
Generating and Controlling Diversity in Image Search

Md Mehrab Tanjim∗

UC San Diego
mtanjim@eng.ucsd.edu

Ritwik Sinha
Adobe Research

risinha@adobe.com

Krishna Kumar Singh
Adobe Research

krishsin@adobe.com

Sridhar Mahadevan
Adobe Research

smahadev@adobe.com

David Arbour
Adobe Research
arbour@adobe.com

Moumita Sinha
Adobe Applied ML
mousinha@adobe.com

Garrison W. Cottrell
UC San Diego

gary@eng.ucsd.edu

Abstract

In our society, generations of systemic biases have led
to some professions being more common among certain
genders and races. This bias is also reflected in image
search on stock image repositories and search engines,
e.g., a query like “male Asian administrative assistant” may
produce limited results. The pursuit of a utopian world
demands providing content users with an opportunity to
present any profession with diverse racial and gender char-
acteristics. The limited choice of existing content for cer-
tain combinations of profession, race, and gender presents
a challenge to content providers. Current research deal-
ing with bias in search mostly focuses on re-ranking algo-
rithms. However, these methods cannot create new content
or change the overall distribution of protected attributes in
photos. To remedy these problems, we propose a new task
of high-fidelity image generation conditioning on multiple
attributes from imbalanced datasets. Our proposed task
poses new sets of challenges for the state-of-the-art Gen-
erative Adversarial Networks (GANs). In this paper, we
also propose a new training framework to better address
the challenges. We evaluate our framework rigorously on a
real-world dataset and perform user studies that show our
model is preferable to the alternatives.

1. Introduction
Due to historic stereotypes that exist in our society, im-

age search results can become biased for certain sets of
queries. This problem is particularly extreme for certain
professions, for example, Figure 1 shows the top search
results for the profession ‘plumber’ from Google Image
search1. As we can see, most top results are of young white
men; this is a reflection of societal stereotypes for this oc-

∗Work done during an internship at Adobe Research.
1Search conducted in January, 2021 from California.

Figure 1. Top image results retrieved from Google Image search
for the query ‘plumber’ reveal intrinsic biases.1

cupation. Similar types of results exist for other queries
of various professions such as ‘carpenter’, ‘machine opera-
tor’, ‘administrative assistant’, ‘cleaner’, and so on, where
the search results reveal biases in the gender, ethnicity, and
age in the top results. Unsurprisingly, due to such societal
bias, some combinations of race and gender may have few
or no images in a content repository. For example, when
we searched ‘female black (or African American) machine
operator’ or ‘male Asian administrative assistant’, we did
not find relevant images on Google Image search2 In ad-
dition, in rare instances, particular combinations of gender
and race can lead to individuals being portrayed inappro-
priately. We observed this behavior for search queries like
‘female Asian plumber’ or ‘female Black (or African Amer-
ican) security guard.’ This type of behavior is unwanted as
it leads to dissatisfied consumers. This problem affects both
image search and stock platforms with paying customers.

In the presence of such paucity of content, current bias-
mitigating re-ranking algorithms are not helpful because
they seek to re-order existing images relevant to a query
[9, 2], but cannot create new content nor increase the over-
all diversity within the results. For example, if there is only
one picture of a ‘male Asian administrative assistant’, ex-
isting strategies will not help the user experience. Instead,
imagine a machine that can generate photo-realistic high-

2When we first conducted this research. Search engines may have been
updated since.
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Image Search

“Female Asian Plumber”

“Female Black or African 
American Security Guard”

“Female Black or African 
American Machine Operator”

“Male Asian Administrative 
Assistant”

Figure 2. High-resolution images generated for the set of keywords
from our proposed model ‘Uniform+.’

resolution images for such queries. Such engines would
tremendously enrich the user experience if end-consumers
can access new content for any combination of attributes.
Real images may not exist, or if they do, there might be
only a few images with little or no variation, or in the worst
case be inappropriate images. For such an application, gen-
erative models, in particular, Generative Adversarial Net-
works (or GANs) [5], have great potential because of their
ability to produce photo-realistic images either uncondition-
ally [13, 14] or conditionally [23, 17, 19, 18].

