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Abstract

There are two competing standards for self-supervised
learning in action recognition from 3D skeletons. Su et
al., 2020 [31] used an auto-encoder architecture and an
image reconstruction objective function to achieve state-
of-the-art performance on the NTU60 C-View benchmark.
Rao et al., 2020 [23] used Contrastive learning in the
latent space to achieve state-of-the-art performance on
the NTU60 C-Sub benchmark. Here, we reconcile these
disparate approaches by developing a taxonomy of self-
supervised learning for action recognition. We observe that
leading approaches generally use one of two types of ob-
jective functions: those that seek to reconstruct the input
from a latent representation (“Attractive” learning) versus
those that also try to maximize the representations distinc-
tiveness (“Contrastive” learning). Independently, leading
approaches also differ in how they implement these objec-
tive functions: there are those that optimize representations
in the decoder output space and those which optimize rep-
resentations in the network’s latent space (encoder output).
We find that combining these approaches leads to larger
gains in performance and tolerance to transformation than
is achievable by any individual method, leading to state-of-
the-art performance on three standard action recognition
datasets. We include links to our code and data.

1. Introduction

Modern deep neural networks require large amounts of
labeled data for learning robust visual representations. In

*These authors contributed equally to this work.

recent years, there has been extensive progress towards de-
veloping “self-supervised” learning (SSL) methods as a par-
tial solution to this data dependence. SSL involves pos-
ing reconstruction tasks on unlabeled datasets, which when
appropriately specified, can cause models to learn visual
representations that approach standard supervised learning
in multiple visual domains, including image categoriza-
tion [4, 2]. However, far less progress has been made in
action recognition, where it remains an open question how
best to use SSL.

Figure 1. There is little consensus for how to use SSL in action
recognition. “Contrastive learning” applied to an encoder leads to
top performance on the C-Sub evaluation of NTU60 [23]. This ap-
proach makes representations of an exemplar xi more similar to an
augmented version x′

i than to different exemplars (e.g., xj). “At-
tractive learning” applied to a decoder leads to top performance
on the C-View evaluation of NTU60 [31]. This approach simply
learns to reconstruct exemplar xi. These two approaches consti-
tute two possible combinations of Contrastive vs. Attractive learn-
ing in encoder and decoder spaces out of a much larger number
of possible combinations, which have not been studied systemati-
cally. We develop a taxonomy of SSL for action recognition and
discover a combination that achieves state-of-the-art performance
on both of these benchmarks.
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Compared to image categorization, one unique challenge
that arises for action recognition is the need to learn robust
spatiotemporal representations. A standard approach is to
reduce the visual complexity of videos by training and test-
ing models on annotated skeletons of actors. Indeed, skele-
tonization automatically bypasses several visual challenges
associated with raw videos such as figure-ground segmen-
tation. In this domain, self-supervision has led to two no-
table successes on the NTU60 benchmark. One approach
involves optimizing models to solve a raw skeleton recon-
struction task from latent space encodings. This approach
led to state-of-the-art performance according to the C-View
evaluation protocol, where models are evaluated on views
of actions held out of training [31]. The other approach
involves optimizing models to solve a reconstruction task
in the latent space, leading to state-of-the-art performance
with the C-Sub evaluation protocol, which evaluates perfor-
mance on videos of subjects held out of training [23]. These
conflicting approaches and their inconsistent achievements
on NTU60 raises the need for a systematic analysis of self-
supervision in action recognition (Fig. 1).

