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Abstract

In this paper we consider the task of semantic segmen-
tation in autonomous driving applications. Specifically, we
consider the cross-domain few-shot setting where training
can use only few real-world annotated images and many
annotated synthetic images. In this context, aligning the do-
mains is made more challenging by the pixel-wise class im-
balance that is intrinsic in the segmentation and that leads
to ignoring the underrepresented classes and overfitting the
well represented ones. We address this problem with a novel
framework called Pixel-By-Pixel Cross-Domain Alignment
(PixDA). We propose a novel pixel-by-pixel domain adver-
sarial loss following three criteria: (i) align the source and
the target domain for each pixel, (ii) avoid negative trans-
fer on the correctly represented pixels, and (iii) regularize
the training of infrequent classes to avoid overfitting. The
pixel-wise adversarial training is assisted by a novel sample
selection procedure, that handles the imbalance between
source and target data, and a knowledge distillation strat-
egy, that avoids overfitting towards the few target images.
We demonstrate on standard synthetic-to-real benchmarks
that PixDA outperforms previous state-of-the-art methods
in (1-5)-shot settings.1

1. Introduction
Semantic segmentation is a foundational technology in

autonomous driving applications, because it provides the
vehicle with information about its surroundings that is crit-
ical to safely and reliably navigate the environment. Great
strides have been made to improve this technology in the au-
tonomous driving scenario, using supervised deep learning
methods trained using great quantities of data with pixel-
wise annotations.

However, data collection and annotation is time consum-
ing, expensive and hard-to-scale. A successful strategy to
mitigate this issue is to rely on simulators to generate mas-
sive amounts of synthetic data [35, 37, 1]. This solution

1Code at: https://github.com/taveraantonio/PixDA.
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Figure 1. Comparison between the common image-wise adver-
sarial training (bottom) and PixDA that analyzes each pixel indi-
vidually (top). By prioritizing the pixel alignment according to the
imbalance of the classes and the network classification confidence,
PixDA achieves better accuracy, particularly for underrepresented
semantic classes, e.g. traffic sign, rider and bicycle.

has the benefit that synthetic data is easy and cheap to col-
lect, and the semantic annotations generated automatically
by the graphical engines are perfect. The downside is that
there is a significant shift between the synthetic domain of
the training data and the real domain of the application.
There are unsupervised and semi-supervised solutions that
address this domain shift [43, 45], however they still need
large amounts of images from the real domain thus falling
back into the data collection problem. A more viable solu-
tion is to consider a few-shot setting where only a few an-
notated images from the real target are needed, rather than
many target images without annotation.

The few-shot learning problem has been studied in sev-
eral visual learning scenarios (see Sec. 2 for a review of
previous works). One of its main challenges is dealing with
the intrinsic imbalance between source and target data [41].
When the few-shot learning is considered within the seman-
tic segmentation scenario, this issue is exacerbated by the
intrinsic pixel-wise imbalance among segmented classes:
some classes are both extremely frequent and spatially ex-
tended (e.g., sky, road), while others may appear seldom
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and be small in size (e.g., traffic sign). This implies that
there can be a great disproportion in the number of pixels-
per-class available in the target domain, with some classes
that may be scarcely represented or even missing. This im-
balance is more pronounced than in other problem settings,
causing image-wise adversarial training methods to align
large and well-represented classes, resulting in less accu-
rate mapping of those that are under-represented in the tar-
get domain (see Fig. 1).

We argue that to address successfully cross-domain few
shot learning in semantic segmentation, it is imperative
to embed in the solution the intrinsic pixel-wise connota-
tion of spatially segmenting classes. To do this, we intro-
duce the Pixel-By-Pixel Cross-Domain Alignment frame-
work (PixDA), that uses a novel pixel-wise discriminator
and modulates the adversarial loss for each pixel to: (i)
align pixel-wise source and target domains; (ii) avoid to
further align correctly represented pixels and reduce the
negative transfer; (iii) regularize the training of underrep-
resented classes to avoid overfitting. The pixel-wise adver-
sarial training is assisted by a sample selection procedure
that handles the imbalance between source and target data
by progressively eliminating samples from the source do-
main. The two mechanisms coexist within an end-to-end
training process. Summarizing, the main contributions of
this paper are:

• we propose the first algorithm for cross-domain few
shot semantic segmentation able to deal with classes
scarcely represented in the training data by spatially
aligning the domains pixel by pixel;

• we define a new pixel-wise adversarial loss that aligns
source and target domains locally while reducing
negative transfer and avoiding overfitting the under-
represented classes;

• we evaluate our architecture on the two standard
synthetic-to-real scenarios, i.e., GTA5→Cityscapes
and SYNTHIA→Cityscapes, where it sets new state-
of-the-art scores. Additionally, an in-depth ablation
study analyzes the influence of all the features intro-
duced by our method.

2. Related Works
Semantic Segmentation. Over the last few years semantic
segmentation has achieved remarkable results thanks to the
widespread use of deep learning [27, 7, 55, 24, 54]. The
current state-of-the-art methods differentiate themselves in
the strategy applied to condition the semantic information
on the global context. Methods like RefineNet [24], PSP-
Net [55], ExFuse [54] or DeepLab [5, 6, 7] are designed to
capture objects as well as image context at multiple scales.
Other works model the hierarchical or the spatial dependen-
cies to boost the pixel-level classifier [6, 14]. One problem

with all these methods is that they require a large amount of
densely annotated images, which are expensive and time-
consuming to obtain. This issue has spurred the creation
of synthetic datasets [1, 37, 35] that offer high quality im-
ages with automatically generated semantic labels. Despite
the clear advantages in terms of data availability and quality
of the annotations, models trained using synthetic datasets
face a drastic domain gap when tested with real images.

Domain Adaptation. Domain Adaptation (DA) refers to
the study of solutions to bridge the domain gap that is
present when the data used to develop the model (source)
and the data the model is applied to (target) come from dif-
ferent distributions. Some of these solutions seek to mini-
mize a measure of the discrepancy across domains, like the
MMD in [13, 28]. Other methods exploit generative net-
works and image-to-image translation algorithms to gen-
erate target images conditioned on the source domain or
vice-versa [18, 46, 48]. Strategies like [23, 20, 48] com-
bine image-to-image translation with self-learning, using
the predictions on a previously pre-trained model as pseudo
labels to fine-tune and reinforce the model itself. Finally,
the most popular approach for domain adaptation in seman-
tic segmentation is adversarial training [44, 30, 4]. In the
Unsupervised DA setting, Luo et al. [30] introduces the
negative transfer problem caused by the common global-
level adversarial alignment strategy, addressing it with a co-
training strategy and an alignment performed at a category-
level. Conversely, we focus on Few-Shot DA for the au-
tonomous driving scenario and propose a novel training
strategy that strengthens domain alignment at pixel level
while addressing both negative transfer and overfitting on
the target domain.