In light of these considerations, to address this bias and
lack of diversity in image search, we propose a new task:
generating high-resolution images controlling for multiple
attributes, from imbalanced datasets. This task raises sev-
eral new challenges. First, it is hard to define specifically
what to visualize when creating new content for different
occupations. A real image can be incredibly complex be-
cause of diverse backgrounds, various accessories, mul-
tiple people, and so on (which is apparent in Figure 1).
Therefore, directly collecting images from search results us-
ing different queries will not lead to an optimal and clean
dataset for training GAN models. Second, for content to be
consumable by the end-user, the generated images need to
be available in high-resolution. Unfortunately, current state-
of-the-art GAN models for high-quality (HQ) image gener-
ation, such as StyleGAN [13] or StyleGAN2 [14], learn im-
age features without any supervision and do not allow ex-
plicit control over attributes. While we can augment these
models with class-conditioning, trivial conditioning on at-
tributes will not be sufficient for our task because the im-
balance in the training dataset across multiple classes (such
as race, gender and occupation) propagates to the generated
images. Finally, we have observed that the automatic met-
rics to evaluate the quality of the generated images, such
as Frechet Inception Distance (FID) [7] and classification
accuracy, cannot sufficiently measure the image quality for
our proposed task. To rectify these challenges, we make the
following contributions:

• To explicitly control the image generation process, we
first augment the state-of-the-art GAN model, Style-
GAN2, with multi-class conditioning. To overcome

the imbalance in the dataset, we compare two train-
ing procedures: weighted loss and over-sampling the
minority class. Based on our finding from the com-
parison, we come up with a new training procedure
that combines over-sampling with image augmentation
which can effectively handle the multiple-class imbal-
ance. This training procedure is not specific to Style-
GAN2 and thus can be applied to any generative model
to combat bias in the dataset.

• As there is no existing dataset to train such models for
debiasing image search results, we also build a new
high-quality dataset for this task (which we call Stock-
Occupation-HQ) and we describe the guidelines for the
data collection, pre-processing, and annotation.

• Finally, we conduct both quantitative and qualitative
evaluations to compare the performance of all models.
For quantitative evaluation, we calculate the widely
used metric FID [7] and classification accuracy (sim-
ilar to [3]) which we call Attribute Matching Score.
But our experimental results reveal a tradeoff between
these two metrics and prove them insufficient to gauge
the comparative quality of images. So, for qualitative
evaluation, we perform user studies on Amazon Me-
chanical Turk (AMT) which show the strength of our
proposed approach.

Generated images from our best performing model, Uni-
form+, are demonstrated in Figure 2 which show exciting
results for combating bias in image search.

2. Related Work and Background
2.1. Bias in Image Search

To characterize the gender bias in image search re-
sults for a variety of occupations, the authors of [15] col-
lected the top 400 image results for 96 occupations from
Google images, and used human annotators to label them.
They showed that the percentage of images of women in
Google’s 2014 results was 37%, and the fraction of gender
anti-stereotypical images was only 22%, a number lower
than expected. Moreover, they showed that sometimes im-
ages from gender minorities are portrayed unprofessionally.
They call this the ‘sexy carpenter’ problem. A more recent
study [2] shows that diversity in search has improved in the
last five years, but not too significantly. For example, they
show that the percentage of female participants has risen to
45% in 2019, but the fraction of anti-stereotypical images
has remained low (30% in Google 2019). To mitigate such
bias in search results, current research mainly focuses on
developing re-ranking algorithms that can show diversity in
the top search results. For example, [9] propose a Fairness
Maximal Marginal Relevance (FMMR) retrieval algorithm

412



to reflect diversity in the top image search results. Similar
work is explored in [2]. However, these methods can only
mitigate bias in the top results by re-ranking if many di-
verse images relevant to the query exist. This may not hold
for combinations of racial and gender attributes that are less
common for a certain profession. When these images do not
exist, or only a few of them do, these methods cannot diver-
sify the overall search results. This suggests the need for
a generative solution, where we can always generate new
content for any mixture of attributes.

2.2. Attribute-to-Image Synthesis Models

In recent years, Generative Adversarial Networks or
GANs [5] have become very popular in the domain of im-
age generation. Originally, GANs were proposed to un-
conditionally generate images from random noise. To exert
control over the generation process, GANs conditioned on
class labels [21, 19, 22, 1] or text input have been proposed
[23, 18, 17]. As these models allow the explicit control of
generation conditional on attributes, we can potentially ap-
ply them to our proposed task. However, a common limita-
tion of these models is their lack of ability to produce im-
ages at high-resolution, which is one of the requirements for
platforms that provide content, like image search providers
or stock image platforms.