Here we develop a novel taxonomy for understand-
ing self-supervision in action recognition (described in Ta-
ble 1). We decompose leading attempts in self-supervised
action recognition into two dimensions. The first dimen-
sion describes the type of objective function used: whether
it only seeks to cluster similar data samples (“Attractive”),
or if it also seeks to dissociate different exemplars (“Con-
trastive”). The second dimension describes whether rep-
resentations in the network are being optimized in the input
space (Decoder output) or the latent space (Encoder output).
Prior work in object recognition has offered empirical evi-
dence that adjusting between Attractive and Contrastive ob-
jective functions affects model selectivity and equivariance,
which might help performance on downstream tasks [34].
However, it is not known whether this finding extends to
action recognition, and how it interacts with where in the
network the objective function is posed (i.e., the input or
output). Our final taxonomy not only summarizes the state
of self-supervision in action recognition, but also reveals a
novel approach that outperforms either state-of-the-art ap-
proach. Guided by this taxonomy, we contribute the fol-
lowing:

• Models which optimize Encoder and Decoder self-
supervised objective functions outperform those which
only optimize one or the other.

• We find that Contrastive and Attractive objective func-
tions are better suited to maximizing model toler-
ance to different classes of transformations. Applica-
tions of these objective functions in the Encoder space
are more successful at building tolerance for different
classes of transformations than applications in the De-

coder space. When these approaches are combined to-
gether, models achieve better tolerance than if they uti-
lize any single one.

• We achieve state-of-the-art performance on three
benchmarks with a model using a combination of “At-
tractive Decoder” and “Attractive + Contrastive En-
coder” objective functions.

2. Self-supervised learning
Self-supervised learning (SSL) describes methods for

label-free representation learning models. SSL objective
functions involve defining a reconstruction task that forces
models to become selective for features that might be gen-
erally useful for downstream tasks, for which there is little
labeled data. By tracing the development of SSL, we find
that these methods can be decomposed along two orthogo-
nal dimensions (Fig. 2). The first dimension describes the
normative goal of the SSL objective function. The second
dimension describes where in the network SSL objective
functions are applied. We begin by describing the first di-
mension of our taxonomy, and what we see as the principle
difference between SSL objective functions: those that seek
to pull visually similar representations together (Attractive),
versus those that also seek to push visually dissimilar rep-
resentations apart (Contrastive).

2.1. Objective functions

Attractive SSL The simple insight that the pose of ob-
jects tends to vary slowly from frame to frame was the in-
spiration behind an early form of SSL, called Slow Fea-
ture Analysis (SFA) [35]. By training a model to mini-
mize the difference between representations of sequential
frames, subject to constraints which avoid trivial solutions,
SFA drives models towards learning a spectral decomposi-
tion of video sequences. More generally, SFA can be seen as
analagous to laplacian eigenmaps [28], thus casting spectral
methods as a whole as a specific example of Attractive SSL.
A closely related approach is Predictive Coding, which was
initially introduced for probablistic models [24], and then
later extended to neural networks [18].

The approach of SFA – comparing the current frame to
a future frame – has been generalized in SSL. A common
approach is now to reconstruct an image from a perturbed
version of that image. Such reconstruction tasks include
“filling-in” [22], the “Jigsaw” [21], and “colorization” [42],
each of which have represented the state of the art for image
classification when they were introduced. Like SFA, these
methods optimize network representations with an Attrac-
tive objective function to maximize the similarity between
the true input and an augmented version of that input:

LAE = −S(E(x), E(x′)) (1)
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Figure 2. Overview of Attractive and Contrastive objective functions in an auto-encoder architecture. Attractive D seeks to reconstruct an
input x from its latent representation, whereas Attractive E learn to push representations of x and its transformed instance x′ close to each
other. Contrastive learning aims to attract transformations x′ and x′′ while also discriminating x′ from other exemplars within a dictionary
(Queue K). This could be performed in encoders latent space or decoders output space.

Here, x is an input video and x′ is the same video with
an augmentation applied (e.g., a random spatial symme-
try or a rotation). The “encoder” network being optimized
is denoted as E , and S is an arbitrary similarity function,
although a common choice is cross-entropy. Note that
this formulation implies weight sharing between the two
instances of E(.) such that weight updates will force the
model to learn an embedding where x is close to x′.

