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Abstract

Owing to their large field of view, overhead fisheye cam-
eras are becoming a surveillance modality of choice for
large indoor spaces. However, traditional people detec-
tion and tracking algorithms developed for side-mounted,
rectilinear-lens cameras do not work well on images from
overhead fisheye cameras due to their viewpoint and unique
optics. While several people-detection algorithms have
been recently developed for such cameras, they have all
been tested on datasets consisting of “staged” recordings
with a limited variety of people, scenes and challenges.
Clearly, the performance of these algorithms “in the wild”,
i.e., on recordings with real-world challenges, remains un-
known. In this paper, we introduce a new benchmark
dataset of in-the-Wild Events for People Detection and
Tracking from Overhead Fisheye cameras (WEPDTOF)'.
The dataset features 14 YouTube videos captured in a wide
range of scenes, 188 distinct person identities consistently
labeled across time, and real-world challenges such as ex-
treme occlusions and camouflage. Also, we propose 3
spatio-temporal extensions® of a state-of-the-art people-
detection algorithm to enhance the coherence of detections
across time. Compared to top-performing algorithms, that
are purely spatial, the new algorithms offer a significant
performance improvement on the new dataset. Finally, we
compare the people tracking performance of these algo-
rithms on WEPDTOF.

1. Introduction

People detection is a challenging task that has been
widely explored for side-mounted, rectilinear-lens cameras
[41, 3, 5]. Adaptation of these algorithms to overhead fish-
eye (OF) cameras is not trivial due to the radial geome-
try and severe geometric distortions in the captured im-
ages. Despite significant progress in the last two years
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Figure 1: Sample annotated frames from current datasets
and from WEPDTOF, which contains in-the-wild videos
that are more diverse in terms of scenes, identities and den-
sities of people, aspect ratios and real-life challenges.

[38, 23, 16], fisheye people detection remains a challeng-
ing and relatively unexplored problem, primarily due to the
limited variety of datasets for training and evaluation.

Almost all state-of-the-art (SOTA) fisheye people-
detection algorithms are supervised learning approaches
that require annotated data for training and evaluation
[38, 23, 16]. While these algorithms achieve very high eval-
uation scores on existing datasets, this is largely due to the
limited dataset complexity and variety. The current fisheye-
image datasets for people detection have been recorded in
“staged” scenarios, where people move according to pre-
defined patterns (e.g., everyone starts moving at the same
time and performs similar actions). Furthermore, the variety
of scenes and person identities is very limited. Therefore,
the performance of SOTA algorithms in naturally-occurring
scenarios, to be expected in real life, remains unknown.
Clearly, a challenging dataset, recorded in-the-wild, with a
large variety of different scenes, actions and people is es-
sential for further advancing this area of research.

In this paper, we introduce a new benchmark dataset of
in-the-Wild Events for People Detection and Tracking from
Overhead Fisheye cameras (WEPDTOF). While preparing
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WEPDTOF, we focused on several deficiencies of the cur-
rent datasets. First, we collected in-the-wild (non-staged)
videos from YouTube instead of recording our own. Sec-
ond, we selected videos from a variety of indoor scenes
recorded by OF cameras mounted at different heights, etc.
Third, we focused on videos with real-life challenges (e.g.,
severe occlusions, camouflage of a person by adjacent back-
ground, crowded spaces) to allow performance assessment
similar to an application in practice. WEPDTOF consists
of 16 clips from 14 YouTube videos, each recorded in a
different scene, with 1-35 people per frame and 188 per-
son identities consistently labeled across time. Compared
to the current datasets, WEPDTOF has more than 10 times
the number of distinct people, ~ 3 times the maximum num-
ber of people per frame, and double the number of scenes.
Fig. 1 contrasts sample frames from WEPDTOF against
those from the current datasets.

The current people-detection algorithms for OF cam-
eras apply frame-wise inference ignoring temporal depen-
dencies. However, recent research on video-object detec-
tion has shown a significant performance boost by com-
bining spatial and temporal information [36, 43, 40, 19,
6, 42, 24, 26]. We adopt this strategy for OF videos
and introduce 3 spatio-temporal extensions to RAPiD [16],
the top-performing algorithm on WEPDTOF. We per-
form a detailed performance comparison of SOTA people-
detection algorithms for OF cameras with the proposed
spatio-temporal extensions. First, we employ a 2-fold cross-
validation to select the best set of hyper-parameters for each
algorithm. Then, we evaluate each algorithm in detail by
using 7 performance metrics and 2 performance trade-off
plots. We show that the improved versions of RAPID sig-
nificantly outperform SOTA on WEPDTOF.