Few Shot. Few-shot learning deals with novel classes
given only few images [38, 34, 9, 51, 40, 21, 12, 15, 42].
The problem has been extensively studied in the context of
image-classification [40, 21, 12, 15, 42] and, only recently,
in the context of semantic segmentation [38, 34, 9, 51]. Dif-
ferently from few-shot learning, the purpose of few-shot in
domain adaptation is to transfer the knowledge from a well-
annotated source dataset to a target one containing only few
annotated images [9, 29, 32, 52]. FSDA [52] tackles this
problem in semantic segmentation with a two-stage method:
the first stage implements a static label filtering that guides
the learning towards the pixels that are difficult to classify;
the second stage performs domain adaptation at image-level
via two image-wise domain discriminators and using all the
source images, which forces a negative transfer to the target
realm. Conversely, our work achieves domain alignment
at pixel-level granularity using a new pixel-wise discrimi-
nator and a new loss function exploiting the semantic and
visual information for each individual pixel. Moreover, we
use a novel sample selection strategy to limit the number of
source images used and avoid a negative transfer.
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Knowledge Distillation. Knowledge distillation (KD) [17]
is applied to transfer knowledge from a cumbersome model
to a lighter model with the aim of improving the perfor-
mance of the latter by forcing the match between the pre-
dictions provided by the two networks. It has been applied
first to image classification [2, 36, 50] and object detection
problems [22], and only in recent years it has been deployed
to the semantic segmentation [47, 26, 39] and the incremen-
tal learning tasks [3, 10, 31]. With PixDA we use KD as a
regularization term [49] to avoid catastrophic forgetting of
the acquired knowledge and to avoid overfitting towards the
few number of target images provided by the considered
few-shot setting.

3. Method

3.1. Problem Setting

We consider the semantic segmentation task in the cross-
domain few-shot setting that was formulated by Zhang et al.
in [52]. The problem setting defines K-shot as a task pro-
viding K real images randomly selected for each of the N
cities of the target dataset. For example, in the 1-shot set-
ting with Cityscapes as target dataset, the whole target data
is made of 18 annotated frames because Cityscapes is com-
posed by 18 different cities. This problem setting is tailored
for the autonomous driving application, where a single self-
driving solution is usually deployed to a finite number of
designated cities. Although not all the datasets available in
the literature provide meta information regarding the divi-
sion in different cities, this formulation from [52] gives a
precise and well established experimental protocol.

To tackle the problem, let us denote as X the set of
RGB images composed by the set of pixels I, and as Y
the set of semantic masks associating to each pixel i ∈ I
a class from the set of semantic classes C. At training time
we have available two sets of semantically annotated im-
ages: Xs = {(xs, ys)} which is a collection of Ns im-
ages, with xs ∈ X from a synthetic domain (source), and
Xt = {(xt, yt)} which contains a small number of sam-
ples xt ∈ X from the real-world domain (target). Similarly
to [52], the evaluations discussed in Sec. 4 are carried out
in the (1-5)-shot setting. In this notation, ys, yt ∈ Y de-
note the annotation masks associated with the source and
target images, respectively. In this problem the goal is to
use the datasets Xs and Xt to learn a function f , parame-
terized by θ, from the input space X to a pixel-wise proba-
bility, i.e., fθ : X → R|I|×|Y|, and evaluating it on unseen
images from the target domain. In the following, we indi-
cate the model output in a pixel i for the class c as pci , i.e.,
pci (x) = fθ(x)[i, c].

Without domain adaptation, the parameters θ are opti-

mized to minimize the segmentation loss Lseg:

Lseg(x, y) = − 1

|I|
∑
i∈I

(α(1− pyi

i (x))γ log(pyi

i (x)) (1)

where Lseg corresponds to a focal loss [25] and α(1 −
pyi

i (x))γ is its modulating factor.

3.2. Pixel-by-Pixel Adversarial Training

Many approaches [44, 30, 4] in domain adaptation deal
with the domain shift problem by aligning the features ex-
tracted from the source and target domains in an adversarial
manner. The common solution, first introduced by [19], is
to play a min-max game between the segmentation network
and an image-wise domain discriminator, in which the dis-
criminator predicts the domain a feature belongs to, and the
segmentation network tries to deceive it by making source
and target features indistinguishable.

Since the domains are analyzed and aligned from a
global perspective, the discriminator may disregard portions
of the scene that expose few pixels of the small classes,
focusing mainly on the well-represented ones. As a re-
sult, adversarial training would mostly align big and well-
represented classes while inducing a negative transfer [30]
on the others, which leads to poor adaptation. This problem
is amplified in the few shot scenario since there is a dis-
crepancy between the number of images in the source and
target domains, and some target semantic classes may be
underrepresented or even absent.

The PixAdv Loss. To address the imbalance among classes
and reduce the negative transfer, we propose a novel adver-
sarial loss that analyzes each pixel individually rather than
operating on a global level (see Fig. 2). Our goal is to pri-
oritize and improve pixel alignment using three criteria: (i)
align the source and target domain, (ii) avoid to further align
correctly represented pixel, limiting negative transfer, and
(iii) regularize the training of infrequent classes, forcing the
domain alignment to avoid overfitting.

To accomplish this, we use a pixel-wise discriminator
whose goal is to discern, for each pixel, what domain it be-
longs to. The domain discriminator is a computationally
less expensive version of the common Fully Convolutional
discriminator found in DCGANs [33] (see Sec. 4.2 for more
details). The discriminator D is trained to classify whether
the features are coming from the source or the target do-
main. Formally, we minimize the following loss:

LD(xs, xt) = −
∑
i∈I

log Di(fθ(x
s))+log(1−Di(fθ(x

t))),

(2)
where D is the discriminator, and Di(x) indicates the out-
put probability for the pixel i to belong to source domain.