Contrastive SSL In recent years, SSL has begun to ap-
proach the performance of supervised learning due to a re-
newed interest in Contrastive learning. Contrastive learning
goes beyond Attractive learning by including an additional
“repulsion” term that pushes representations of different in-
stances apart. Contrastive learning has recently achieved
performance rivaling supervised learning in image classifi-
cation [3, 4, 36]. Of particular interest is the “Momentum
Contrast” (MoCo) approach of [4], which is one of the cur-
rent standards in object recognition. Building off of Eq. 1,
we rearrange terms in the original formulation of MoCo (see
SI for details) to define Contrastive learning as:

LCE = −S(E(x),KE+)︸ ︷︷ ︸
attraction

+ log(
∑

exp(S(E(x),KE−)))︸ ︷︷ ︸
repulsion

(2)
The repulsion term in MoCo is introduced by means of a

momentum network and a dictionary KE containing repre-
sentations of augmented versions of x as well as other data
exemplars, updated over the course of training. This ap-
proach forces the encoder E(.) to maximize the probability
that the representation of x is more similar to KE+ than the
remaining entries KE− in KE . An additional free parameter

that we omit from our formulation controls the concentra-
tion of representations (see SI for the full treatment).

2.2. Encoder and Decoder supervision

Self-supervised Encoding Many of the aforementioned
methods, including SFA and Contrastive learning, involve
posing an objective function on the latent space, or output
of a model. We refer to these as Encoder objective func-
tions. A notable quality of this class of methods is their
need for constraints on the objective function to avoid triv-
ial solutions. For Attractive-learning approaches like SFA,
these are explicitly added (zero mean, unit variance, and
sparse connectivity), whereas the repulsion term of Con-
trastive learning accomplishes a similar goal.

Self-supervised Decoding Another approach for SSL is
to use a decoder network, D, to reconstruct the input from
the latent space. The classic example of this is the autoen-
coder [25, 39], which uses an Attractive objective function
similar to the one in Eq. 1 but avoids trivial solutions by
comparing the reconstructed latent representation to the in-
put:

LAD = −S(x,D(E(x))) (3)

While autoencoders have been called unsupervised in the
past [9], in our taxonomy they are classified as self-
supervised models optimizing an attractive objective func-
tion. A Contrastive objective function can be also used
within a decoder by replacing E(x) with D(E(x)) in Eq. 2:

LCD = −S(D(E(x)),KD+)

+log(
∑

exp(S(D(E(x)),KD−))) (4)
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Attractive E Contrastive E Attractive D Contrastive D Acc UCLA
✓ 59.98
✓ ✓ 76.81

✓ 77.73
✓ ✓ 79.56

✓ ✓ 80.15
✓ 83.73

✓ 83.45
✓ ✓ 85.70

✓ ✓ ✓ 86.08

Table 1. A taxonomy of self-supervised learning objective functions for action recognition. Each row denotes the performance of a different
model trained with a particular combination of Attractive/Contrastive objective functions, on the model’s encoder (E) or decoder (D). The
presence of an objective function is denoted by ✓. Evaluations performed on the UCLA dataset.

where KD is a dictionary of reconstructed augmentations of
training samples.

2.3. Self-Supervised learning in Action Recognition

To date, most work in action recognition has focused
on fully supervised methods using large annotated action
datasets [40]. Because it is expensive and time consuming
to generate annotations for video, there has been extensive
work developing SSL for action recognition. Initial efforts
focused on action recognition in RGB videos [1, 12, 19, 29,
30], but there is now a growing body of work focusing on
action recognition with 3D skeleton data [20, 31, 43, 14, 7].
There are two distinct approaches that have been explored
in action classification: methods that rely on reconstruction
in the input space versus reconstruction in the output space.

Reconstruction in the input space, also referred to as
an “auto-encoder” approach, has been shown by multi-
ple groups to be effective for SSL in action recognition.
Examples of reconstruction for SSL include a GAN-like
training routine for SSL [43], and an approach for match-
ing latent representations of augmented and non-augmented
videos [20]. Another notable of this approach is by Su et
al. [31], who showed that by forcing models to reconstruct-
ing input sequences leads to state-of-the-art performance on
the C-View evaluation of NTU60. Reconstruction in the
latent space has also been effective, especially with “Con-
trastive” objective functions. Rao et al. [23] achieved state-
of-the-art performance on the C-Sub evaluation of NTU60
by borrowing from the MoCo approach for image classi-
fication [4]. Others have found success with Contrastive
learning for predicting future frames [14].

