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Abstract

In this paper we consider the task of semantic segmen-
tation in autonomous driving applications. Specifically, we
consider the cross-domain few-shot setting where training
can use only few real-world annotated images and many
annotated synthetic images. In this context, aligning the do-
mains is made more challenging by the pixel-wise class im-
balance that is intrinsic in the segmentation and that leads
to ignoring the underrepresented classes and overfitting the
well represented ones. We address this problem with a novel
framework called Pixel-By-Pixel Cross-Domain Alignment
(PixDA). We propose a novel pixel-by-pixel domain adver-
sarial loss following three criteria: (i) align the source and
the target domain for each pixel, (ii) avoid negative trans-
fer on the correctly represented pixels, and (iii) regularize
the training of infrequent classes to avoid overfitting. The
pixel-wise adversarial training is assisted by a novel sample
selection procedure, that handles the imbalance between
source and target data, and a knowledge distillation strat-
egy, that avoids overfitting towards the few target images.
We demonstrate on standard synthetic-to-real benchmarks
that PixDA outperforms previous state-of-the-art methods
in (1-5)-shot settings.'

1. Introduction

Semantic segmentation is a foundational technology in
autonomous driving applications, because it provides the
vehicle with information about its surroundings that is crit-
ical to safely and reliably navigate the environment. Great
strides have been made to improve this technology in the au-
tonomous driving scenario, using supervised deep learning
methods trained using great quantities of data with pixel-
wise annotations.

However, data collection and annotation is time consum-
ing, expensive and hard-to-scale. A successful strategy to
mitigate this issue is to rely on simulators to generate mas-
sive amounts of synthetic data [35, 37, 1]. This solution

ICode at: https://github.com/taveraantonio/PixDA.
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Figure 1. Comparison between the common image-wise adver-
sarial training (bottom) and PixDA that analyzes each pixel indi-
vidually (top). By prioritizing the pixel alignment according to the
imbalance of the classes and the network classification confidence,
PixDA achieves better accuracy, particularly for underrepresented
semantic classes, e.g. traffic sign, rider and bicycle.

has the benefit that synthetic data is easy and cheap to col-
lect, and the semantic annotations generated automatically
by the graphical engines are perfect. The downside is that
there is a significant shift between the synthetic domain of
the training data and the real domain of the application.
There are unsupervised and semi-supervised solutions that
address this domain shift [43, 45], however they still need
large amounts of images from the real domain thus falling
back into the data collection problem. A more viable solu-
tion is to consider a few-shot setting where only a few an-
notated images from the real target are needed, rather than
many target images without annotation.

The few-shot learning problem has been studied in sev-
eral visual learning scenarios (see Sec. 2 for a review of
previous works). One of its main challenges is dealing with
the intrinsic imbalance between source and target data [41].
When the few-shot learning is considered within the seman-
tic segmentation scenario, this issue is exacerbated by the
intrinsic pixel-wise imbalance among segmented classes:
some classes are both extremely frequent and spatially ex-
tended (e.g., sky, road), while others may appear seldom

1626



and be small in size (e.g., traffic sign). This implies that
there can be a great disproportion in the number of pixels-
per-class available in the target domain, with some classes
that may be scarcely represented or even missing. This im-
balance is more pronounced than in other problem settings,
causing image-wise adversarial training methods to align
large and well-represented classes, resulting in less accu-
rate mapping of those that are under-represented in the tar-
get domain (see Fig. 1).

We argue that to address successfully cross-domain few
shot learning in semantic segmentation, it is imperative
to embed in the solution the intrinsic pixel-wise connota-
tion of spatially segmenting classes. To do this, we intro-
duce the Pixel-By-Pixel Cross-Domain Alignment frame-
work (PixDA), that uses a novel pixel-wise discriminator
and modulates the adversarial loss for each pixel to: (i)
align pixel-wise source and target domains; (ii) avoid to
further align correctly represented pixels and reduce the
negative transfer; (iii) regularize the training of underrep-
resented classes to avoid overfitting. The pixel-wise adver-
sarial training is assisted by a sample selection procedure
that handles the imbalance between source and target data
by progressively eliminating samples from the source do-
main. The two mechanisms coexist within an end-to-end
training process. Summarizing, the main contributions of
this paper are:

e we propose the first algorithm for cross-domain few
shot semantic segmentation able to deal with classes
scarcely represented in the training data by spatially
aligning the domains pixel by pixel;

* we define a new pixel-wise adversarial loss that aligns
source and target domains locally while reducing
negative transfer and avoiding overfitting the under-
represented classes;

e we evaluate our architecture on the two standard
synthetic-to-real scenarios, i.e., GTAS5—Cityscapes
and SYNTHIA—Cityscapes, where it sets new state-
of-the-art scores. Additionally, an in-depth ablation
study analyzes the influence of all the features intro-
duced by our method.