2.3. High-Quality (HQ) Image Generation

For content platforms, the resolution of attribute-
controlled generated images needs to be as high as possi-
ble (preferably 1024×1024). Generating such high-quality
images, however, is significantly difficult because, at high
resolution, it becomes easier for the discriminator to tell the
fake images from real ones and training can easily become
unstable. For example, one of the class-conditioned genera-
tive models, BigGAN [1], can produce results at 512× 512
pixel. Even at this smaller resolution (half of what is re-
quired), they show their models undergo training collapses.
Additionally, results for BigGAN are shown in the bal-
anced dataset setting (where each image belongs to only
one class). Without class-conditioning, there exist only a
handful of models that can generate images at such a high-
resolution spectrum. For example, to stabilize the training
process at high-resolution, a progressive GAN is proposed
in [11], where they grow the resolution of both generator
and discriminator progressively, from 4×4 to 1024×1024.
However, a key problem of that architecture is feature en-
tanglement: it represents faces holistically, which makes it
difficult to modify eyes, for example, independently from
the rest of the face. StyleGAN [13] and its improved version
StyleGAN2 [14] both combat this entanglement problem by
introducing a mapping network and adaptive instance nor-
malization (AdaIN) [8] into the progressive GAN.

However, both StyleGAN and StyleGAN2 learn disen-

tangled representations from images without any supervi-
sion and do not allow explicit control over attributes, which
is crucial for our task. Furthermore, they do not have any
built-in mechanism that allows them to train under class im-
balance, where only a few examples exist for certain combi-
nations of attributes. In this paper, we overcome these new
challenges in our proposed task.

3. Our Approach
Our objective for this section is to propose models suit-

able for our new task of generating HQ images for a rare
combination of attributes to mitigate bias.

3.1. Base Network Selection

For choosing a base network, our priority is to make
sure the synthesis model can generate high-quality im-
ages. Specifically, the model needs to generate faces in
great details because they have to reflect the sensitive at-
tributes clearly, such as race and gender. For these rea-
sons, we have found in our early experiments that the
current attribute-controlled image-to-image translation sys-
tems such as STGAN[19] and text-to-image synthesis gen-
erative models such as DMGAN[23], CPGAN[18], Obj-
GAN[17] were not a good fit , as the quality of images de-
graded at high resolution (i.e. 1024× 1024), and the salient
features of diverse faces were lost.

Our early experiments with StyleGAN[13] and
StyleGAN2[14], however, showed promising results.
Being style-based generators, they were able to map both
macro (such as styles of different uniforms or backgrounds)
and micro (such as facial attributes) features to a disen-
tangled latent space. Also, by mixing the latent codes at
both these levels, they were able to introduce diversity in
synthesized images, which are key to visualize people of
minority races and genders in different jobs. Therefore,
these models hold significant promise to combat the bias
problem in images in a new way. More importantly, both of
these models can generate images at high resolution, which
is a requirement for stock platforms. In our experiments,
StyleGAN2 yielded better results than StyleGAN. Hence,
we choose StyleGAN2 as our base network.

3.2. Introducing Explicit Control

Originally, StyleGAN2 was proposed to capture styles
without supervision. But in our case, we would also like
to exert some control over the generation process. Before
we describe how we augment StyleGAN2 with multi-class
conditioning, let us first briefly describe the basic structure
of StyleGAN[13]: the latent codes z ∈ Z are first trans-
formed to intermediate latent space w ∈ W by a non-
linear mapping network f : Z → W . Then these w are
transformed to “styles”, v = (vs,vb), which control the
scale and bias in adaptive instance normalization operations

413



G G

D D

Attributes (Occupation+Gender+Race)

Latents

Uniform Sampling

Aug Aug Aug

Real ImagesEMBEDDING

G Loss

p

D Loss

Figure 3. Model architecture and training framework for Uni-
form+. In addition to class-conditioning with regularization, we
introduce new sampling techniques to handle the class imbalance
(uniform sampling with augmentation). This component is not
specific to StyleGAN2 and can be applied to any generative model.