However, using a pixel-wise discriminator without con-
sidering the class imbalance problem does not prevent a

1628



6HJPHQWDWLRQ�
0RGHO

7DUJHW�,PDJHV

6RXUFH�,PDJHV

3L[HO�ZLVH�'RPDLQ�'LVFULPLQDWRU�

)RFDO�/RVV
3L[HO�ZLVH�
$GYHUVDULDO�/RVV

3L[HO�ZLVH�'RPDLQ�6KLIW�0DS��6�

3L[HO�ZLVH�&ODVVHV�%DODQFH�0DS��%�

3L[HO�E\�3L[HO�$GYHUVDULDO�/RVV���
�3L[$GY�/RVV���

$GYHUVDULDO�7UDLQLQJ�

7DUJHW�,PDJHV

��� ��� ��� ��� ������

Figure 2. Illustration of the pixel-by-pixel adversarial learning of PixDA. A new pixel-wise discriminator computes the adversarial loss
whose contribution at each pixel is weighted by two terms: S, that considers the ability of the model to correctly represent the pixel, and
B, that weights each pixel based on the frequency of its semantic class. Yellow/blue lines refer to the source/target domain, respectively.

negative transfer effect. Hence, we introduce a novel ad-
versarial loss function (PixAdv Loss), denoted as LPixAdv,
designed to align each pixel according to its importance. In
particular, to determine the strength with which each pixel is
aligned, the LPixAdv modulates the adversarial loss accord-
ing to a combination of two different terms, each with a
specific purpose:

LPixAdv(x
t, yt) = − 1

|I|
∑
i∈I

Si(x
t, yt)Bi(y

t) logDi(fθ(x
t)).

(3)
The term S in eq. (3) is related to the network classifica-

tion confidence and it is considered as a measure, for each
pixel, of the ability of the network to represent it:

Si(x
t, yt) = −yi log pyi

i (xt), (4)

where pyi

i (x) denote the probability for class yi at pixel i.
High values of Si indicate that the network misrepresents
the pixel i, whereas a small value indicates that the network
is able to correctly represent and classify it.

The term B in eq. (3) represents the imbalance of the
pixels and aims to re-balance the classes contribution based
on their frequency in the target dataset:

Bi(y
t) = 1− 1

|I|
∑
j∈I

1yj=yi , (5)

where 1 is the indicator function, being one when yj and yi
are equal, zero otherwise. Values of Bi which tend to 1 re-
fer to a misrepresented class while values tending to 0 refer
to a well-represented class. The term B is crucial since the
target domain exposes many pixels of some classes (e.g.,

road, sidewalk) but very few of others (e.g., train, person).
Through B we are able to balance the classes, resulting in
a more heterogeneous and effective adaptation. We would
like to point out that the terms S and B aren’t used in back-
propagation, but rather as a pixel-by-pixel map to modulate
the adversarial loss.

Summing up, the overall segmentation network training
loss function is expressed as follows:

1

|Xk
s |

∑
xs∈Xk

s

Lseg(x
s, ys)+

1

|Xt|
∑

xt∈Xt

Lseg(x
t, yt) + λLPixAdv(x

t, yt),

(6)

where LPixAdv is the proposed adversarial pixel-wise
PixAdv loss and Xk

s is a subset of the source dataset Xs

selected with the sample selection procedure.

3.3. Sample Selection

Due to the extent and variety of the synthetic source
dataset there will be source samples far away and detached
from the target domain (e.g., different perspective or illumi-
nation condition). Forcing the alignment to these samples
can result in negative transfer in the target dataset, lowering
the network’s overall performance.

With this in mind, we propose a sample selection proce-
dure that, working side by side with the PixAdv loss, en-
hances the use of the source data by identifying and select-
ing source samples that are better aligned with the target
semantic distribution. Without affecting the segmentation
model and not taking part in the adversarial learning pro-
cess, we simultaneously train a global image-wise domain
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Figure 3. Illustration of the sample selection mechanism (top-left).
At each epoch k the source dataset is subsampled selecting images
that would carry worthy information to the target domain. For ex-
ample, samples with different perspectives of lighting conditions
w.r.t. the target data (bottom-right) are discarded.

discriminator Dg with the following loss:

LDg
(xs, xt) = − log Dg(fθ(x

s))− log(1−Dg(fθ(x
t))).

(7)
The main reason for using such a discriminator is to dis-

tinguish source from target and to capture both semantic
and visual domain information. Formally, at each epoch k
we exploit Dg to predict the likelihood that a source im-
age carries worthy information to the target domain and use
this prediction to select a subset Xk

s of source images to be
retained from the previous epoch, i.e., |Xk

s | ≤ |Xk−1
s |. Fol-

lowing this intuition, an image xs ∈ Xk−1
s is added to Xk

s if
Dg(x

s) < δ, where δ is a predefined threshold. After each
epoch, we raise the threshold consequently to the increasing
capacity of the image-wise discriminator to correctly clas-
sify the target data as training progresses, selecting an ever
decreasing number of relevant samples (see Fig. 3 for a bet-
ter understanding).

3.4. Fine-Tuning and Knowledge Distillation

Once the adversarial training is completed and PixAdv
loss has aligned the representation between pixels of the
source and target domains, we can further exploit the avail-
able semantic information on the target data to enhance the
network representation.

However, naı̈vely fine-tuning on the target data ignores
the domain alignment obtained previously and may lead to
overfitting the few target images. To avoid this problem we
use a Knowledge Distillation (KD) strategy. KD [17] has
been designed to regularize the training of a student network
using the output of a teacher network. In our framework the
student fθS corresponds to the segmentation model which
is fine-tuned, while the teacher, denoted as fθT , is a frozen
copy of the same network after the adversarial learning pro-

cess. Formally, we optimize θS with the following:

1

|Xt|
∑

xt∈Xt

Lseg(x
t, yt) + λkdLkd(x

t, fθT , fθS ), (8)

where Lseg is the segmentation loss from (1), λkd is a
weighting parameter. Lkd is the distillation loss expressed
as follow:

Lkd = −σ(
fθT (x

t)

τ
) log σ(fθS (x

t)), (9)

where σ indicates the softmax function, and τ is a tempera-
ture, as in [17].

4. Experiments
4.1. Datasets and metric

We assess the performance of our method on the two
standard synthetic-to-real benchmarks used in the domain
adaptation literature: GTA5 [35] to Cityscapes [8], and
SYNTHIA [37] to Cityscapes [8].