2. Related Works

Semantic Segmentation. Over the last few years semantic
segmentation has achieved remarkable results thanks to the
widespread use of deep learning [27, 7, 55, 24, 54]. The
current state-of-the-art methods differentiate themselves in
the strategy applied to condition the semantic information
on the global context. Methods like RefineNet [24], PSP-
Net [55], ExFuse [54] or DeepLab [5, 6, 7] are designed to
capture objects as well as image context at multiple scales.
Other works model the hierarchical or the spatial dependen-
cies to boost the pixel-level classifier [0, [4]. One problem

with all these methods is that they require a large amount of
densely annotated images, which are expensive and time-
consuming to obtain. This issue has spurred the creation
of synthetic datasets [1, 37, 35] that offer high quality im-
ages with automatically generated semantic labels. Despite
the clear advantages in terms of data availability and quality
of the annotations, models trained using synthetic datasets
face a drastic domain gap when tested with real images.

Domain Adaptation. Domain Adaptation (DA) refers to
the study of solutions to bridge the domain gap that is
present when the data used to develop the model (source)
and the data the model is applied to (target) come from dif-
ferent distributions. Some of these solutions seek to mini-
mize a measure of the discrepancy across domains, like the
MMD in [13, 28]. Other methods exploit generative net-
works and image-to-image translation algorithms to gen-
erate target images conditioned on the source domain or
vice-versa [18, 46, 48]. Strategies like [23, 20, 48] com-
bine image-to-image translation with self-learning, using
the predictions on a previously pre-trained model as pseudo
labels to fine-tune and reinforce the model itself. Finally,
the most popular approach for domain adaptation in seman-
tic segmentation is adversarial training [44, 30, 4]. In the
Unsupervised DA setting, Luo ef al. [30] introduces the
negative transfer problem caused by the common global-
level adversarial alignment strategy, addressing it with a co-
training strategy and an alignment performed at a category-
level. Conversely, we focus on Few-Shot DA for the au-
tonomous driving scenario and propose a novel training
strategy that strengthens domain alignment at pixel level
while addressing both negative transfer and overfitting on
the target domain.

Few Shot. Few-shot learning deals with novel classes
given only few images [38, 34, 9, 51, 40, 21, 12, 15, 42].
The problem has been extensively studied in the context of
image-classification [40, 21, 12, 15, 42] and, only recently,
in the context of semantic segmentation [38, 34, 9, 51]. Dif-
ferently from few-shot learning, the purpose of few-shot in
domain adaptation is to transfer the knowledge from a well-
annotated source dataset to a target one containing only few
annotated images [9, 29, 32, 52]. FSDA [52] tackles this
problem in semantic segmentation with a two-stage method:
the first stage implements a static label filtering that guides
the learning towards the pixels that are difficult to classify;
the second stage performs domain adaptation at image-level
via two image-wise domain discriminators and using all the
source images, which forces a negative transfer to the target
realm. Conversely, our work achieves domain alignment
at pixel-level granularity using a new pixel-wise discrimi-
nator and a new loss function exploiting the semantic and
visual information for each individual pixel. Moreover, we
use a novel sample selection strategy to limit the number of
source images used and avoid a negative transfer.
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Knowledge Distillation. Knowledge distillation (KD) [17]
is applied to transfer knowledge from a cumbersome model
to a lighter model with the aim of improving the perfor-
mance of the latter by forcing the match between the pre-
dictions provided by the two networks. It has been applied
first to image classification [2, 36, 50] and object detection
problems [22], and only in recent years it has been deployed
to the semantic segmentation [47, 26, 39] and the incremen-
tal learning tasks [3, 10, 31]. With PixDA we use KD as a
regularization term [49] to avoid catastrophic forgetting of
the acquired knowledge and to avoid overfitting towards the
few number of target images provided by the considered
few-shot setting.

3. Method
3.1. Problem Setting

We consider the semantic segmentation task in the cross-
domain few-shot setting that was formulated by Zhang et al.
in [52]. The problem setting defines K-shot as a task pro-
viding K real images randomly selected for each of the N’
cities of the target dataset. For example, in the 1-shot set-
ting with Cityscapes as target dataset, the whole target data
is made of 18 annotated frames because Cityscapes is com-
posed by 18 different cities. This problem setting is tailored
for the autonomous driving application, where a single self-
driving solution is usually deployed to a finite number of
designated cities. Although not all the datasets available in
the literature provide meta information regarding the divi-
sion in different cities, this formulation from [52] gives a
precise and well established experimental protocol.

To tackle the problem, let us denote as X the set of
RGB images composed by the set of pixels Z, and as )
the set of semantic masks associating to each pixel 1 € 7
a class from the set of semantic classes C. At training time
we have available two sets of semantically annotated im-
ages: X, = {(2°,y°)} which is a collection of N, im-
ages, with z° € X from a synthetic domain (source), and
X = {(z% y*)} which contains a small number of sam-
ples 2! € X from the real-world domain (target). Similarly
to [52], the evaluations discussed in Sec. 4 are carried out
in the (1-5)-shot setting. In this notation, y*, y* € ) de-
note the annotation masks associated with the source and
target images, respectively. In this problem the goal is to
use the datasets X and X; to learn a function f, parame-
terized by 6, from the input space X’ to a pixel-wise proba-
bility, i.e., fy : X — RIZIXIYI and evaluating it on unseen
images from the target domain. In the following, we indi-
cate the model output in a pixel ¢ for the class c as pf, i.e.,

pi(x) = fo()[i cl.