(AdaIN) [8] after each convolutional layer of the genera-
tors of progressive GAN [11]. That is, AdaIN(x,v) =
vs[(x − µ(x))/σ(x)] + vb where x is the feature map.
Thus, the latent space W essentially controls styles within
convolutional layers at each resolution through AdaIN. It is
shown in [13] that these design choices for StyleGAN lead
to a less entangled latent space inW compared to the input
latent space in Z . StyleGAN2 [14] further improves on this
by redesigning its generator architecture and introducing a
path length regularization into it to better learn the mapping
from latent codes to images.

Now, to explicitly control the generation process, we first
one-hot encode each type of attribute (occupation, gender,
and race) and concatenate them together into a single vec-
tor y. That is: y = [yoccupation|ygender|yrace]. Then, we
use a feedforward network to embed these features along
with latent codes z. The output of the embedding is then
fed into the generator of StyleGAN2, Gθ. In our experi-
ments, we have found that any other significant architec-
tural changes to StyleGAN2’s carefully designed generator
lead to poor quality of images. For example, these follow-
ing variations lead to mode collapse very early in the train-
ing procedures: (1) conditioning on mapped distributionW
instead of random noise Z , and (2) conditioning at each
mapping layer from Z to W . For the same reason, we do
not apply any regularization to the generators like BigGAN
[1] does. Rather, we make changes to the discriminator Dφ

and apply the zero-centered gradient penalty from [20] to
stabilize the high-quality conditional image generation pro-
cess. Specifically, if Dφ(x|y) is the discriminator score for
an image x with condition y, then the R regularizer is as
follows: R(φ) = γ

2 ||∇Dφ(x|y)||2. Here, γ is a hyperpa-
rameter to control the regularization process. To calculate
the score from the discriminator, following their techniques,
we have a separate real/fake discriminator for each class,
and we predict separate logits for them. These discrimina-
tors share layers except the last layer, fφ(x), which outputs

a score for each class (thus, fφ(x) has the same dimension
as y). Then, we perform an element-wise multiplication
with our attribute vector to select the corresponding index
for calculating the logit in the loss function. That is:

Dφ(x|y) =
∑

fφ(x)� y (1)

We have also experimented using KL loss between at-
tributes and predicted scores in the discriminator but found
that it quickly leads to divergence. For training, we use
the following non saturating loss [5] which is used in [14]
for high-quality face generation from their Flickr-Faces-HQ
dataset (FFHQ) [13]:

L(θ, φ) = Ep(z)[f(Dφ(Gθ(z|y)))]+Ep(D(x))[f(−Dφ(x|y))]

where x is the input image, y is the attribute vector, and
f(t) = − log(1+exp(−t)). This finalizes the design of our
core architecture. We refer to this model as ‘Vanilla.’

3.3. Combating Class Imbalance

Our vanilla model does not address the bias in the dataset
that is needed to generate more examples with rare at-
tributes. Unfortunately, similar to multi-class condition-
ing experiments, any major deviation from StyleGAN2’s
meticulously designed architecture to cope with bias leads
to either poor results or training divergence. This motivates
looking for alternative options and designing components
that can be used to train any generative model to battle the
bias problem. Below we describe each of them.
Weighted: Our first idea for improvement comes from cost-
sensitive losses [4], where scores for different classes are
weighted to handle the imbalance of classes in the dataset
in classification tasks. For weighting, we make the follow-
ing changes in the output of the discriminator (Equation1)
which is used in the loss function:

Dφ(x|y) =
∑

fφ(x)� (m� y) (2)

where m is the weight vector and has the same dimension as
y. If a class needs weighting, we set its corresponding index
in m to an appropriate weight (described in 5.1). Otherwise,
it is set to 1. We call this variation ‘Weighted’.
Uniform: To explore another way to cope with bias, we
note that the distribution of different attributes in the dataset
is not uniform, but we can oversample from the dataset
to create a uniform distribution during training. Another
way to cope with rare categories in the data is to oversam-
ple from the dataset to create a uniform distribution during
training. This can lead to better mapping of rare combina-
tions of attributes. However, this may also lead to overfit-
ting the discriminator, as the same images from rare classes
appear more times and potentially destabilize the training.
Our experimental results confirm this hypothesis. We ob-
serve that the FID score drops initially, but at a certain point
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Attributes Exec. Mangr. Admin. Asst. Nurse Farmer Military Security Truck Cleaner Carpenter Plumber Machine Op. Tech. Support Soft. Eng. Writers