GTA5. It consists of 24966 images synthesized from the
homonymous video game. The original images size is
1914× 1052. For training and evaluation we used the stan-
dard 19 semantic classes in common with Cityscapes.

SYNTHIA. We use the ”RAND-CITYSCAPES” subset
that consists of 9400 images synthesized from a virtual
world simulator. The original image resolution is 1280 ×
760. The 19 classes in common with Cityscapes are consid-
ered for training while the evaluation, following the stan-
dard protocol used in [48] and in [44], is performed on a
subset of 13 and 16 classes.

Cityscapes. It is a real-world dataset collected across sev-
eral German cities. It consists of 2975 images but for the
experiments we use only a subset according to the standard
K-shot selection (K images from each of the M city). We
use the whole validation set made of 500 images to test our
network. The original resolution is 2048× 1024.

We assess the efficiency of PixDA in these two
domain adaptation scenarios: GTA5→Cityscapes and
SYNTHIA→Cityscapes. In all tests we use the standard In-
tersection over Union metric [11] to measure performance.

4.2. Implementation and training details

Architecture. The segmentation module of our method is
DeepLab V2 [5] with ResNet101 [16] pre-trained on Ima-
geNet. The pixel-wise discriminator we built is a Fully Con-
volutional discriminator which has 2 convolutional layers
with kernel 3× 3, stride 1 and padding 1, followed by a last
convolutional layer with kernel 1 × 1, stride 1 and padding
0. The three layers channel numbers are {64, 128, 1}. The
image-wise discriminator is a common Fully Convolutional

1630



discriminator with 5 convolutional layers with kernel 4× 4,
channel numbers {64, 128, 256, 512, 1} and stride 2. For
both discriminators, each layer except the last one is fol-
lowed by a Leaky ReLU with a negative slope of 0.2.

Training. We implement our method in PyTorch and de-
ploy it on two NVIDIA Tesla V100 GPUs with 16GB each.
The segmentation model is trained using batch size 4 and
SGD with initial learning rate 2.5·10−4 and adjusted at each
iteration with a ”poly” learning rate decay with a power of
0.9, momentum 0.9 and weight decay to 0.0005. The dis-
criminators are trained using Adam optimizer, with learning
rate 10−5 and the same decay schedule of the segmentation
model. The momentum for Adam is set to {0.9, 0.99}. To
reduce the low-level visual domain shift (e.g., color, bright-
ness, etc.) between the source and target domains (both in
the adversarial training and in the sample selection phases)
we apply to each source image the FFT style translation al-
gorithm from FDA [48], which is parameterless and com-
putationally light. PixDA training starts with a pre-trained
version of the segmentation model on source data and con-
tinues until the sample selection module selects relevant
source images for the next epoch. The last fine-tuning and
knowledge distillation phase lasts 200 iteration. We set λ
equal to 0.1 for GTA and 1 for Synthia. The sample selec-
tion threshold δ is set to 0.4 and doubled at every epoch.
Finally, λkd = 0.5 and τ = 0.5. Test is performed without
any post-processing.

Baselines. Our method is compared to several baselines.
The first baseline that we consider is the Source Only
model, i.e., the network trained only with the source dataset.
The Joint Training (JT) baseline, that trains for 4 epochs the
model with a concatenation of the source and target images.
The Fine-Tuning (FT) baseline, that fine-tunes for 30k it-
erations the Source Only model on the target domain. Our
method, JT and FT exploit the Focal Loss to compute seg-
mentation accuracy. We then report results for three state-
of-the-art methods: FDA [48], NAAE [41], and FSDA [52].
FDA [48] and ”Not All Areas are Equal” (NAAE) [41] are
implemented using the same hyper-parameters proposed in
their original papers, replacing only the target train set with
the K-shot selection. For FSDA [52] we follow the same
results and implementation details reported by the authors.
DeepLabV2 with ResNet101 is used as the backbone for
all the baselines with the only exception of NAAE that, as
provided by its authors, uses a FCN [27] with VGG16 [53].

4.3. Results
GTA5 to Cityscapes. The results for this scenario are re-
ported in Table 1. At a first glance, we observe that NAAE
and Joint Training lead to underwhelming results, with a
mIoU below 40% in all tests. FDA is slightly better, but
its accuracy does not improve when increasing the number
of target images from 1 to 5. Fine-Tuning the model pre-

trained on the source domain leads to comparable accuracy
to the current state-of-the-art, FSDA. Finally, our PixDA is
the best performer in all (1-5)-shot tests, outperforming the
Source Only model by a minimum of +20.44% in the 1-
shot setting to a maximum of +24.84% in the 5-shot.

Compared to the next best competitor, i.e., FSDA,
PixDA marks an average boost of +3.63% to the mIoU.
We also note that in the 1-shot setting, the accuracy of
FSDA in few classes (traffic light, motorcycle) drops below
the Source Only baseline, which is indicative of a negative
transfer. This result confirms that PixDA uses more effec-
tively the information from the domain images depending
on the content in the target images.

Finally, we observe that our method not only works well
with predominant classes such as ”road”, ”sky” and ”build-
ing”, but on average it improves the recognition of semantic
categories that are under-represented, either because con-
taining few pixels (e.g., ”traffic light”, where we achieve
a +9.39% w.r.t. to the Source Only) or because rarely ap-
pearing (e.g., ”train”, where we achieve +15.51% w.r.t. to
the Source Only). Overall, on under-represented classes
(last column in Tab. 1) we outperform FSDA by +6.58%,
demonstrating our ability to correctly align the pixels re-
lated to these categories. These results are qualitatively con-
firmed in Fig. 4, where we show that the PixAdv loss pro-
vides a stronger adaptation for small and rare classes, such
as ”traffic sign” and ”bicycle”; hence, these categories are
predicted quite accurately even in the 1-shot setting.