Without domain adaptation, the parameters 6 are opti-

mized to minimize the segmentation loss L.4:

“mS

€L

Lo (z,y) x)) log(pY (z)) (1)

where L., corresponds to a focal loss [25] and (1 —
pi*(x))7 is its modulating factor.

3.2. Pixel-by-Pixel Adversarial Training

Many approaches [44, 30, 4] in domain adaptation deal
with the domain shift problem by aligning the features ex-
tracted from the source and target domains in an adversarial
manner. The common solution, first introduced by [19], is
to play a min-max game between the segmentation network
and an image-wise domain discriminator, in which the dis-
criminator predicts the domain a feature belongs to, and the
segmentation network tries to deceive it by making source
and target features indistinguishable.

Since the domains are analyzed and aligned from a
global perspective, the discriminator may disregard portions
of the scene that expose few pixels of the small classes,
focusing mainly on the well-represented ones. As a re-
sult, adversarial training would mostly align big and well-
represented classes while inducing a negative transfer [30]
on the others, which leads to poor adaptation. This problem
is amplified in the few shot scenario since there is a dis-
crepancy between the number of images in the source and
target domains, and some target semantic classes may be
underrepresented or even absent.

The PixAdv Loss. To address the imbalance among classes
and reduce the negative transfer, we propose a novel adver-
sarial loss that analyzes each pixel individually rather than
operating on a global level (see Fig. 2). Our goal is to pri-
oritize and improve pixel alignment using three criteria: (i)
align the source and target domain, (ii) avoid to further align
correctly represented pixel, limiting negative transfer, and
(iii) regularize the training of infrequent classes, forcing the
domain alignment to avoid overfitting.

To accomplish this, we use a pixel-wise discriminator
whose goal is to discern, for each pixel, what domain it be-
longs to. The domain discriminator is a computationally
less expensive version of the common Fully Convolutional
discriminator found in DCGANSs [33] (see Sec. 4.2 for more
details). The discriminator D is trained to classify whether
the features are coming from the source or the target do-
main. Formally, we minimize the following loss:

Lp(z®,a') = =Y log Dy(fo(x*))+log(1—Di(fa(z"))),

ieT

2

where D is the discriminator, and D;(x) indicates the out-
put probability for the pixel ¢ to belong to source domain.

However, using a pixel-wise discriminator without con-

sidering the class imbalance problem does not prevent a
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Figure 2. Illustration of the pixel-by-pixel adversarial learning of PixDA. A new pixel-wise discriminator computes the adversarial loss
whose contribution at each pixel is weighted by two terms: S, that considers the ability of the model to correctly represent the pixel, and
B, that weights each pixel based on the frequency of its semantic class. Yellow/blue lines refer to the source/target domain, respectively.

negative transfer effect. Hence, we introduce a novel ad-
versarial loss function (PixAdv Loss), denoted as Lpixady,
designed to align each pixel according to its importance. In
particular, to determine the strength with which each pixel is
aligned, the Lpijxaqy modulates the adversarial loss accord-
ing to a combination of two different terms, each with a
specific purpose:

Lpixaav (2, y")

LS
1€L
3)
The term S in eq. (3) is related to the network classifica-
tion confidence and it is considered as a measure, for each
pixel, of the ability of the network to represent it:

Si(xt7 yt) =

where p}’ (x) denote the probability for class y; at pixel 1.
High values of S; indicate that the network misrepresents
the pixel ¢, whereas a small value indicates that the network
is able to correctly represent and classify it.

The term B in eq. (3) represents the imbalance of the
pixels and aims to re-balance the classes contribution based
on their frequency in the target dataset:

—y; logp? ("), )

Bily) =1- 17 S P (5)

JjeET

where 1 is the indicator function, being one when y; and y;
are equal, zero otherwise. Values of B; which tend to 1 re-
fer to a misrepresented class while values tending to O refer
to a well-represented class. The term B is crucial since the
target domain exposes many pixels of some classes (e.g.,

)B;(y")log D;(fo(x")).

road, sidewalk) but very few of others (e.g., train, person).
Through B we are able to balance the classes, resulting in
a more heterogeneous and effective adaptation. We would
like to point out that the terms .S and B aren’t used in back-
propagation, but rather as a pixel-by-pixel map to modulate
the adversarial loss.

Summing up, the overall segmentation network training
loss function is expressed as follows:

Z Lseg ’yS)_'_
wSEXk
(6)
Z Lseg + )\LPledv( t’yt)’
zteXy

where Lpixaqy 1S the proposed adversarial pixel-wise
PixAdv loss and XF is a subset of the source dataset X
selected with the sample selection procedure.