3. Taxonomizing self-supervised learning

The conflicting success of Attractive decoding versus
Contrastive encoding for action recognition raises the ques-
tion: What is the optimal approach for SSL in action recog-
nition? We address this by turning to the North-Western

UCLA (NW-UCLA) action recognition dataset, and build-
ing a taxonomy of SSL methods.

Dataset The UCLA [33] dataset consists of 1,494 videos
of 10 actions. Each action was performed by 10 actors
and repeated between one to six times. Videos were skele-
tonized using Kinect V1. There are three views of each
action and 20 joints in 3D for each subject. Following
the standard in the field, the first two views (V1, V2) are
used for training, and the last view is held-out for testing
(V3) [31]. We also utilize the pre-processed data of Su et
al. [31] in these experiments.

Reconstruction tasks A central strategy for SSL is to
train models to solve reconstruction tasks, where aug-
mented versions of the input are compared to the original
input. In Contrastive learning for image classification, it
has been shown that performance is highly dependent on
the number of distinct augmentations applied to images [3].
Augmentation strategies for this domain have mostly fallen
into four main groups [10]: color transformations, geomet-
ric transformation, context-based tasks (e.g., temporal aug-
mentations), and cross-modal based tasks. In contrast, when
dealing with 3D skeletons, work has mostly focused on spa-
tial affine and temporal transformations of sequences [23].
Guided by the current state-of-the-art [23], here we pose re-
construction tasks using a combination of spatial affine and
temporal augmentations (Fig. 3).

Spatial affine transformations: Unlike 2D images, the 3D
parameterization of skeleton joints can be used to explicitly
model various transformations while preserving action
information. For our action classification experiments,
we follow [23] and apply the shearing transformation. To
analyse representations obtained with different models, we
also use out-of-plane rotations along the azimuth.

Temporal transformations: Action recognition models are
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Figure 3. SSL routines for action recognition involve training mod-
els on reconstruction tasks. To make these tasks difficult, recon-
struction often involves comparing a clean input with a version that
has been transformed with spatial affine and temporal augmenta-
tions. Spatial affine augmentations include rotations and shearing,
whereas temporal augmentations involve reversing the direction of
the action sequence.

naturally sensitive to the temporal direction of actions. This
means that reversing the direction of an action leads to sig-
nificant drops in model performance, even though the action
category remains the same. For instance, walking forward
versus backwards leads to slight differences in pose despite
belonging to the same broad action class. To encourage tol-
erance to such transformations, we followed [23] and intro-
duced an augmentation for randomly reversing the sequence
ordering with a 50% probability.

Model A central goal for our taxonomy was to compare
different combinations of self-supervised objective func-
tions (within E and D) in action recognition. To do this
we performed our experiments on an architecture capable
of implementing any of the aforementioned approaches to
SSL. We began with the state-of-the-art network of Su et
al. [31], which consists of a 3-layer Encoder E and a 1-
layer Decoder D, both constructed from gated recurrent
units (GRU [5]). To improve training speed, convergence,
and the interpretability of our taxonomy, we simplified this
architecture into a 1-layer Encoder E and a 1-layer Decoder
D. Each layer consisted of 512 units (compared to 1,024
units in [31]). Comparison with architectures with differ-
ent inductive biases, such as Graph Convolutional Networks
(GCNs) are left for future work. Models using Contrastive
losses also included an MLP with 128 units, for imple-
menting the MoCo objective. Models were trained with the
Adam optimizer [11] for 150 epochs, and early stopping
was used to select weights which performed best on a held-
out validation set of videos. Additional hyper-parameters
scaled the magnitude of the objective functions explored in
the taxonomy. After training, a linear classifier was fit to
the model’s latent space representations on the training set
in order to render classification decisions. The implemen-
tation will soon be available at https://github.com/
serre-lab/ssl_actionrec.