SYNTHIA to Cityscapes. Results for this scenario are re-
ported in Table 2 and shown in Fig. 4 and confirm what
we showed in the first set of experiments. NAAE, FDA
and Joint Training lag behind all other methods, confirm-
ing that they are not viable solutions to address the cross-
domain few-shot problem. Fine-Tuning and FSDA show
similar accuracies, although it must be noted that the re-
sults from FSDA are only reported for the protocol with 13
classes, where the difficult categories ”pole”, ”fence” and
”wall” are excluded from the evaluation. Our method is de-
signed to better handle such categories as well and, on these
classes, it improves its performance w.r.t. the Source Only
model by +22.88%, +13.60% and +15.16% respectively.
Overall, PixDA displays the best mIoU in all (1-5)-shot set-
tings, both with the 13 and 16 classes protocols. It outper-
forms the Source Only model by a minimum of +25.72% in
the 1-shot scenario to a maximum of 31.66% in the 5-shot.
Compared to the current state-of-the-art, i.e., FSDA, PixDA
scores an average accuracy improvement of +1.69% within
the 13 classes protocol and of +1.86% if considering only
the rare classes. The closest method to PixDA, i.e., Fine-
Tuning, achieves good results on these three categories but
it is much less consistent than our solution. In the 16-classes
protocol, PixDA achieves an average boost of +2.56% w.r.t.
the second best competitor, i.e., Fine-Tuning.
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Joint Training 66.67 63.67 76.89 17.99 74.92 65.26 17.46 9.44 52.6 5.02 2.92 20.32 26.09 17.33 7.62 0 29.91 13.79 26.66 31.29 41.17 17.72
FDA [48] 86.6 79.01 83.35 21.26 79.7 66.54 33.29 33.1 58.84 29.07 23.19 24.57 37.5 36.31 14.73 4.8 33.46 28.56 24.54 42.02 54 25.56
Fine-Tuning 93.44 82.44 85.75 60.53 54.22 86.68 37.24 30.77 57.4 10.64 17.1 41.89 51.77 32.76 34.29 0 31.65 8.21 13.49 45.28 56.02 26.76
FSDA [52] 94.49 82.76 84.71 62.67 84.87 83.55 32.59 39.81 54.87 19.23 25.03 36.9 48.56 29.39 31.85 0 28.83 25.19 16.8 46.43 60.42 27.19
PixDA 93.33 84.12 85.85 59.19 85.76 86.18 37.15 45.12 63.08 28.05 28.33 32.05 55.02 50.69 35 8.5 38.44 26.79 29.37 51.16 63.29 34.48

2 shot

NAAE [41] 88.75 70.84 75.9 40.12 62.69 76.46 16.24 25.67 31.87 18.83 12.98 17.65 10.86 24.37 16.23 1.99 11.95 1.12 4.04 32.03 47.3 11.03
Joint Training 48.12 50.28 81.04 20 77.78 77.1 21.02 9.13 56.15 13.4 11.49 17.11 28.32 8.84 29.07 1.82 30.59 26.84 29.98 33.58 42.32 21.57
FDA [48] 82.98 74.62 79.32 31.18 64.47 72.2 27.98 34.66 59.13 26.55 15.97 21.75 40.72 38.8 28.86 0.69 28.33 28.88 28.21 41.33 51.73 27.03
Fine-Tuning 95.2 83.95 85.07 67.9 84.92 86.66 37.76 44.22 57.18 26.66 20.97 43.31 55.02 35.35 11.08 11.2 29.49 5.67 6.19 46.73 62.77 24.66
FSDA [52] 94.07 84.68 86.41 61.62 84.54 85.07 34.29 43.65 55.97 25.56 35.9 37.83 51.37 36.03 39.74 2.22 34.51 17.91 21.94 49.12 62.89 30.19
PixDA 94.66 84.98 85.95 64.5 85.06 85.26 38.5 46.21 61.91 30.63 27.48 38.85 56.33 47.12 37.27 25.64 37.69 19.36 32.45 52.78 64.1 36.84

3 shot

NAAE [41] 88.93 74.33 78.49 40.46 67.04 79.53 19.34 26.76 41.02 17.68 15.62 24.99 17.52 13.72 19.32 2.89 15.23 11.27 4.8 34.68 49.93 13.72
Joint Training 65.01 66.71 80.75 22.75 82.2 74.42 18.46 11.96 55.22 8.05 5.59 21.08 21.14 23.8 29.82 0.28 30.52 10 28.38 34.53 44.65 20.63
FDA [48] 86.35 77.89 82.92 25.97 76.77 72.85 32.21 32.86 58.92 21.98 19.85 22.08 38.79 39.37 16.91 2 31.75 29.31 25.66 41.81 53.51 25.73
Fine-Tuning 95.58 84.05 86.17 68.69 86.48 88.11 39.5 46.03 59.66 16.54 18.87 44.08 58.24 18.36 37.68 18.61 37.44 16.75 21.37 45.59 62.7 31.57
FSDA [52] 94.34 85.25 86.25 64.64 83.39 85.85 36.13 45.17 58.3 27.35 35.63 40.12 56.42 29.28 31.82 11.25 36.93 31.09 29.2 50.97 63.85 33.26
PixDA 94.26 85.68 86.9 62.22 87.72 88.85 38.55 48.88 64.24 26.57 31.7 44.11 59.78 47.21 42.16 14.96 43.55 35.6 33.37 54.54 65.05 40.09

4 shot

NAAE [41] 90.96 75.84 79.4 45.83 70.38 80.72 19.64 30.68 38.65 19.36 18.44 30.59 20.99 13.92 23.21 1.05 19.21 18.35 3.94 36.9 51.81 16.41
Joint Training 74.04 67.27 81.5 28.37 77.43 73.88 30.69 12.6 57.5 18.45 13.44 26.2 28.31 25.65 15.3 3.58 32.01 25.91 27.93 37.9 48.65 23.11
FDA [48] 87.22 78.94 83.48 28.42 73.64 68.45 33.41 33.52 60.29 28.14 22.16 19.28 31.64 39.01 32.21 1.12 29.69 30.74 26.5 42.52 54.33 26.27
Fine-Tuning 95.49 84.42 86.72 67.84 85.58 89.15 39.81 46.75 62.14 21.36 25.77 45.55 56.62 9.05 29.35 0.01 35.57 33.06 5.38 48.4 64.09 26.82
FSDA [52] 94.42 85.21 86.73 62.99 85.6 88.83 35.36 45.11 59.18 29.34 38.52 45.07 53.64 29.17 40.65 0 33.16 32.64 21.08 50.88 64.66 31.93
PixDA 95.24 86.05 86.95 67.28 88.12 89.34 40.14 47.95 64.6 28.87 30.5 47.71 58.19 47.23 47.53 8.54 40.09 41.32 30.03 55.04 65.91 40.08