3.3. Sample Selection

Due to the extent and variety of the synthetic source
dataset there will be source samples far away and detached
from the target domain (e.g., different perspective or illumi-
nation condition). Forcing the alignment to these samples
can result in negative transfer in the target dataset, lowering
the network’s overall performance.

With this in mind, we propose a sample selection proce-
dure that, working side by side with the PixAdv loss, en-
hances the use of the source data by identifying and select-
ing source samples that are better aligned with the target
semantic distribution. Without affecting the segmentation
model and not taking part in the adversarial learning pro-
cess, we simultaneously train a global image-wise domain
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Target Dataset

Figure 3. Illustration of the sample selection mechanism (top-left).
At each epoch k the source dataset is subsampled selecting images
that would carry worthy information to the target domain. For ex-
ample, samples with different perspectives of lighting conditions
w.r.t. the target data (bottom-right) are discarded.

discriminator D, with the following loss:

Lp, (" ") = —log Dy(fa(a")) - log(L = Dy (fa(a"))-
(N
The main reason for using such a discriminator is to dis-
tinguish source from target and to capture both semantic
and visual domain information. Formally, at each epoch k
we exploit D, to predict the likelihood that a source im-
age carries worthy information to the target domain and use
this prediction to select a subset X” of source images to be
retained from the previous epoch, i.e., | X*| < | Xk ~1|. Fol-
lowing this intuition, an image 2° € X*~!is added to X" if
Dy(z®) < d, where ¢ is a predefined threshold. After each
epoch, we raise the threshold consequently to the increasing
capacity of the image-wise discriminator to correctly clas-
sify the target data as training progresses, selecting an ever
decreasing number of relevant samples (see Fig. 3 for a bet-
ter understanding).

3.4. Fine-Tuning and Knowledge Distillation

Once the adversarial training is completed and PixAdv
loss has aligned the representation between pixels of the
source and target domains, we can further exploit the avail-
able semantic information on the target data to enhance the
network representation.

However, naively fine-tuning on the target data ignores
the domain alignment obtained previously and may lead to
overfitting the few target images. To avoid this problem we
use a Knowledge Distillation (KD) strategy. KD [17] has
been designed to regularize the training of a student network
using the output of a teacher network. In our framework the
student fp, corresponds to the segmentation model which
is fine-tuned, while the teacher, denoted as fy,., is a frozen
copy of the same network after the adversarial learning pro-

cess. Formally, we optimize 6g with the following:

1
m Z Lseg<xta yt) + )\dekd(mt7 f9T7 f@s)a (8)
rteX;

where L., is the segmentation loss from (1), Apq is a
weighting parameter. L4 is the distillation loss expressed
as follow:

Lya = —U(fo%(mt))bga(f&s(xt))v ©)

where ¢ indicates the softmax function, and 7 is a tempera-
ture, as in [17].

4. Experiments
4.1. Datasets and metric

We assess the performance of our method on the two
standard synthetic-to-real benchmarks used in the domain
adaptation literature: GTAS [35] to Cityscapes [8], and
SYNTHIA [37] to Cityscapes [£8].

GTAS. 1t consists of 24966 images synthesized from the
homonymous video game. The original images size is
1914 x 1052. For training and evaluation we used the stan-
dard 19 semantic classes in common with Cityscapes.

SYNTHIA. We use the "RAND-CITYSCAPES” subset
that consists of 9400 images synthesized from a virtual
world simulator. The original image resolution is 1280 x
760. The 19 classes in common with Cityscapes are consid-
ered for training while the evaluation, following the stan-
dard protocol used in [48] and in [44], is performed on a
subset of 13 and 16 classes.

Cityscapes. It is a real-world dataset collected across sev-
eral German cities. It consists of 2975 images but for the
experiments we use only a subset according to the standard
K -shot selection (K images from each of the M city). We
use the whole validation set made of 500 images to test our
network. The original resolution is 2048 x 1024.

We assess the efficiency of PixDA in these two
domain adaptation scenarios: GTAS5—Cityscapes and
SYNTHIA—Cityscapes. In all tests we use the standard In-
tersection over Union metric [1 1] to measure performance.

4.2. Implementation and training details

Architecture. The segmentation module of our method is
DeepLab V2 [5] with ResNet101 [16] pre-trained on Ima-
geNet. The pixel-wise discriminator we built is a Fully Con-
volutional discriminator which has 2 convolutional layers
with kernel 3 x 3, stride 1 and padding 1, followed by a last
convolutional layer with kernel 1 x 1, stride 1 and padding
0. The three layers channel numbers are {64,128,1}. The
image-wise discriminator is a common Fully Convolutional
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discriminator with 5 convolutional layers with kernel 4 x 4,
channel numbers {64, 128,256,512,1} and stride 2. For
both discriminators, each layer except the last one is fol-
lowed by a Leaky ReLU with a negative slope of 0.2.