Male 447 68 297 659 164 374 488 211 379 582 338 127 199 195
Female 302 268 959 260 119 72 164 406 113 134 110 251 166 261
White 577 278 735 701 241 413 567 531 444 656 377 328 254 360
Black 96 12 263 59 26 25 40 50 12 37 25 22 42 41
Asian 38 38 163 106 10 6 35 29 17 12 32 17 30 38
Other 38 8 95 53 6 2 10 7 19 11 14 11 39 17
Total 749 336 1256 919 283 446 652 617 492 716 448 378 365 456

Table 1. Data statistics of Stock-Occupation-HQ. The breakdown shows the imbalance in race and gender across different professions.

it starts to increase continuously, and training begins to di-
verge. Nevertheless, we observed some improvement over
Weighted. In the rest of the paper, this variation is called
‘Uniform.’
Uniform+: To stabilize Uniform, the key idea is to find a
way of preventing overfitting due to the repetition of the
same images from minor classes. Therefore, we hypothe-
size that augmentation can help if it can be applied appro-
priately within the discriminator. To overcome overfitting
that arises from limited data, StyleGAN2-ADA [12] was
recently proposed. They introduce Adaptive Discrimina-
tor Augmentation (ADA in short) which uses a wide range
of augmentations with a probability p < 1 to prevent the
discriminator from overfitting. They show that as long as
the probability of a particular augmentation transformation
is less than 1, the discriminator is still able to recover the
original distribution. Given the effectiveness such augmen-
tation to prevent overfitting of the discriminator, we adapt
it in our Uniform model to stabilize it. This leads to our
final variation ‘Uniform+’ (shown in Figure 3). Our experi-
ments show the effectiveness of this training procedure. We
also adapt ADA in our vanilla architecture for comparison
which we refer to simply as ‘ADA.’ It should be noted that
the training procedure in Uniform+ is not specific to Style-
GAN2 and can applied to other generative models as well.

4. Dataset

There is no existing dataset which we can use for our
proposed task. Therefore, we have built a new dataset. In
the following, we discuss how we have collected, prepro-
cessed, and annotated the images in detail.

4.1. Collection

To obtain images for different occupations, we first con-
struct our search query according to [15]. They conducted
a study of which professions show the most racial and
gender bias. From their list, we choose the following
14 professions: ‘executive manager’, ‘administrative assis-
tant’, ‘nurse’, ‘farmer’, ‘military person’, ‘security guard’,
‘truck driver’, ‘cleaner’, ‘carpenter’, ‘plumber’, ‘machine
operator’, ‘technical support person’, ‘software engineer’,
‘writer.’ We have collected around 10 thousand HQ raw im-
ages for these 14 occupations using Adobe stock API. We
have chosen these 14 professions primarily because of their
distinct styles or attires (we observed around 95% accuracy

Figure 4. Real images from each profession after preprocessing

for top-3 prediction when we trained a classifier on them).

4.2. Preprocessing

A lot of images in this dataset are not ideal for train-
ing a generative model. First of all, many of the images
do not have people in them. Even if an image contains hu-
mans, there can be multiple persons. Moreover, an image
may contain complex backgrounds or complex foregrounds,
which can make the task difficult for existing generative
models to learn. Figure 1 shows this. To overcome these
challenges, we first use dlib’s [16] face detector to detect
faces, and then we use a custom padding scheme to crop
the image around the face to include the upper body por-
tion of each image. This overcomes the aforementioned
challenges, i.e., keeping the problem simple while allowing
critical information such as race, age, gender, and acces-
sories/attire of different occupations intact. Still, we have
noticed that a lot of images are not representative of the
original occupation and contain generic photos. This re-
quired us to manually inspect the images and pick the best
ones. After curating, the final dataset contains 8, 113 HQ
(1024× 1024) images in total. Figure 4 shows one example
from each job, in the same order as the list above3.