5 shot

NAAE [41] 91.33 77.23 81.05 47.2 72.52 80.24 21.44 35.96 44.43 19.85 21.15 33.12 25.47 28.02 28.25 12.88 19.97 10.07 9.56 39.98 53.85 20.92
Joint Training 63.64 71.89 82.14 28.46 79.48 71.3 26.61 7.84 58.32 9.52 6.55 27.27 30.89 6.3 5.81 2.1 34.3 24.35 25.24 34.84 45.98 19.53
FDA [48] 86.77 78.44 83.72 33.51 78.18 72.39 31.65 33.33 59.57 20.06 20.89 19.83 28.81 29.82 24.33 4.45 29.83 29.35 14.91 41.04 54.41 22.67
Fine-Tuning 95.55 85.03 87.29 67.72 87.56 88.42 40.24 43.92 61.65 21.3 25.84 53.86 58.41 48.34 47.52 14.32 38.1 23.32 27.39 53.48 64.05 38.91
FSDA [52] 94.61 85.57 86.79 65.12 85.68 78.56 37.31 47.94 60.51 27.25 33.68 48.63 54.6 45.27 41.18 14.75 36.75 32.12 32.1 53.55 63.91 38.18
PixDA 95.03 86.33 87.18 66.94 88.4 89.43 40.37 49.25 64.62 24.3 26.64 52.52 60.39 49.01 45.31 19.91 40.84 34.78 34.36 55.56 65.32 42.14

Table 1. GTA5→Cityscapes Experiments. Classes are sorted by decreasing frequency on target domain.
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Source Only 27.01 64.23 74.84 16.72 38.42 77.8 14.73 50.86 0.09 3.66 5.36 16.65 6.98 2.22 10.28 1.26 30.2 25.69 36.84 7.13

1 shot

NAAE [41] 85.77 69.89 72.57 36.31 57.54 67.45 14.91 33.9 3.14 1.78 19.52 0.03 13.59 3.56 2.57 1.9 35.73 30.27 44.33 6.86
Joint Training 65.88 71.71 76.84 32.22 46.92 83.58 28.9 56.82 0.43 10.91 23.32 25.13 26.4 9.63 16.14 11.76 42.1 36.72 47.42 18.73
FDA [48] 30.4 52.51 61.98 15.98 61.77 75.06 27.51 51.01 0.09 6.43 16.14 25.17 10.76 5.83 18.14 7.83 33.51 29.35 38.27 13.98
Fine-Tuning 92.08 80.72 84.23 55.1 81.21 86.54 33.77 55.88 5.39 9.18 33.24 51.4 20.77 15.2 2.78 4.22 51.02 44.48 58.41 21.27
FSDA 92.74 82.06 84.95 56.54 82.02 84.55 - 56.12 - - 32.95 52.27 25.59 17.41 23.86 8.36 53.8 - - 26.74
PixDA 94.23 82 84.05 60.84 84.32 85.04 36.51 59.03 3.85 16.79 37.69 56.46 31.37 22.5 20.63 8.84 55.92 49.01 60.67 29.58

2 shot

NAAE [41] 87.34 68.17 75.73 34.24 63.5 75.83 14.14 32.66 16.95 5.89 17.39 6.4 11.79 9.18 3.19 2.69 37.55 32.82 47.45 8.44
Joint Training 78.82 77.71 80.72 35.09 72.11 85.98 30.63 54.56 2.56 17.12 21.68 27.3 35.81 12.56 10.46 9.76 46.35 40.8 53.53 19.6
FDA [48] 24.54 67.01 68.68 13.16 67.37 77.36 28.81 50.7 0.12 8.3 17.05 23.09 12.11 3.66 16.25 14.66 36.05 30.8 40.61 14.47
Fine-Tuning 94.2 82.29 84.13 62.53 83.75 85.26 35.64 58.64 18.54 15.21 34.92 55.37 35.35 21.53 10.91 7.78 55.12 49.12 62.02 27.64
FSDA [52] 92.68 82.25 85.08 55.44 79.87 83.09 - 57.01 - - 35.43 53.02 24.47 24.54 14.95 17.91 54.28 - - 28.39
PixDA 94.24 83.14 84.37 61.84 86.23 84.24 36.79 59.43 19.68 16.58 36.94 57.41 36.66 22.9 17.37 10.16 56.53 50.5 62.65 30.24

3 shot

NAAE [41] 88.44 75.63 79.01 38.59 63.91 80.41 20.2 39.7 13.59 5.98 2576 13.18 6.81 17.94 10.61 2.54 41.73 36.39 50.55 37.85
Joint Training 80.41 75.92 79.23 37.93 71.48 85.81 31.03 56.19 1.52 11.23 22 35.56 24.68 14.92 15.58 16.9 47.43 41.27 53.08 21.61
FDA [48] 15.46 56.99 61.15 12.83 66.04 76.49 26.92 52.97 0.13 11.02 15.93 21.66 20.86 4.13 16.62 9.22 33.1 29.98 38 14.74
Fine-Tuning 94.78 82.17 85 63.97 84.25 88.04 36.99 58.99 11.84 8.36 37.69 57.08 7.07 28.22 22.82 6 55.08 48.32 61.44 26.48
FSDA [52] 93.96 83.84 85.83 60.97 84.27 88.27 - 59.44 - - 40.46 58.59 11.6 27.95 28.58 15.38 56.86 - - 30.43
PixDA 94.36 84.05 85.44 62.62 85.74 88.18 37.69 61.47 13.72 15.61 38.91 61.29 23.67 32.39 29.33 12.27 58.44 51.67 62.89 32.98

4 shot

NAAE [41] 90.77 74.76 79.92 47.75 67.57 81.51 20.3 43.38 14.48 10.85 28.74 22.7 13.75 17.55 19.76 1.49 45.36 39.71 53.13 17.33
Joint Training 67.44 75.79 78.12 35.57 48.12 86.31 31.02 55.91 1.15 11.27 27.59 30.53 24.03 17.24 17.01 9.45 44.08 38.53 49.07 20.98
FDA [48] 23.42 62.88 69.54 13.55 67.26 80.23 30.29 53.21 0.34 12.7 15.87 26.01 22.48 4.49 18.06 13.16 36.16 32.09 41.34 16.68
Fine-Tuning 95.3 83.53 85.82 66.52 84.45 89.25 37.57 63.09 16.5 20.58 43.21 56.83 9.71 27.45 31.1 2.4 56.82 50.83 64.26 28.45
FSDA [52] 94.36 84.02 85.94 62.68 83.12 87.72 - 59.16 - - 42.01 58 10.58 29.69 35.83 20.02 57.93 - - 32.69
PixDA 95.37 84.52 85.58 66.63 86.19 88.42 38.09 62.7 18.11 21.57 45.26 58.05 25.98 33.24 34.67 6.91 59.5 53.21 64.72 34.02