Training. We implement our method in PyTorch and de-
ploy it on two NVIDIA Tesla V100 GPUs with 16GB each.
The segmentation model is trained using batch size 4 and
SGD with initial learning rate 2.5-10~* and adjusted at each
iteration with a “’poly” learning rate decay with a power of
0.9, momentum 0.9 and weight decay to 0.0005. The dis-
criminators are trained using Adam optimizer, with learning
rate 107" and the same decay schedule of the segmentation
model. The momentum for Adam is set to {0.9, 0.99}. To
reduce the low-level visual domain shift (e.g., color, bright-
ness, etc.) between the source and target domains (both in
the adversarial training and in the sample selection phases)
we apply to each source image the FFT style translation al-
gorithm from FDA [48], which is parameterless and com-
putationally light. PixDA training starts with a pre-trained
version of the segmentation model on source data and con-
tinues until the sample selection module selects relevant
source images for the next epoch. The last fine-tuning and
knowledge distillation phase lasts 200 iteration. We set A
equal to 0.1 for GTA and 1 for Synthia. The sample selec-
tion threshold ¢ is set to 0.4 and doubled at every epoch.
Finally, A\, = 0.5 and 7 = 0.5. Test is performed without
any post-processing.

Baselines. Our method is compared to several baselines.
The first baseline that we consider is the Source Only
model, i.e., the network trained only with the source dataset.
The Joint Training (JT) baseline, that trains for 4 epochs the
model with a concatenation of the source and target images.
The Fine-Tuning (FT) baseline, that fine-tunes for 30k it-
erations the Source Only model on the target domain. Our
method, JT and FT exploit the Focal Loss to compute seg-
mentation accuracy. We then report results for three state-
of-the-art methods: FDA [48], NAAE [41], and FSDA [52].
FDA [48] and ”Not All Areas are Equal” (NAAE) [41] are
implemented using the same hyper-parameters proposed in
their original papers, replacing only the target train set with
the K-shot selection. For FSDA [52] we follow the same
results and implementation details reported by the authors.
DeepLabV2 with ResNetl101 is used as the backbone for
all the baselines with the only exception of NAAE that, as
provided by its authors, uses a FCN [27] with VGG16 [53].

4.3. Results

GTAS to Cityscapes. The results for this scenario are re-
ported in Table 1. At a first glance, we observe that NAAE
and Joint Training lead to underwhelming results, with a
mloU below 40% in all tests. FDA is slightly better, but
its accuracy does not improve when increasing the number
of target images from 1 to 5. Fine-Tuning the model pre-

trained on the source domain leads to comparable accuracy
to the current state-of-the-art, FSDA. Finally, our PixDA is
the best performer in all (1-5)-shot tests, outperforming the
Source Only model by a minimum of +20.44% in the 1-
shot setting to a maximum of +24.84% in the 5-shot.

Compared to the next best competitor, i.e., FSDA,
PixDA marks an average boost of +3.63% to the mlIoU.
We also note that in the 1-shot setting, the accuracy of
FSDA in few classes (traffic light, motorcycle) drops below
the Source Only baseline, which is indicative of a negative
transfer. This result confirms that PixDA uses more effec-
tively the information from the domain images depending
on the content in the target images.

Finally, we observe that our method not only works well
with predominant classes such as “road”, ”sky” and "build-
ing”, but on average it improves the recognition of semantic
categories that are under-represented, either because con-
taining few pixels (e.g., “traffic light”, where we achieve
a +9.39% w.r.t. to the Source Only) or because rarely ap-
pearing (e.g., ’train”, where we achieve +15.51% w.r.t. to
the Source Only). Overall, on under-represented classes
(last column in Tab. 1) we outperform FSDA by +6.58%,
demonstrating our ability to correctly align the pixels re-
lated to these categories. These results are qualitatively con-
firmed in Fig. 4, where we show that the PixAdv loss pro-
vides a stronger adaptation for small and rare classes, such
as “traffic sign” and “bicycle”; hence, these categories are
predicted quite accurately even in the 1-shot setting.