Objective functions In our taxonomy we compared At-
tractive and Contrastive objective functions for SSL. For At-
tractive SSL, we follow the standards set in action recogni-
tion [31] and use different metrics for the similarity function

S. Specifically, we used L1 in the Decoder loss in Eq. 3,
whereas in Eq. 1 we used a cosine similarity distance in the
projection space (output space of MLP that follows the en-
coder in our implementation). For Contrastive SSL, we use
MoCo [8], which introduces a separate momentum model
for computing the Contrastive loss. This momentum model
contains the dictionary of examples K, which are compared
to encodings (respectively reconstructions) of the current
inputs to E (respectively D). The similarity function S in
MoCo is the dot-product between representations.

Taxonomy We surveyed a set of combinations of Attrac-
tive and Contrastive objective functions within Encoders
and Decoders. By definition (Eq. 2), Contrastive functions
include an Attractive term. Thus, in Table 1, we consider
only combinations of either Attractive or Contrastive en-
coders E and decoders D. An exception is given by the last
row in Table 1 where an Attractive term is added to the en-
coder objective in case a model combines Contrastive E and
Attractive D. Here, the Attractive D objective is trained to
reconstruct a given input x, while Contrastive E is trained
to pull transformations of x in the latent space. For regu-
larization purpose, we add an Attractive E objective that is
trained to attract the latent of x to that of its first transforma-
tion. We refer the reader to Algo. 1 in SI for more details.
Also note that we provide additional experiments on the full∑K

k=1
4!

k!(4−k)! = 15 combinations in SI. Through the tax-
onomy in Table 1, we make the following observations:

Decoder learning outperforms Encoder learning. On
average, models relying on Decoder learning were more ac-
curate (N = 3, 82.23%) than models relying on Encoder
learning (N = 3, 74.82%). Indeed, the three best perform-
ing models utilize a Decoder objective.

Contrastive learning and Attractive learning lead to
similar performance. In stark contrast to the image clas-
sification, where Contrastive methods like MoCo dominate,
here we find that Attractive and Contrastive objective func-
tions yield nearly identical performance (N = 3 for both,
81.92% for Attractive versus 82.23% for Contrastive).

Combining Encoder with Decoder learning improves
performance. The two best performing models utilize a
combination of E and D learning. This finding is emblem-
atic of a trend in our taxonomy, where models that combine
E and D (N = 9, 79.86%) learning outperform those that
do not (N = 6, 78.52%).

Understanding the taxonomy Including the “Con-
trastive and Attractive Encoder” objective functions with an
“Attractive Decoder” objective function yield the best per-
formance in our taxonomy. While including a “Contrastive
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Figure 4. Analysis of the tolerance that different SSL methods
build to transformations. We report the nearest neighbor based
accuracy, which judges the discriminability of a transformed set
of exemplars from their original sample, for the top-3 SSL meth-
ods from our taxonomy: “Contrastive E”, “Contrastive E + Attrac-
tive D”, and “Contrastive + Attractive E + Attractive D”. While
“Contrastive E” yields better tolerance to rotation, “Contrastive E
+ Attractive D” achieves better tolerance to shearing. Our best
performing model, a combination of the other two approaches de-
picted here, is far more tolerant to either type of transformation.

Decoder” objective function decreases the model’s perfor-
mance. See supplementary information for additional statis-
tics and an extended discussion. For the remainder of the
paper, we investigate the best performing model and com-
pare to the current state-of-the-art approaches [23, 31].

4. Tolerance to transformations
In principle, SSL should build selectivity to the broadest

set of features possible in a given dataset, while also maxi-
mizing tolerance to transformations of those features. That
is, transformations will either be discarded (“invariance”)
or decodable (“equivariance”) from the representations of
actions. While tolerance must correlate with performance
on downstream tasks, it is unclear the extent to which the
models in our taxonomy build tolerance to different trans-
formations.