5 shot

NAAE [41] 91.33 75.86 80.87 48.3 75.04 82.69 20.32 45.26 15.99 10.28 32.32 30.89 19.6 22.27 19.11 10.24 48.75 42.52 54.59 22.41
Joint Training 65.23 75.73 79.14 27.52 64.92 85.47 31.81 56.71 2.08 13.45 22.86 34.12 29.93 14.65 19.98 15.44 45.51 39.94 50.21 22.83
FDA [48] 18.55 62.06 64.54 13.2 71.9 79.83 31.02 50.61 0.19 11.7 21.21 16.18 20.39 5.75 17.37 5.63 34.39 30.62 40.36 14.42
Fine-Tuning 95.02 83.66 85.92 65.3 86.3 87.71 38.08 62.24 13.58 19.5 49.95 60.26 42.69 29.64 25.03 15.98 60.74 53.8 63.73 37.26
FSDA [52] 94.41 84.47 86.05 63.31 86.32 88.19 - 61.34 - - 50.87 58.56 35.5 30.91 28.17 24.17 60.94 - - 38.03
PixDA 95.5 84.63 85.99 66.73 87.24 88.05 39.03 63.46 13.11 23.25 50.86 60.3 32.83 33.77 33.31 21.57 61.86 54.98 64.7 38.77

Table 2. SYNTHIA→Cityscapes Experiments. Classes are sorted by decreasing frequency on target domain.

4.4. Ablation Study

Contribution of terms in the PixAdv loss. In Tab. 3 we
provide an in-depth ablation study to prove the effectiveness
of making domain alignment at a pixel-level. The results
are computed while both sample selection and knowledge
distillation and fine-tuning are turned off. The table shows
that aligning source and target domains with an image-wise

discriminator yields a substantial improvement (+11.14%)
over joint-training (no adversarial loss). However, since it
discriminates the images globally, it tends to align well-
represented classes while ignoring the others. In compari-
son, the pixel-level adversarial loss, which aligns each pixel
separately, further enhances performance by +2.17%. Re-
gardless of the change, merely aligning the pixels does not
prevent negative transfer and overfitting to few-shot images.
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RGB Source Only Fine-Tuning PixDA (Ours) Ground Truth

Figure 4. Qualitative results for the GTA→Cityscapes and SYNTHIA→Cityscapes scenarios. The boxes on the images highlight some
examples of underrepresented classes. Qualitative comparison to the other methods is left to the Supplementary Material.

Image-wise Pixel-wise
Adv. Loss Adv. Loss B S mIoU

31.29
✓ 42.43

✓ 44.60
✓ ✓ 46.06
✓ ✓ 47.70
✓ ✓ ✓ 48.29

Table 3. Ablation study about the choice of the adversarial loss on
the GTA→Cityscapes 1-shot scenario.

Indeed, re-weighting the pixels based on their frequency
(B term) yields a further improvement of +1.46%. Fur-
thermore, decreasing the weight of well-represented pixels
(S term) to prevent negative transfer is crucial, providing a
+1.64% w.r.t the pixel-wise adversarial loss.

Finally, the B and S terms complement each other and
boost efficiency even further when used together. The re-
sulting loss (PixAdv) outperforms the image-wise adversar-
ial loss by +5.86% and the pixel-wise adversarial loss by
+3.69%, suggesting that weighting each pixel contribution
is advantageous to prevent negative transfer and overfitting.

Contribution of each component in PixDA. In this section
we assess to what extent each component in our framework
contributes to the final performance. We move bottom-up
examining six different cases: (a) Source Only model; (b)
Joint Training; (c) training with the PixAdv loss; (d) with
the PixAdv Loss and our Sample Selection mechanism; (e)
the fine-tuning step and finally, (f) the knowledge distilla-
tion that completes the PixDA framework.

From the results in Tab. 4, it is evident that each
component brings an improvement to the overall frame-
work. In particular, the addition of the PixAdv Loss im-
proves the Joint Training by +17%, indicating that domain
alignment is necessary to obtain good performance. The
Sample Selection provides an additional improvement of
+1.45%, indicating that removing samples far from the tar-
get distribution is beneficial. Finally, while naı̈vely fine-

Method mIoU
Source Only 30.72
Joint Training 31.29
PixAdv 48.29
+ Sample Selection 49.74
+ Fine-Tuning 50.05
+ KD 51.16

Table 4. Ablation study showing the effectiveness of each PixDA
component on the GTA→Cityscapes 1-shot scenario.

tuning the network on the target brings a little improve-
ment (+0.31%), using knowledge distillation brings that
difference to +1.42%. We remark that only adding the
PixAdv Loss already surpasses the state-of-the-art. As a
follow-up test, we replaced the Focal Loss with a standard
Cross Entropy, yielding a lower but still state-of-the-art re-
sult (48.89%) and confirming the effectiveness of our loss.
Additional studies to asses the impact of hyperparameters in
our framework are included in the supplementary material
due to lack of space.

5. Conclusion
In this work we address the task of Cross-Domain Few-

Shot Semantic Segmentation. We present a pixel-by-pixel
adversarial training strategy that uses a new pixel-wise loss
and discriminator to better align source and target domain
and to reduce the negative transfer problem. We also assist
the adversarial training with a sample selection procedure
that handles the imbalance between source and target do-
main. Our framework achieves the state-of-the-art perfor-
mance in all the 1-to-5 shot settings from the two standard
synthetic-to-real benchmarks.

Future work will analyze a modified version of the sam-
ple selection strategy that selects only the top K confident
source samples rather than increasing the threshold, as well
as the application of the PixAdv Loss to other settings, such
as Unsupervised DA, which has a preliminary assessment
in the Supplementary Material, and Multi Source DA.
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Elisa Ricci, and Barbara Caputo. Modeling the background
for incremental learning in semantic segmentation. In IEEE
Conf. Comput. Vis. Pattern Recog., June 2020.

[4] Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-
Chen Chiu. All about structure: Adapting structural informa-
tion across domains for boosting semantic segmentation. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 1900–1909,
2019.