SYNTHIA to Cityscapes. Results for this scenario are re-
ported in Table 2 and shown in Fig. 4 and confirm what
we showed in the first set of experiments. NAAE, FDA
and Joint Training lag behind all other methods, confirm-
ing that they are not viable solutions to address the cross-
domain few-shot problem. Fine-Tuning and FSDA show
similar accuracies, although it must be noted that the re-
sults from FSDA are only reported for the protocol with 13
classes, where the difficult categories “’pole”, “fence” and
“wall” are excluded from the evaluation. Our method is de-
signed to better handle such categories as well and, on these
classes, it improves its performance w.r.t. the Source Only
model by +22.88%, +13.60% and +15.16% respectively.
Overall, PixDA displays the best mIoU in all (1-5)-shot set-
tings, both with the 13 and 16 classes protocols. It outper-
forms the Source Only model by a minimum of +25.72% in
the 1-shot scenario to a maximum of 31.66% in the 5-shot.
Compared to the current state-of-the-art, i.e., FSDA, PixDA
scores an average accuracy improvement of +1.69% within
the 13 classes protocol and of +1.86% if considering only
the rare classes. The closest method to PixDA, i.e., Fine-
Tuning, achieves good results on these three categories but
it is much less consistent than our solution. In the 16-classes
protocol, PixDA achieves an average boost of +2.56% w.r.t.
the second best competitor, i.e., Fine-Tuning.
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Fine-Tuning 95.2 83.95 85.07 679 84.92 86.66 37.76 4422 57.18 26.66 2097 || 43.31 55.02 3535 11.08 11.2 2949 s5.67 6.19 46.73 62.77 24.66
FSDA [52] 94.07 84.68 8641 61.62 8454 8507 3429 43.65 5597 2556 35.9 37.83 5137 36.03 39.74 222 3451 1791 21.94 | 49.12 62.89 30.19
PixDA 0466 8498 8595 645 85.06 8526 385 4621 6191 30.63 2748 || 3885 5633 4712 3727 2564 37.69 1936 3245 | 5278 641 36.84
NAAE[/]] | 8803 7433 7849 4046 6704 79053 1034 2676 4102 1768 1562 | 2499 1752 1372 1932 289 1523 1127 48 | 3468 4993 1372
Joint Training | 6501 6671 8075 2275 822 7442 1846 1196 5522 805 559 || 21.08 2114 238 2082 028 30.52 10 2838 | 3453 4465 20,63
aehot FDA L] 8635 77.89 8292 2597 7677 7285 3221 3286 5892 2198 19.85 || 2208 3879 3937 1691 2 3175 2931 2566 | 4181 5351 25.73
Fine-Tuning | 95.58 84.05 8617 68.69 8648 88.11 39.5 4603 50.66 1654 18.87 || 44.08 5824 1836 37.68 1861 3744 1675 2137 | 4550 627 31.57
FSDA [52] 9434 8525 8625 64.64 8339 8585 36.13 4517 583 27.35 35.63 || 40.12 5642 29.28 31.82 11.25 3693 31.09 292 50.97 63.85 33.26
PixDA 9426 85.68 86.9 62.22 87.72 88.85 3855 4888 64.24 2657 31.7 44.11 59.78 47.21 4216 1496 43.55 35.6 33.37 | 54.54 65.05 40.09
NAAE [41] 90.96 75.84 794 4583 70.38 80.72 19.64 30.68 38.65 19.36 1844 || 30.59 2099 1392 2321 1.05 19.21 1835 394 36.9 51.81 16.41
Joint Training | 74.04 67.27 815 28.37 7743 7388 30.69 12.6 575 1845 13.44 || 26.2 28.31 25.65 153 3.58 32.01 2591 2793 | 379 48.65 23.11
4 shot FDA [48] 87.22 7894 8348 2842 73.64 6845 3341 3352 6029 28.14 22.16 19.28 31.64 39.01 3221 1.12 29.69 30.74 265 42.52 54.33 26.27
Fine-Tuning | 9549 8442 8672 67.84 8558 89.15 3981 4675 6214 2136 2577 || 4555 5662 9.05 2935 001 3557 3306 538 |484 6400 26.82
FSDA[52] | 9442 8521 8673 6299 856 8883 3536 4511 59.18 2934 38.52 || 4507 53.64 2917 4065 0 3316 3264 2108 | 5088  64.66 31.93
PixDA 9524 8605 8695 6728 8812 8934 40.14 47.95 64.6 2887 305 | 4771 5819 4723 4753 854  40.09 4132 30.03 | 55.04 6591 40.08
NAAE[/]] | 9133 7723 8105 472 7252 8024 2144 3596 4443 1085 2115 || 33.12 2547 2802 2825 1288 1097 1007 956 | 3998 5385 2092
Joint Training | 63.64 71.89 8214 2846 7948 713 2661 7.84 5832 952 655 || 2727 30890 63 581 21 343 2435 2524 | 3484 4598 19.53
5 shot FDA [48] 86.77 7844 83772 33,51 7818 7239 31.65 3333 59.57 20.06 20.89 19.83 28.81 29.82 24.33 445 29.83 29.35 1491 | 41.04 54.41 22.67
Fine-Tuning 9555 85.03 87.29 67.72 87.56 8842 4024 4392 61.65 213 25.84 || 53.86 58.41 4834 47,52 1432 38.1 23.32 27.39 | 5348 64.05 38.91
FSDA [52] 94.61 8557 86.79 65.12 85.68 7856 3731 4794 60.51 2725 33.68 || 48.63 54.6 4527 41.18 1475 36.75 3212 32.1 53.55 63.91 38.18