To investigate this question, we focused on the top-
performing models in our taxonomy: (i) Contrastive E , (ii)
Contrastive E + Attractive D, and (iii) our top-performing
Attractive and Contrastive E + Attractive D. We com-
puted the latent space representations of each model for a
set of input samples along with their transformed versions,
using fixed transformation parameters (as opposed to ran-
domly sampled parameters, as is normally done in train-
ing). Then, for each sample, we calculated the average
L2 distance in latent space to all other samples in the set
∥E(x) − E(y)∥2 and to augmented versions of the sample
∥E(x)− E((x′))∥2. We report an accuracy metric based on
whether an augmented exemplar is the nearest neighbor to
the originak sample compared to all other samples of the set.
We repeated these measurements for a range of transforma-
tion parameter values to derive curves that capture model

Method CV CS

Su
p

HBRNN-L [6] 64.0 59.1
2L P-LSTM [15] 70.3 62.9
ST-LSTM [16] 77.7 69.2
VA-RNN [41] 87.6 79.4
3s-CrosSCLR (finetuned) [13] 92.5 86.2
Colorization [37] 94.9 88.0
DGCN [38] 96.0 91.5

SS
L

3s-CrosSCLR (GCN) [13] 83.4 77.8
Colorization (PointCloud) [37] 83.1 75.2
Thoker et al. (IMG+SEQ+STG) [32] 85.2 76.3
LongT GAN [43] 48.1 39.1
MS2L [14] – 52.5
Predict and cluster [31] 76.3 50.7
AS-CAL [23] 64.8 58.5
3s-CrosSCLR [13] 69.2 62.8
Thoker et al. (SEQ) [32] 82.5 –
Ours 76.3 67.0

Table 2. Action classification performance (%) with supervised
(first row) and self-supervised (second row) state-of-the-art ap-
proaches on the NTU-60 dataset.

tolerance to transformations. Using this analysis, we mea-
sured model tolerance to shearing and rotation, which are
the parametric transformations included in our SSL taxon-
omy.

We found that different SSL approaches dramatically af-
fect model tolerance to transformations (Fig. 4). The Con-
trastive E model was more tolerant to rotations than the
Contrastive E + Attractive D, but less tolerant to shearing
than the Contrastive E + Attractive D. Surprisingly, our
top-performing model that featured a combination of these
approaches was far more tolerant to rotation and shearing
than either other model. In other words, the combination of
these approaches imparted greater tolerance than the sum of
the individual parts.

5. Experiments
We next turn to standard benchmarks in action recog-

nition to compare the performance of the top-performing
model in our taxonomy to the current state of the art. All
models are trained according to the methods described in
Section 3, and evaluations are dataset dependent, as detailed
below.

5.1. Datasets

NTU RGB+D (NTU-60) This dataset consists of 60
different human action classes divided into three major
groups: daily actions, mutual actions, and health-related ac-
tions [26]. There are 56, 880 action samples in total which
are performed by 40 distinct actors. The 3D skeleton data
that we focus on consist of the 3D positions of 25 body

2701



Method CS CE

Su
p

Part-Aware LSTM ∗ [15] 26.3 25.5
Soft RNN ∗ [15] 36.3 44.9
ST-LSTM ∗ [16] 55.7 57.9
GCA-LSTM ∗ [17] 58.3 59.2
Two-Stream Attention LSTM ∗ [27] 61.2 63.3
3s-CrosSCLR (finetuned) [13] 80.5 80.4
DGCN [38] 87.3 88.6

SS
L 3s-CrosSCLR (GCN) [13] 67.9 66.7

Thoker et al. (IMG+SEQ+STG) [32] 67.1 67.9
AS-CAL [23] 48.6 49.2
3s-CrosSCLR [13] 53.9 53.2
Ours 59.1 61.5

Table 3. Action classification performance (%) with supervised
(first row) and self-supervised (second row) state-of-the-art ap-
proaches on the NTU-120 dataset. Results with (*) are reported
from [15].