Finally, we provide a proof-of-concept illustration of
people tracking in OF videos using a simple similarity-
based association algorithm applied to the bounding boxes
generated by RAPID and its proposed extensions. To the
best of our knowledge, this is the first attempt at people
tracking in OF videos.

Our main contributions can be summarized as follows:

* We introduce a new dataset, WEPDTOF, for people
detection and tracking from overhead fisheye cameras.
This is the first in-the-wild fisheye video dataset with a
diverse set of scenes, identities and densities of people,
aspect ratios and other real-life challenges.

* We evaluate people detection performance of SOTA al-
gorithms on WEPDTOF using various metrics and an-
alyze each algorithm’s strengths and weaknesses.

* We introduce extensions to RAPiD by leveraging spa-
tial and temporal information simultaneously. The
proposed extensions outperform plain RAPiD by 2-6%
in terms of AP5( and by 3-8% in terms of F-Score.

* We evaluate people-tracking performance of a sim-
ilarity-based object association algorithm applied to
bounding boxes generated by our proposed people-
detection algorithms.

2. Related Work
2.1. Datasets

There exist several datasets for people detection from OF
cameras. PIROPO [10], one of the first datasets, is anno-
tated with point-based ground-truth locations of heads of
people. Although this is practical in terms of labeling, it
limits its utility since it does not localize the full body of
a person. BOMNI [11] and Mirror Worlds (MW) [27] ad-
dress this problem by including image-axis-aligned bound-
ing boxes around people. However, this alignment may
cause a significant fraction of bounding-box pixels to cap-
ture the background for standing people who appear radially
oriented in fisheye images. The most recent datasets, HAB-
BOF [23] and CEPDOF [16], are annotated with human-
aligned bounding boxes to minimize the presence of back-
ground pixels inside bounding boxes. Recently, Duan et al.
published human-aligned bounding box annotations for a
subset of MW videos, calling it MW-R [16].

Table 1 shows statistics of MW-R, HABBOF, CEPDOF
and the new WEPDTOF dataset. HABBOF [23] and MW-
R consist of “simple” videos that are limited in terms of the
number of identities, maximum number of people labeled
per frame and scene diversity. CEPDOF [21] includes more
challenging scenarios with up to 13 people in a single frame,
however all of its videos are recorded with the same camera
hardware, in the same room and with less than 20 different
identities. All these datasets have been recorded specifically
for training and evaluation of people-detection algorithms
under constrained settings (e.g., recorded with the same or
similar camera hardware) and scenarios (e.g., people are in-
structed to enter a room, walk around and exit).

Here, we introduce WEPDTOF, the first dataset of in-
the-wild events for people detection and tracking from fish-
eye cameras.

2.2. Algorithms

People detection from OF cameras is an emerging re-
search area. Initial approaches extended the traditional
people-detection algorithms (e.g., HOG [9], LBP [1] and
ACF [14]) to the fisheye domain by considering the radial
geometry and fisheye distortions [39, 7, 37, 21]. Recent
CNN-based supervised learning methods have quickly su-
perceded the traditional methods. Tamura et al. [38] pro-
posed a rotation-invariant version of YOLO [30, 31, 32],
a popular object-detection algorithm designed for standard
images. They trained YOLO on the rotated images from the
COCO dataset [25]. During inference from OF images, they
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Table 1: Statistics of datasets with human-aligned bounding-box annotations (“people” refers to “annotated people”).

Dataset # of clips  # of scenes #of distinct  # of people # of frames Resolution (MP)
people per frame
MW-R 19 7 ~15 1-6 8,752 1.1t02.2
HABBOF 4 2 9 2-5 5,837 ~4.2
CEPDOF 8 1 17 1-13 25,504 1.1to4.2
WEPDTOF 16 14 188 1-35 10,544 0.6t05

forced all bounding boxes to be radially aligned relative to
the image center. Li et al. [23] proposed applying YOLO
repeatedly to a top-center rectangular window (where ori-
entations of people are similar to those in standard images)
extracted after 15°,30°,45°, ..., 345° rotations of the fish-
eye image and then post-processing the results to remove
multiple detections of the same person.