[5] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. IEEE Trans. Pattern Anal. Mach. Intell., 40(4):834–
848, 2018.

[6] Liang-Chieh Chen, G. Papandreou, Florian Schroff, and H.
Adam. Rethinking atrous convolution for semantic image
segmentation. ArXiv, abs/1706.05587, 2017.

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Eur. Conf. Comput. Vis., pages 801–818, 2018.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In IEEE
Conf. Comput. Vis. Pattern Recog., 2016.

[9] Nanqing Dong and Eric P. Xing. Few-shot semantic seg-
mentation with prototype learning. In Brit. Mach. Vis. Conf.,
volume 3, 2018.

[10] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and M. Cord.
Plop: Learning without forgetting for continual semantic
segmentation. ArXiv, abs/2011.11390, 2020.

[11] M. Everingham, S. Eslami, L. Gool, C. K. Williams, J. Winn,
and Andrew Zisserman. The pascal visual object classes
challenge: A retrospective. Int. J. Comput. Vis., 111:98–136,
2014.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Int. Conf. Mach. Learn., pages 1126—-1135, 2017.

[13] Bo Geng, Dacheng Tao, and Chao Xu. DAML: domain
adaptation metric learning. IEEE Trans. Image Process.,
20(10):2980—2989, October 2011.

[14] Golnaz Ghiasi and Charless C. Fowlkes. Laplacian pyramid
reconstruction and refinement for semantic segmentation. In
Eur. Conf. Comput. Vis., pages 519–534, 2016.

[15] Bharath Hariharan and Ross Girshick. Low-shot visual
recognition by shrinking and hallucinating features. In Int.
Conf. Comput. Vis., pages 3018–3027, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., 2016.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling
the knowledge in a neural network. In Adv. in Neural Inf.
Process. Syst., 2015.

[18] Judy Hoffman, E. Tzeng, T. Park, Jun-Yan Zhu, Phillip Isola,
Kate Saenko, Alexei A. Efros, and Trevor Darrell. Cycada:
Cycle-consistent adversarial domain adaptation. In Int. Conf.
Mach. Learn., pages 1989–1998, 2018.

[19] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.
Fcns in the wild: Pixel-level adversarial and constraint-based
adaptation, 2016.

[20] Myeongjin Kim and Hyeran Byun. Learning texture invari-
ant representation for domain adaptation of semantic seg-
mentation. In IEEE Conf. Comput. Vis. Pattern Recog., pages
12975–12984, 2020.

[21] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition. In
Int. Conf. Mach. Learn. Worksh., volume 2. Lille, 2015.

[22] Q. Li, S. Jin, and J. Yan. Mimicking very efficient network
for object detection. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 7341–7349, 2017.

[23] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional
learning for domain adaptation of semantic segmentation. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 6936–6945,
2019.

[24] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian
Reid. RefineNet: Multi-path refinement networks for high-
resolution semantic segmentation. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 1925–1934, 2017.

[25] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss
for dense object detection. In Int. Conf. Comput. Vis., pages
2999–3007, 2017.

[26] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo,
and Jingdong Wang. Structured knowledge distillation for
semantic segmentation. In IEEE Conf. Comput. Vis. Pattern
Recog., 2019.

[27] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 3431–3440, 2015.

[28] Mingsheng Long, Y. Cao, J. Wang, and Michael I. Jor-
dan. Learning transferable features with deep adaptation net-
works. In Int. Conf. Mach. Learn., pages 97–105, 2015.

[29] Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang.
Adversarial style mining for one-shot unsupervised domain
adaptation, 2020.

[30] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi
Yang. Taking a closer look at domain shift: Category-level
adversaries for semantics consistent domain adaptation. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 2507–2516,
2019.

[31] Umberto Michieli and Pietro Zanuttigh. Incremental learn-
ing techniques for semantic segmentation. In Inter. Conf.
Comput. Vis. Worksh. Transf. Adapt. Source Knowledge in
Comput. Vis., 2019.

1634



[32] Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gian-
franco Doretto. Few-shot adversarial domain adaptation. In
Adv. in Neural Inf. Process. Syst., pages 6670–6680, 2017.

[33] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks, 2016.

[34] Kate Rakelly, Evan Shelhamer, Trevor Darrell, Alexei A.
Efros, and S. Levine. Few-shot segmentation propagation
with guided networks. ArXiv, abs/1806.07373, 2018.

[35] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Eur. Conf. Comput. Vis., volume 9906 of
LNCS, pages 102–118. Springer International Publishing,
2016.

[36] A. Romero, Nicolas Ballas, S. Kahou, Antoine Chassang, C.
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets.
Computing Research Repository (CoRR), abs/1412.6550,
2015.

[37] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M. Lopez. The SYNTHIA dataset:
A large collection of synthetic images for semantic segmen-
tation of urban scenes. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 3234–3243, June 2016.

[38] Amirreza Shabana, Shray Bansal, Zhen Liu, Irfan Essa, and
Byron Boots. One-shot learning for semantic segmentation.
In Gabriel Brostow Tae-Kyun Kim, Stefanos Zafeiriou and
Krystian Mikolajczyk, editors, Brit. Mach. Vis. Conf., pages
167.1–167.13. BMVA Press, September 2017.

[39] Changyong Shu, Yifan Liu, Jianfei Gao, L. Xu, and Chunhua
Shen. Channel-wise distillation for semantic segmentation.
ArXiv, abs/2011.13256, 2020.

[40] Jake Snell, Kevin Swersky, and Richard Zemel. Prototyp-
ical networks for few-shot learning. In Adv. in Neural Inf.
Process. Syst., pages 4077–4087, 2017.

[41] Ruoqi Sun, Xinge Zhu, Chongruo Wu, Chen Huang, Jian-
ping Shi, and Lizhuang Ma. Not all areas are equal: Transfer
learning for semantic segmentation via hierarchical region
selection. In IEEE Conf. Comput. Vis. Pattern Recog., pages
4360–4369, 2019.

[42] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip
H. S. Torr, and Timothy M. Hospedales. Learning to com-
pare: Relation network for few-shot learning. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1199–1208, 2018.

[43] Marco Toldo, Andrea Maracani, Umberto Michieli, and
Pietro Zanuttigh. Unsupervised domain adaptation in seman-
tic segmentation: A review. Technologies, 8(2), Jun 2020.

[44] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
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