PixDA 95.03 8633 87.18 6694 884 89.43 4037 4925 64.62 243 26.64 || 5252 60.39 49.01 4531 1991 40.84 34.78 34.36 | 55.56 65.32 42.14
Table 1. GTAS—Cityscapes Experiments. Classes are sorted by decreasing frequency on target domain.
Well-represented Classes Under-represented Classes
= )
&0 L = S
g = 2 g 5 S 2 z 2 3 k 3 P B S 2
Shot ~ Method & 3 s E 3 % £ & 4 § z @ a E & § mloU™®  mIoU'® mIoUWe!  mlouVnder
Source Only | 2701 6423 7484 1672 3842 778 1473 5086 009 366 || 536 1665 698 222 1028 126 |302 2569 3684 713
NAAE[11] | 8577 6989 7257 3631 5754 6745 1491 339 314 178 | 1952 003 1359 356 257 10 | 3573 3027 4433 6.86
Joint Training | 65.88 7171 7684 3222 4692 8358 289 5682 043 1091 || 2332 2513 264 963 1614 1176 | 421 3672 47.42 18.73
1 shot FDA [48] 30.4 52.51 61.98 1598 61.77 75.06 27.51 51.01 0.09 6.43 16.14  25.17 10.76  5.83 18.14 7.83 33.51 29.35 38.27 13.98
SO0 Fine-Tuning | 92.08 8072 8423 551 8121 8654 3377 5588 539 018 || 3324 514 2077 152 278 422 | 5102 4448 5841 2127
FSDA 9274 8206 8495 5654 8202 8455 - 56.12 - - 3295 5227 2559 1741 2386 836 |538 - - 2674
PixDA 9423 82 8405 60.84 $432 8504 3651 5903 385 1679 || 37.69 5646 3137 225 2063 884 | 5592 4901  60.67 29.58
NAAE[11]] | 8734 6817 7573 3424 035 7583 1414 3266 1695 589 | 1739 64 1179 9.8 310 269 | 3755 3282 4745 844
Joint Training | 78.82 7771 8072 3509 72.11 8598 3063 5456 256 17.12 || 2168 27.3 3581 1256 1046 976 | 4635 408 5353 19.6
5ot FDA L8] 2454 6701 6868 1316 6737 7736 2881 507 002 83 1705 2309 1211 366 1625 1466 | 3605 308 40,6l 14.47
° Fine-Tuning 94.2 8229 84.13 6253 8375 8526 3564 58.64 18.54 15.21 3492 5537 3535 21.53 10.91 7.78 55.12 49.12 62.02 27.64
FSDA[52] | 92.68 8225 8508 5544 7987 8309 - 5701 - - 3543 5302 2447 2454 1495 1791 | 5428 - - 2839
PixDA 9424 83.14 8437 61.84 8623 8424 36.79 59.43 19.68 16.58 3694 5741 36.66 229 17.37 10.16 | 56.53 50.5 62.65 30.24
NAAE[11] | 8844 7563 7901 3859 6301 8041 202 397 1359 508 | 2576 1318 681 1794 1061 254 | 4173 3639 5055 37.85
Joint Training | 80.41 7592 7923 3793 7148 8581 3103 5619 152 1123 || 22 3556 2468 1492 1558 169 | 4743 4127 5308 21.61
2o FPAL] 1546 5699 6115 1283 6604 7649 2692 5297 0.3 1102 || 1593 2166 2086 413 1662 922 | 33. 2098 38 14.74
3 Fine-Tuning | 9478 82.17 85  63.97 8425 8804 3699 5899 1184 836 || 37.69 57.08 707 2822 228 6 5508 4832 6144 2648
FSDA[52] | 9396 8384 8583 6097 8427 8827 - 5944 - - 4046 5859 116 2795 2858 1538 | 5686 - - 3043
PixDA 9436 8405 8544 6262 8574 88.18 37.69 6147 1372 1561 || 3891 6129 2367 3239 2933 1227 | 5844 5167  62.89 32.98
NAAE[1]] | 9077 7476 7992 4775 6757 8151 203 4338 1443 1085 || 2874 227 1375 1755 1976 149 | 4536 3971 _ 53.13 17.33
Joint Training | 67.44 7579 7812 3557 48.12 8631 3102 5591 115 1127 || 2759 3053 2403 1724 1701 945 | 4408 3853  49.07 2098
aehor AL 2342 6288 6954 1355 6726 8023 3029 5321 034 127 || 1587 2601 2248 449 1806 13.16 | 36.16 3209  41.34 16.68
Fine-Tuning | 953 8353 8582 6652 8445 89.25 3757 63.09 165 2058 || 4321 5683 971 2745 311 24 | 5682 5083 6426 28.45
FSDA[52] | 9436 8402 8594 6268 8312 87.72 - 59.16 - - 4201 58 1058 29.69 3583 2002 | 5793 - - 32.69
PixDA 95.37 84.52 8558 66.63 86.19 8842 38.09 62.7 18.11 21.57 4526 58.05 2598 3324 3467 691 59.5 53.21 64.72 34.02
NAAE[11]] | 0133 7586 8087 483 7504 8260 2032 4526 1509 1028 || 3232 3080 196 2227 1001 1024 | 4875 4252 5450 241
Joint Training | 65.23 7573 79.14 2752 6492 8547 3181 5671 208 1345 || 2286 3412 2993 1465 1998 1544 | 4551 3994 5021 2283
Sehot FDA 5] 1855 6206 6454 132 719 7983 3102 5061 0.9 117 || 2121 1618 2039 575 1737 563 | 3439 3062  40.36 14.42
Fine-Tuning | 9502 83.66 8592 653 863 8771 3808 6224 1358 195 | 4995 6026 4269 2964 2503 1598 | 60.74 538 6373 3726
FSDA[52] | 9441 8447 8605 6331 8632 8819 - 6134 - - 50.87 5856 355 3091 28.17 2417 | 6094 - - 38.03
PixDA 955 8463 8599 6673 87.24 8805 39.03 6346 1311 2325 || 50.86 603 3283 3377 3331 2157 | 6186 5498  64.7 38.77
Table 2. SYNTHIA —Cityscapes Experiments. Classes are sorted by decreasing frequency on target domain.
4.4. Ablation Study discriminator yields a substantial improvement (4+11.14%)