Method UCLA

Su
p

HBRNN-L [6] 78.5
VA-RNN [41] 90.7
AGC-LSTM [27] 93.3

SS
L

Colorization (PointCloud) [37] 91.1
LongT GAN [43] 74.3
MS2L [14] 76.8
Predict and cluster [31] 84.9
Ours 86.08

Table 4. Action classification accuracy (%) with supervised (first
row) and self-supervised (second row) state-of-the-art on the
UCLA dataset.

joints per skeleton. Each frame consists of two skeletons for
mutual actions and one skeleton for The remaining actions.
Two standard evaluation protocols are used for this dataset:
cross-subject (CS) and cross-view (CV). Under the cross-
subject protocol, actions performed by 20 subjects consti-
tute the training set and the rest of actions performed by the
other 20 subjects are used for testing. For cross-view eval-
uation, samples captured by the first two cameras are used
for training and the third one is used for testing.

NTU RGB+D (NTU-120) This dataset extends NTU
RGB+D 60 with an additional 57,367 skeleton sequences
over 60 extra action classes, totalling 113,945 samples over
120 classes captured from 106 distinct subjects and 32 dif-
ferent camera setups [15]. The authors now recommend
replacing the Cross-View setting with a Cross-Setup (CE)
setting, where 54,468 action sequences collected from half
of the camera setups are used for training and the remaining
59,477 samples are used for testing. In the Cross-Subject
(CS) setting, 63,026 samples from a selected group of 53
subjects are used for training, and the remaining 50,919

samples for testing.

5.2. Comparison with the state-of-the-art

We report action classification results in Tables 2, 3 and 4
on the NTU-60, NTU-120 and UCLA datasets, respectively.
In each case, we compare our results to supervised methods
in the first row. In the second row, SSL methods that use
RNN based architectures are listed in the second group and
methods that use other inductive biases are listed in the first
one.

Overall, we observe that our approach achieves state-of-
the-art accuracy on most datasets and settings amongst SSL
methods based on RNN architectures, with an improvement
of more than 10% on NTU-60 (CS), NTU-120 (CS) and
NTU-120 (CE). Here, the method in [23] uses Contrastive
E learning. The performance of our approach demonstrates
the gain achieved by combining this model with Attractive
D learning. For the NTU-60 (CV) setting, our model is on
par with [31] which uses an Attractive D objective function.
Further, the method of [14], which combines Contrastive
E and Attractive D objective functions performs remark-
ably less well than our approach with a difference exceed-
ing 8% on the NTU-60 (CS) dataset. Similar observations
can be seen on the UCLA dataset where we improve state-
of-the-art performance w.r.t Su et al. [31] and outperform
the closely related method of [14] by more than 10%.

On the other hand, it is worth mentioning that despite
using no explicit supervision and a simple 1-layer GRU en-
coder/decoder architecture, our method is competitive with
deep LSTM-based supervised methods, like [16], and out-
performs many other supervised approaches [6, 15] on the
NTU-60 and NTU-120 datasets.

5.3. Ablation studies

Our method stands out from prior approaches to SSL by
combining Attractive and Contrastive E objective functions
with Attractive D learning. While our taxonomy demon-
strates the relative importance of these components on the
UCLA dataset, it is unclear how they contribute to our state-
of-the-art results on the complete set of standard bench-
marks in action recognition.

