-
mine the averaged attributions of clusters ϕcxc in our work
rather than of individual points ϕici, where

ϕcxc =

c∑
i=1

ϕixi (7)

, which lead to fluctuations in the prediction scores. The
issue can be alleviated by increasing the number of clusters.
We discuss this further in Section 4.

To quantitatively compare the plausibility among all
types of explainability methods, we record the prediction
scores of flipping the positive, negative and random con-
tributing clusters respectively, denoted as Spos, Sneg and
Srdm. The plausibility of the corresponding explanation
can be formulated as:

p̄ = −
∑∥Z∥

i ρi(Spos − Srdm, Sneg − Srdm)

∥Z∥
(8)

where ρ(a, b) denotes the correlation coefficient between
a and b. Intuitively, flipping positive clusters results in a
decline of predicted scores while flipping negative clusters
lifts them up. Flipping random clusters represents the im-
pact of eliminating neutral clusters independent of attribu-
tions, as randomly selected clusters may consist of both
positive and negative points and are therefore considered
indifferent. Spos − Srdm and Sneg − Srdm are then ap-
proximations of unbiased attribution-flipping processes. A
plausible explanation should have exactly opposite sensi-
tivities to contrary attributions, and therefore its correlation
coefficient of the prediction score series is expected to be
as small as possible, i.e., a high score of p̄. We consider
this value as a succinct description of the plausibility of the
explainability method.

4. EXPERIMENT
In this section, we present the qualitative results of

3D surrogate model-based explainability methods (Sec.
4.1), evaluate and compare it with other 3D-applicable ap-
proaches utilizing the quantitative verifications proposed in
section 3.2 (Sec. 4.2) and show how the explanations help
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to analyse the samples classified incorrectly by the classi-
fier. (Sec. 4.3). In our experiments1, 1000 test instances
are selected from Modelnet40 [36], which contains 12311
CAD models in 40 common categories and is currently the
most widely-applied point cloud classification data set. We
choose PointNet [23] as the model to be explained, which
achieves an overall accuracy of 89.2% on Modelnet40. We
sample 1024 points from each instance as input to the net-
work. Additionally, we choose Exponential Smoothing ker-
nel for training linear regressor, denoted as

K =

√
e

−d2

w2 (9)

where d denotes the distance from samples to the instances
to be explained, and w denotes the kernel width which has
an impact on the explanations. We therefore conduct a sen-
sitivity experiment of the kernel widths from 0.05 to 0.3
and the corresponding results are demonstrated in section
S1.1.2.

4.1. Qualitative explanation visualisation

Examples of explanations generated by PointNet, as well
as their original point cloud structures are shown in Fig-
ure 1. What stands out in the figure is that explanations
with different C are consistent overall except the one with
C = 1024. We believe that the reason is that 1000 samples
are insufficient for such a large number of clusters (1024)
and therefore the surrogate model is not well-trained. Ex-
planations based on clusters suffer from contribution neu-
tralization. A cluster may consist of positive and negative
contributing points simultaneously, aggregating them as an
entity obscures the individual contribution of each point
(C = 20,64 and 128). The neutralization can be allevi-
ated by increasing the number of clusters, with the side ef-
fect of requiring more training samples and processing time
(C = 1024).

4.2. Quantitative verification of explanation plausi-
bility

Assessing the explanations by intuition is not quanti-
tatively verifiable and is vulnerable to bias. This section
mainly demonstrates the results of plausibility verification
experiments i.e. local fidelity metrics in subsection 4.2.1
and the method-independent verification approach in sub-
section 4.2.2. There are two hyper-parameters for the pro-
posed explainability method: Number of clusters C and
number of perturbation samples S. In this section, we
choose C = 128 and S = 103 as the standard performance
of the proposed explainability method, since C = 128
is experimentally proven to achieve the best quantitative
performance while maintaining the qualitative semantics.

1Our code is available at https://github.com/Explain3D/L
IME-3D

S = 103 generates high-qualified explanations within an
acceptable processing time (see table S1) and thus is consid-
ered as the best configuration. Detailed experiments regard-
ing hyper-parameters can be seen in Supplementary section
S1.1.1.