Recently, Duan et al. introduced RAPiD, a rotation-
aware version of YOLO [16]. RAPiD uses a rotated
bounding-box representation with 5 parameters (spatial co-
ordinates of the center, width, height and rotation angle of
the bounding box). They also introduced an angle-aware
loss function for training the network with rotated bound-
ing boxes. To the best of our knowledge, RAPID is the only
supervised people detection algorithm for OF images which
can be trained with images annotated by human-aligned
bounding boxes.

Although the SOTA algorithms have been successful on
existing datasets, the performance gap between the easier
datasets (e.g., HABBOF) and the more challenging ones
(e.g., CEPDOF) is significant. For example, APso for
RAPiD on CEPDOF is ~11%-points lower than on HAB-
BOF [16]. Furthermore, performance of the SOTA algo-
rithms on natural, in-the-wild videos remains unknown. We
address this by introducing WEPDTOF.

Video Object Detection: With the introduction of Im-
ageNet VID challenge [35], new algorithms leveraging
both spatial and temporal information have been devel-
oped for object detection from standard videos. Several
algorithms are based on post-processing the results of ob-
ject detection algorithms which consider the video frames
as still images [20, 2, 36]. For example, Robust and Ef-
ficient Post-Processing for video object detection (REPP)
[36] links the bounding-box predictions between consecu-
tive frames using a learning-based approach. Then, it cre-
ates and re-scores the so-called bounding-box tubelets in
the temporal dimension. Another approach is to design
an end-to-end video-object detection algorithm that lever-
ages the temporal and spatial information simultaneously
[43, 40, 6, 26, 24, 42]. For example, Flow-Guided Fea-
ture Aggregation (FGFA) [43] uses optical flow to warp the
feature maps of past and future frames and then aggregates
the warped feature maps for detecting objects in the current
frame. Similarly, SELSA [40] aggregates the feature maps

of all frames from a video based on their semantic simi-
larity to the current frame. In this paper, we integrate the
feature-map warping and feature aggregation introduced in
FGFA as well as the post-processing introduced in REPP,
into RAPID to improve its performance.

Video Multi-Object Tracking: The performance of
multi-object tracking (MOT) algorithms has increased sig-
nificantly over the last few years thanks to the extensive
datasets such as MOT15 [22], MOT16 [28], MOT19 [12]
and MOT20 [13]. A detailed analysis and comparison
of these algorithms can be found in recent survey papers
[8, 29]. All of these datasets and algorithms are designed
specifically for the detection of image-axis-aligned bound-
ing boxes on videos recorded by side-mounted, rectilinear-
lens cameras. To the best of our knowledge, multi-object
tracking has not been studied for OF cameras.

3. WEPDTOF Dataset

A dataset captured in the wild, that is composed of
real-life scenes, actions, people, imaging hardware, etc.,
is crucial for a fair and meaningful evaluation of people-
detection algorithms from OF cameras. With these con-
straints in mind, we introduce WEPDTOF and make it
publicly-available.? In Fig. 2, we show a sample frame and
its annotation for each video from the new dataset and dis-
cuss its salient characteristics below.

In-the-wild videos: Unlike the current fisheye people-
detection datasets recorded in staged scenarios, the videos
in WEPDTOF have been collected from YouTube and rep-
resent natural human behavior. This is important for assess-
ing an algorithm’s performance in real-world situations.

Variety: As shown in Table 2, WEPDTOF includes 14
different videos* recorded in different scenes (e.g., open of-
fice, cubicles, exhibition center, kindergarten and shopping
mall). The number of people appearing in a single frame,
spatial resolution and length of the videos in WEPDTOF
all vary significantly. Furthermore, since the videos in
WEPDTOF come from different sources, it is likely they
have been captured by different camera hardware (i.e., sen-

3vip.bu.edu/wepdtof

4Two of the 14 videos in WEPDTOF are divided into two segments
each, yielding a total of 16 video clips in the dataset. Each segment is a
contiguous portion of the original video and corresponds to a challenging
part of that video.
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Figure 2: Sample frames with rotated bounding-box annotations from all 14 videos in WEPDTOF.

sor and lens) installed at different heights and working un-
der different illumination conditions.