Contribution of terms in the PixAdv loss. In Tab. 3 we
provide an in-depth ablation study to prove the effectiveness
of making domain alignment at a pixel-level. The results
are computed while both sample selection and knowledge
distillation and fine-tuning are turned off. The table shows
that aligning source and target domains with an image-wise

over joint-training (no adversarial loss). However, since it
discriminates the images globally, it tends to align well-
represented classes while ignoring the others. In compari-
son, the pixel-level adversarial loss, which aligns each pixel
separately, further enhances performance by +2.17%. Re-
gardless of the change, merely aligning the pixels does not
prevent negative transfer and overfitting to few-shot images.
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Source Only

Fine-Tuning

PixDA (Ours) Ground Truth

Figure 4. Qualitative results for the GTA—)Cltyscapes and SYNTHIA—Cityscapes scenarios. The boxes on the images highlight some
examples of underrepresented classes. Qualitative comparison to the other methods is left to the Supplementary Material.

Pixel-wise
Adv. Loss B S mloU
31.29
v 42.43
44.60
v 46.06
v 47.70
v v 48.29

Table 3. Ablation study about the choice of the adversarial loss on
the GTA—Cityscapes 1-shot scenario.

Image-wise
Adv. Loss

ANANA NN

Indeed, re-weighting the pixels based on their frequency
(B term) yields a further improvement of +1.46%. Fur-
thermore, decreasing the weight of well-represented pixels
(S term) to prevent negative transfer is crucial, providing a
+1.64% w.r.t the pixel-wise adversarial loss.

Finally, the B and S terms complement each other and
boost efficiency even further when used together. The re-
sulting loss (PixAdv) outperforms the image-wise adversar-
ial loss by +5.86% and the pixel-wise adversarial loss by
+3.69%, suggesting that weighting each pixel contribution
is advantageous to prevent negative transfer and overfitting.

Contribution of each component in PixDA. In this section
we assess to what extent each component in our framework
contributes to the final performance. We move bottom-up
examining six different cases: (a) Source Only model; (b)
Joint Training; (c) training with the PixAdv loss; (d) with
the PixAdv Loss and our Sample Selection mechanism; (e)
the fine-tuning step and finally, (f) the knowledge distilla-
tion that completes the PixDA framework.

From the results in Tab. 4, it is evident that each
component brings an improvement to the overall frame-
work. In particular, the addition of the PixAdv Loss im-
proves the Joint Training by +17%, indicating that domain
alignment is necessary to obtain good performance. The
Sample Selection provides an additional improvement of
+1.45%, indicating that removing samples far from the tar-
get distribution is beneficial. Finally, while naively fine-

Method mloU
Source Only 30.72
Joint Training 31.29
PixAdv 48.29
+ Sample Selection 49.74
+ Fine-Tuning 50.05
+ KD 51.16

Table 4. Ablation study showing the effectiveness of each PixDA
component on the GTA—Cityscapes 1-shot scenario.

tuning the network on the target brings a little improve-
ment (+0.31%), using knowledge distillation brings that
difference to +1.42%. We remark that only adding the
PixAdv Loss already surpasses the state-of-the-art. As a
follow-up test, we replaced the Focal Loss with a standard
Cross Entropy, yielding a lower but still state-of-the-art re-
sult (48.89%) and confirming the effectiveness of our loss.
Additional studies to asses the impact of hyperparameters in
our framework are included in the supplementary material
due to lack of space.

5. Conclusion

In this work we address the task of Cross-Domain Few-
Shot Semantic Segmentation. We present a pixel-by-pixel
adversarial training strategy that uses a new pixel-wise loss
and discriminator to better align source and target domain
and to reduce the negative transfer problem. We also assist
the adversarial training with a sample selection procedure
that handles the imbalance between source and target do-
main. Our framework achieves the state-of-the-art perfor-
mance in all the 1-to-5 shot settings from the two standard
synthetic-to-real benchmarks.

Future work will analyze a modified version of the sam-
ple selection strategy that selects only the top K confident
source samples rather than increasing the threshold, as well
as the application of the PixAdv Loss to other settings, such
as Unsupervised DA, which has a preliminary assessment
in the Supplementary Material, and Multi Source DA.
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