4.2.1 Local fidelity metrics

Local fidelity metrics address measuring the prediction sim-
ilarity between the original black-box model and the surro-
gate one, which play a pivotal role in verifying the plausibil-
ity of local surrogate model-based explainability methods.
Due to the absence of related results as a reference, we treat
the unmodified LIME (hard transplanted to point clouds)
as the baseline. Table 1 compares the local fidelity of dif-
ferent explaining mechanisms, i.e. whether Farthest Points
Sampling (FPS) is used or whether Variable Input Size Flip-
ping (VISF) is employed. Corresponding metric symbols
refer to section 3.2.1. According to the results, both FPS
and VISF facilitate the improvement of local fidelity com-
pared to the vanilla 3D LIME (baseline) as our LIME(FPS
+ VISF) improvement outperforms others in terms of most
fidelity metrics. Note that the local fidelity only measures
how closely the surrogate model approximates the black-
box model. One drawback of the metric is that it is only
applicable to explainability methods based on local surro-
gate models. Popular explainability methods (already pro-
posed for point clouds) such as gradient-based ones are not
compatible with these metrics, which confuses the user in
choosing the most appropriate explainability method for
specific tasks.

4.2.2 Method-independent plausibility verification

To address the aforementioned drawback we instead com-
pare all existing point cloud-applicable explainability ap-
proaches utilizing the method-independent verification pro-
posed in section 3.2.2. Again, we set C = 128 and S = 103

as the ”competitor” of our proposed method. Besides posi-
tive and negative attributions, we also flip the same percent-
age of randomly-selected points as the baseline of predic-
tion scores.

Figure 2 and Table 2 depict the trends of prediction
scores and the correlation coefficient p̄ between differ-
ent existing 3D-applicable explainability methods. As the
gradient-based approaches yield individual attributions for
each point, we calculate coefficients for different percent-
ages of points for fairness, i.e. top-%15,%30 and %50 posi-
tive ones. What stands out in the results is that the explana-
tions generated by 3D LIME and Integrated Gradients be-
have robustly. Their average prediction scores deteriorated
rapidly after the gradual flipping of the most positive con-
tribution points and conversely tended to increase when the
negative contribution points are flipped.
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Figure 1. Examples of explanations with 1000 perturbation samples. C denotes the number of clusters. Brighter red points represent more
positive contributions and, conversely, brighter blue points represent more negative contributions and dim points indicate zero contributions
to the corresponding classification labels.

Lm L1 Lω
1 L2 Lω

2 R2
ω R̂2

ω

LIME (baseline) 1.40× 10−2 1.11× 10−1 8.66× 10−2 1.06× 10−1 6.53× 10−2 0.338 0.241
LIME (FPS) 1.22× 10−2 9.80× 10−2 7.66× 10−2 8.67× 10−2 5.35× 10−2 0.353 0.257
LIME (VISF) 1.18× 10−2 1.01× 10−1 7.90× 10−2 9.68× 10−2 5.95× 10−2 0.335 0.237

LIME (FPS + VISF) 1.03× 10−2 8.89× 10−2 6.95× 10−2 7.84× 10−2 4.82× 10−2 0.346 0.249
Table 1. Local fidelities of different explaining mechanics for point cloud data, where FPS denotes employing Farthest Point Sampling
instead of randomly choose clusters and VISF denotes the Variable input size flipping mechanism. The unmodified application of LIME
to point clouds is regarded as the baseline.

p̄.15 p̄.3 p̄.5
Vanilla Gradients −0.574 −0.569 −0.672

Guided Back-propagation −0.741 −0.695 −0.623
Integrated Gradients 0.484 0.366 0.236

KernelSHAP −0.205 −0.257 −0.256
LIME (FPS + VISF) 0.622 0.531 0.372

Table 2. Plausibility p̄ of flipping top-%15,%30 and %50 at-
tributed points.