To explore this question, we evaluate the effectiveness of
each of our method’s SSL components (i.e., Attractive D,
Contrastive E , and combination of the two) on the NTU60
(CS/CV), NTU 120 (CS/CE), and UCLA datasets and re-
port the obtained results in Table 5. Contrastive E learn-
ing performs better than Attractive D learning on all bench-
marks, and combining these two improves performance be-
yond either individual approach. Adding an Attractive E
objective improved performance even further.
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Model NTU60 (CS) NTU60 (CV) UCLA NTU120 (CS) NTU120 (CE)
Attractive D 59.19 66.67 83.45 48.79 51.92
Contrastive E 66.54 71.86 83.73 56.96 59.72

Attractive D + Contrastive E 66.88 71.90 85.70 57.78 59.94
Contrastive/Attractive E + Attractive D 67.07 76.30 86.08 59.1 61.5

Table 5. Ablating components of our top model demonstrates the relative importance of combining Encoder and Decoder learning for
achieving state-of-the-art performance in SSL on the UCLA, NTU60 and NTU120 datasets.

5.3.1 Generalization of the proposed taxonomy

To further validate our proposed taxonomy (Table 1), we
performed similar experiments on a larger dataset: NTU60
(CS). In addition, we studied the effect of increasing depth
and width of the proposed architecture. Recall that for sim-
plicity, our baseline model consists on 1-layer Encoders E
and 1-layer Decoders D, both constructed from GRU with
512 units. Here, we test two additional architectures. The
first is a deeper 3-layer (E and D) version while the sec-
ond is a wider (1-layer) model with 1024 units in its layers.
Obtained results are reported in Table 6, from which we
can observe the following: 1) Previous conclusions that we
made from Table 1 on UCLA can be generalized to NTU60
(see ”Base” column in Table 6 vs. Table 1). 2) Increas-
ing the number of layers (see ”Deeper” column in Table 6)
hurts the performance of all contrastive models (including
our best model) while it improves performance of purely
attractive ones. 3) Increasing the number of units (”Wider”
column) achieves similar or better performance in all cases
with the exception of the purely Contrastive D model.

LAE LCE LAD LCD Base Deeper Wider
✓ 34.63 12.35 36.08
✓ ✓ 37.93 10.07 43.31

✓ 42.84 38.88 48.31
✓ 59.19 61.90 62.58

✓ ✓ 59.31 61.51 62.67
✓ 66.54 55.37 67.21
✓ ✓ 66.88 56.61 66.59
✓ ✓ 66.93 55.66 66.88

✓ ✓ ✓ 67.06 59.99 68.64

Table 6. A comparison of our baseline architecture with deeper
(3-layers) and wider (1024 units) architectures on NTU60 (CS).
Each row denotes the performance of a different model trained
with a particular combination of the objective functions: LAE ,
LCE , LAD and LCD .

6. Conclusion

A main drawback of neural networks is their dependence
on extremely large labeled datasets to learn robust visual
representations. One natural approach to this problem is

to induce biases on the model architecture that will support
more efficient learning of visual datasets. An orthogonal ap-
proach is to develop self-supervised learning routines which
can train models in the absence of any labels whatsoever.
While SSL has led to breakthroughs for image categoriza-
tion, the returns are less clear for spatiotemporal tasks like
action classification.

Through a systematic survey of approaches in the field,
we observe that one possible explanation for the lagging
performance in action recognition is that the space of meth-
ods has not been adequately searched. Our taxonomy of
SSL in action recognition confirms as much: there are large
gains in performance to be had by combining existing ap-
proaches to SSL. Indeed, we demonstrate that the combi-
nation of methods non-linearly increases model tolerance
to transformations beyond individual components. Most
importantly, we find that our taxonomy, which was evalu-
ated on the relatively small UCLA dataset, generalizes to
the large body of action classification benchmarks. Our ap-
proach achieves a new state of the art in self-supervised ap-
proaches to action classification on the NTU-60, NTU-120,
and UCLA datasets, while also rivaling the leading RNN-
based supervised approaches on these benchmarks.

In summary, by taxonomizing SSL in action classifica-
tion, we resolve the inconsistent performance of existing
methods on different benchmarks, and establish a new stan-
dard for SSL in action recognition. We expect that future
work which pairs our approach with more elaborate archi-
tectures – replete with appropriate inductive biases – will
close the divide between self-supervised and supervised
learning for action recognition for good.
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