4.3. Annotating

To generate HQ images from attributes, we first need
to label each image. For detecting gender and race auto-
matically, we use a ResNet32-based [6] classifier that has
been pre-trained on the recently proposed dataset on fair-
ness tasks: FairFace [10]. Its average accuracy is 95.7%
for gender and 81.5% for race (Table 8 in [10]). Using it,
we label each image for the following attributes, Sex: Male,
Female, Race: White, Black, Asian, and Other Races. The
overall statistics of our proposed dataset Stock-Occupation-
HQ (SOHQ) is provided in Table 1. As can be seen from the

3Image attribution: okrasiuk, michaeljung, Günter Menzl, Andrey
Popov, Kadmy, Piotr Marcinski, Kurhan, ronstik, michaeljung, and Al
Troin on stock.adobe.com.
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Figure 5. Generated images from the four highest-scoring models show the qualitative differences. ADA achieves the lowest FID but it
often fails to generate images faithful to the attributes. While both Vanilla-FFHQ and Uniform do a better job in that , they suffer from low
variability and/or artifacts. But the qualitative inspection reveals that Uniform+’s images achieve a better balance in all aspects.

table, the original distribution is highly imbalanced across
different variables. This imbalance makes class conditioned
image generation extremely difficult. Note that we do not
introduce generic photos to increase diversity in each pro-
fession.

5. Experiments
5.1. Setup

Implementation details: We build our models in Ten-
sorFlow and we use the corresponding official codebase of
StyleGAN24 and StyleGAN2-ADA5 for base networks. As
there are 14 professions, 2 genders, and 4 races, the attribute
vector is 20 dimensional. For pretraining, we use two differ-
ent datasets. First, we use StyleGAN2’s pre-trained weights
on the FFHQ dataset [13] in our Vanilla model, which we
refer to as ‘Vanilla-FFHQ.’ However, images in our dataset
are more challenging than FFHQ. This is because in addi-
tion to faces, our images contain various accessories, in-
struments, attires, and backgrounds related to the profes-
sion. Therefore, for pretraining purposes, we collected a
large number of images (around 34 thousand) for 23 differ-
ent professions and preprocessed them automatically (using
our face detection and alignment pipeline). We call this
dataset ‘U-SOHQ,’ for Uncurated Stock-Occupation HQ.
We trained StyleGAN2 unconditionally on this dataset until
convergence and use its pre-trained weights in all our mod-
els except for Vanilla-FFHQ. For Weighted, we set a weight
of 2 for the ‘Female’ class, and 4 for the ‘Black’ and ‘Asian’
classes, based on their aggregated frequency. For ADA and
the Uniform+ model, we set the probability of augmenta-
tion to 0.7. Finally, we set γ to 10 in the R regularizer (see
Section 3.2) for all models.

Metrics: For our first metric, we use the popular FID [7]
score to quantify the quality of the generated images. FID

4https://github.com/NVlabs/stylegan2
5https://github.com/NVlabs/stylegan2-ada

Model FID↓ AMS (%)↑

G R O Avg. All 3

Van-FFHQ 21.11 86.81 38.66 63.66 63.04 23.71
Vanilla 14.89 86.00 34.72 60.14 60.29 20.34
ADA 13.89 80.78 34.76 67.79 61.11 19.99
Weighted 15.59 85.25 41.55 62.70 63.17 23.57
Uniform 22.75 85.30 43.77 69.20 66.09 27.21
Uniform+ 17.34 83.33 51.81 63.48 66.21 27.50

Table 2. Experimental results. Van-FFHQ: Vanilla-FFHQ, G: Gen-
der, R: Race, O: Occupation. All models were pre-trained with
U-SOHQ except Vanilla-FFHQ. The results show that Uniform+
achieves the best tradeoff between FID and AMS.

measures the maximum distance between Gaussians fitted
to the distributions of real and fake images. As the origi-
nal distribution is biased, for a fair comparison, we sample
attributes from the distribution of attributes in our dataset
to generate images and then compute the FID with the real
data. To measure how well the generated faces align with
the given attributes, we measure the percentage of the time
the given attributes match with the predicted ones. We call
this metric ‘Attribute Matching Score’ (AMS). This is sim-
ilar to classification error used in [3]. To predict the at-
tributes from the generated images, we first generate 100
images each for all 112 combinations of race, gender, and
occupation (11,200 images). Then, we detect race and gen-
der using the classifier trained on FairFace [10]. For de-
tecting profession we train a ResNet56 [6] on our dataset
which achieves 80.28% top-1 accuracy (94.57% top-3). Us-
ing them, we compute the AMS for each attribute.