On the other hand, Vanilla Gradients, Guided Back-
propagation and 3D KernelSHAP are unable to distinguish
between points with different contributions, resulting in
gradient maps being less uniform than Integrated Gradi-
ents [12]. Interestingly, KernelSHAP is a variant of LIME
based on Shapley value, differing from the latter solely in
the choice of kernels. KernelSHAP assigns high weights
to perturbation samples with only a minority of clusters
remained, which severely impairs the global structure of
the instance. Empirically, we find that such kernels may
be more suitable for black-box model structures on other
data types, but with limited performance in explaining point
clouds.

We also compare the plausibility among all explanation
mechanisms, the corresponding scores are presented in ta-
ble 3. The proposed method also dominates which is con-
sistent with the results in section 4.2.1.

4.3. Applying local surrogate model-based explain-
ability methods for failure analysis

A potentially applicable prospect of local surrogate
model-based explainability methods is failure analysis.
This analysis has important implications for understanding
the erroneous attention paid by the classifier and provides

p̄.15 p̄.3 p̄.5
LIME (baseline) 0.598 0.520 0.341

LIME (FPS) 0.615 0.513 0.361
LIME (VISF) 0.593 0.514 0.345

LIME (FPS + VISF) 0.622 0.531 0.372
Table 3. Plausibility of different explaining mechanics for enhanc-
ing the explanation quality.

opportunity for further research, e.g. 3D model revision.
Figure 3 shows examples of the attributions to the misclas-
sified instances.

As can be seen from Figure 3, a majority of the misclas-
sifications were caused by misdirected attention. In the first
two examples, the faucet instead of the bathtub itself pos-
sesses the most positive attribution, misleading the model
to neglect the structure of the primary target object. We be-
lieve this is because only a tiny fraction of the bathtubs in
the training data is accompanied by a faucet. Another sim-
ilar type of error frequently occurs with the class ”Flower
pot”. The major attention of the model is drawn to the plant
above rather than the pot below, resulting in a prediction of
’Plant’ instead of ”Flower pot” (the pot even draws a neg-
ative contribution to the ground truth label). From a hu-
man perspective, this type of data is ambiguously labeled,
as both classes ”Plant” and ”Flower pot” are reasonable
ground truth. Towards a more accurate model, this label-
ing type should be avoided whenever possible.

5. CONCLUSION
Although point cloud neural networks have received crit-

ical attention in recent years, so far, there have been few
studies on their explainability. Our work proposes an ex-
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Figure 2. Variation trends of the prediction scores (y-axis) by flipping and re-inference. The scores are the average of normalized prediction
scores of 1000 test instances. Red and blue lines indicate the trend of flipping positive and negative contribution points, respectively, the
green line indicates flipping random points that are independent of contribution. The x-axis indicates the percentage of flipped points for a
given instance.

Figure 3. Explanation of the misclassified examples. Brighter red
points indicate more positive contributions, while brighter blue
points indicate more negative contributions and dim points indi-
cate zero contributions. All contributions are concerning the pre-
diction class (wrong class instead of the ground truth).

plainability approach for point clouds based on LIME [26].
We also provided the possibility to quantitatively validate
the point cloud explanations. We evaluated and compared
the performance of our approach against different existing
explainability methods for point cloud data. The evaluation
comparison revealed that our local surrogate model-based
approaches as well as Integrated Gradients yield relatively
plausible explanations and outperform other methods such
as Guided Back-propagation. Our results also demonstrated
that a larger amount of clusters and more perturbed samples

are required to avoid compromising fidelity, which however
consumes more processing time. Moreover, we provided
intuitive analyses for misclassified samples by utilizing the
proposed method. The analyses showed that part of the mis-
classified cases can be attributed to the anomalous structural
distributions or ambiguous labels of the input data, misdi-
recting the attention of the classifier.

This work attempted to shed light on 3D neural net-
works. There is still tremendous potentials for further
progress. Most local surrogate model based-explainability
methods suffer from sample distortion as they treat each
feature independently, with neither spatial relationships nor
causality taken into consideration, producing unlikely fea-
ture combinations and resulting in reduced quality of the
explanation. Constraining the causal structure of perturbed
samples to more closely resembling the training samples by
introducing prior knowledge is a promising idea. Another
potential area of research is to generate more comprehen-
sible and interesting explanations for point clouds, for in-
stance, global explainability approaches or instance-based
methods such as activation maximization or adversarial ex-
amples.
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