5.2. Quantitative Results

Table 2 shows the quantitative results for all models for
all metrics. Under AMS, we show the matching scores for
individual attributes (G/R/O) and the average of all three.
On average, Uniform+ achieves the best results, although
its FID is relatively high. “All 3” refers to the stricter cri-
terion that all three attributes are correct simultaneously,
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and Uniform+ again has the best score. The FID score im-
proves significantly between the Vanilla models when we
use pre-trained weights from U-SOHQ instead of FFHQ.
However, this results in lower attribute matching scores. We
observe similar results from ADA (our conditional version
of StyleGAN2-ADA [12]). While it achieves the lowest FID
score, its combined AMS is the worst among all models.

We can explain this phenomenon as follows: let us as-
sume that one model faces ‘mode collapse’ and thus outputs
one image for each set of attributes. In this case, it is easy
to generate an image that is faithful to the given attributes,
so the AMS score will be high, but due to low variance in
the images, the FID score will be high. On the other hand,
imagine a model that produces diverse sets of background
and styles of attires without being faithful to subtle facial
attributes. In this case, it is possible to achieve a lower FID
but the AMS will also decrease. Hence there is a tradeoff
where a model has to achieve as low an FID as possible
while keeping the AMS high.

Interestingly, Weighted comes close to achieving this
goal. Its FID is lower while the attribute matching scores
are higher. Uniform further improves on these matching
scores. Unfortunately, Uniform has training divergence is-
sues due to the repetition of the same images - that is, after
reaching a minimum FID score, it starts increasing again as
we continue training. The lowest FID score we were able
to achieve for Uniform is 22.75, which is the worst of all
the models. To rectify this, we introduced Uniform+, which
uses augmentations from StyleGAN2-ADA [12]. We can
see it achieves the highest combined AMS while keeping
the FID score much lower than Uniform. Our training logs
did not suggest any indication of divergence or mode col-
lapse for Uniform+. Although its individual scores for gen-
der and occupation are lower than Uniform, we will show in
the following qualitative analysis that the performance gap
is mainly due to similar images generated by Uniform.

5.3. Qualitative Results

For qualitative analysis, we use the best performing mod-
els under each metric, namely Vanilla-FFHQ, ADA, Uni-
form, and Uniform+. We evaluate their generalization per-
formance by using the example queries from the introduc-
tion: ‘female Black machine operator’ and ‘male Asian ad-
ministrative assistant.’ In our dataset, there is no image of
the former, and just one image of the latter, so this is a strong
challenge for the models. Figure 5 shows the results.

First, as can be seen in the Figure, all models struggle
with these queries, as no model gets them all right. The first
model, Vanilla-FFHQ, has relatively low variability, espe-
cially in the female faces, as reflected in its FID score. It
is able to generate correct ‘female’ and ‘male’ faces, re-
flecting its gender AMS. However, the generated faces (es-
pecially the males) are not racially correct, and the clothes

Figure 6. Random examples from Uniform & Uniform+ for ‘male
white machine operator’ query. This figure shows Uniform often
generates similar-looking images (due to mode collapse) and thus
its high score in some categories (e.g. Occupation AMS) can be
misleading. However, this is not the case for Uniform+.

do not appear to fit the intended occupation. ADA, on the
other hand, shows a lot of variability in the generated im-
ages, but makes mistakes in all three attributes. Uniform
is able to generate racially correct faces for both queries
in most cases, but does not generalize well to the unseen
query ‘female Black machine operator’ producing mostly
male faces. On the other hand, Uniform+ generates images
that are faithful to the given attributes, resulting in the high-
est combined AMS.

As we mentioned before, a model can perform better un-
der AMS if it generates similar types of representative im-
ages for a query. We will now show that this is the case
for Uniform but not for Uniform+. Figure 6 contrasts these
two models. We observe that most images from Uniform
have some artifacts in them, and similar types of images ap-
pear more than once (e.g., similar faces with yellow hats
in similar orientations). This is clearly due to the repeti-
tion of images in its training set (note that we oversample
in Uniform). This also shows early signs of mode collapse.
Second, even though images are similar, the attributes are
generally correct, so it has sacrificed diversity in the service
of attribute accuracy. Unlike Uniform, Uniform+ is trained
with more diverse images (due to augmentation). As a re-
sult, its images do not have artifacts or repetitions in them.
This explains the performance gap we see between Uniform
and Uniform+.

5.3.1 Human Evaluation

We have also performed a user study by hiring Amazon Me-
chanical Turk (AMT) workers to qualitatively evaluate the
performance of the models. For this purpose, we choose
ADA, Uniform, and Uniform+ and generate 100 examples
for each of them using different queries. Based on our quan-
titative and qualitative results, we designed three different
studies.

In the first study (called the Attribute Match Study), we
ask evaluators to match the attributes of a generated image
with the query that generated it, akin to the AMS metric.
Since matching attributes does not capture the comparative
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Figure 7. Curated collection of generated images from Uniform+ (from left to right, top to bottom): ‘executive manager’, ‘administra-
tive assistant’, ‘nurse’, ‘farmer’, ‘military person’, ‘security guard’, ‘truck driver’, ‘cleaner’, ‘carpenter’,‘plumber’, ‘machine operator’,
‘technical support person’, ‘software engineer’, ‘writer.’ Zoom in for a better view. More examples are given in the supplementary material.

Study Type ADA Uniform Uniform+

Attribute
Match
Study↑

Gender 88.0 89.0 88.0
Race 39.0 62.0 69.0
Occupation 37.0 38.0 44.0
All 3 11.0 14.0 27.0

Preference Study↑ 20.2 23.0 56.8
Diversity Study↑ - 15.0 85.0

Table 3. Human evaluation results (in percentage). For the last two
studies, the percentage is calculated among the considered models.

quality of the images among the models (for example, see
Figure 5), we performed a Preference Study. Here, we take
one image from each of the three models, randomly shuffle
them, and then we ask which image among the three is pre-
ferred by the evaluator for a query. Finally, in order to check
for diversity of responses, we conducted a Diversity Study
for Uniform and Uniform+ only. We presented a collage
of 5 images from each of the models and we ask which one
(after shuffling the order) generates more diverse images for
a given query. Illustrative examples of each of these stud-
ies are provided in the supplementary material. We assign
5 unique Turkers for each task.

The results are presented in Table 3 and described be-
low. For the Attribute Match Study, we report the percent-
age match. The majority vote among evaluators is matched
to the attribute used in the query generating the image (this
is similar to the automatic scores we calculated for AMS in
Table 2). For the Preference and Diversity studies, we re-
port the percentage of vote received by each of the models.
The results from the human evaluation agree with our quan-
titative evaluation on Attribute Match. We see that Uni-
form+ gets the highest percentage of votes in most cases.
As before, we can see Uniform has performed slightly bet-
ter for matching one of the attributes (namely Gender). Pre-
viously, it performed better under AMS for matching Oc-
cupation. This indicates that Uniform performs better than
Uniform+ in at least one aspect. While the numbers here are

roughly consistent with the AMS scores, the Race scores
are much higher and the Occupation scores much lower, re-
vealing the inherent weakness of using automatic metrics
to evaluate images for this task. When images from all
three models are presented side by side in the Preference
Study, 56.8% of the time Uniform+’s images are preferred,
which is more than twice as frequent as the other two mod-
els, again demonstrating the strength of Uniform+. Finally,
when asked which model between Uniform and Uniform+
shows more diversity for a given query, Uniform+ received
85% of the total votes. This confirms our hypothesis that
Uniform’s occasional better performance is mostly due gen-
erating similar-looking images. Thus, based on our analy-
sis, we find Uniform+’s performance strongest for our task.
In Figure 7, we show curated examples of HQ generated im-
ages from Uniform+ where we pick one image across dif-
ferent combination of race and gender for each job.

6. Conclusion
In this paper, we have proposed a new task of high-

resolution image generation by controlling multiple at-
tributes from imbalanced datasets to combat bias in image
search. Our paper makes several contributions to tackle new
challenges for this task. First, we show how we can lever-
age existing state-of-the-art models for high-quality image
generation and introduce explicit control over the genera-
tion process. Moreover, we show the challenges in training
conditional models under a biased setting and propose new
frameworks which can be applied to any generative models
by practitioners. We also produced a new, curated dataset
as well as a large uncurated dataset for pretraining for the
proposed task. Finally, we perform rigorous experiments
that show the effectiveness of our proposed approach and
reveal the weakness of the automatic metrics to gauge the
quality of generated images for our task. We hope our de-
sign principles, as well as experimental studies, will benefit
researchers to further improve on the models and propose
new evaluation metrics for similar tasks.
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