Real-life Challenges: As shown in Fig. 2 and described
in Table 2, WEPDTOF captures real-world challenges such
as camouflage, severe occlusions, cropped field of view and
geometric distortions. For example, in “Exhibition Setup”
(Fig. 2), it is very difficult to detect some people since the
color of their clothing is very similar to the background,
an effect known as camouflage that is frequently encoun-
tered in practice. On the other hand, severe occlusions are
clearly visible in “Call Center”. Finally, geometric distor-
tions manifest themselves either as a distorted aspect ratio
of the images, such as in “Street Grocery”, or as a dramat-
ically reduced bounding-box size for people at the field-of-
view periphery (person far away) as seen in “IT Office”.
The challenge of geometric distortions was not significantly
captured in any of the previous datasets.

Spatial annotations: We annotated the frames with ro-
tated bounding boxes which are represented as 5-vectors
(x,y,w, h,a), where (z,y) represents the spatial location
of the center of the bounding box, w the width and and h
the height of the bounding box, and « the counterclock-
wise rotation angle of the bounding box. In our annotations,
we exclude some of the areas that are close to the field-of-
view periphery since people appear very small and close to
each other making it nearly impossible to annotate accu-
rately. These excluded regions are identified by means of a
manually-outlined binary region of interest (ROI) map for
each video. Fig. 3 shows an example of ROI for “IT Office”.

Temporally-consistent annotations: All our bounding-
box annotations are temporally consistent, that is, bounding

boxes of the same person carry the same ID in consecutive
frames. Therefore, WEPDTOF can be used not only for
people detection from OF cameras, but also for tracking.

Figure 3: (a) Sample frame from WEPDTOF’s “IT Office”,
(b) its ROI map, and (c) frame shown within ROI map.

4. Leveraging Temporal Information in People
Detection from Overhead Fisheye Cameras

As we discussed in Section 2.2, the current people-
detection algorithms for OF cameras are all image-based
although all of the datasets are video-based. Inspired by re-
cent advances in video object detection, we introduce three
new people-detection algorithms for OF cameras which use
both spatial and temporal information. Our approach com-
bines the best-performing fisheye people detection algo-
rithm, RAPiD [16], with some of the best-performing video
object detection algorithms, REPP [36] and FGFA [43].
RAPiID is a YOLO-based people detection algorithm that
consists of three parts. The first part is the “backbone” net-
work which takes an image as the input and produces three
feature maps of the input frame at three resolutions. The
second part is called “Feature Pyramid Network” which
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Table 2: Details of WEPDTOF. The last column identifies two sets of video clips used in cross-validation.

Video Challenges
# of clips  # of people per frame Total # of frames Resolution (W x H) Set number
Occlusions
Empty Store | 1 358 1440 x 1080 1
. Camouflage, Tiny people, Partly-visible people, Cropped view
Exhibition Setup 1 3-9 1800 1920 x 1080 1
) Cropped view
Convenience Store | 6-7 1075 960 x 720 1
Occlusions, Tiny people
Large Office 2 7.9 700 1350 x 1080 1
High camera, Cropped view
Warehouse | 7-10 496 1920 x 1080 1
. Occlusions, Crowded space, Tiny people
Exhibition 1 17-18 690 1080 x 1080 1
Crowded space, Tiny people, Cropped view
Call Center 1 33-35 610 1920 x 1080 1
Tiny People, Camouflage, Occlusions, High camera, Cropped view
Tech Store | 2-4 633 2592 x 1944 2
Jewelry Store Occlusions
y 2 3-10 900 1620 x 1080 2
Distorted aspect ratio, Non-circular field of view, Cropped view
Street Grocery 1 5.7 231 944 x 1080 2
. Camouflage
Printing Store 1 7.8 1055 1440 x 1440 2
. Camouflage, Occlusions, Partly-visible people
Repair Store | 8-10 947 900 x 720 2
Tiny people
IT Office 1 14-15 500 1440 x 1080 2
Kinderaarton Children
ergarte 1 18-21 549 900 x 720 2

takes the three outputs generated by the “backbone” net-
work and transforms them into bounding-box-related fea-
ture maps. The last part, “detection head” transforms these
feature maps into bounding boxes.

RAPiID+REPP: REPP [36] is a post-processing method
designed for object-detection algorithms that produces
image-axes-aligned bounding boxes. It uses a learning-
based similarity function to link bounding boxes in con-
secutive frames and produce the so-called object tubelets
(known earlier as object tunnels [34]). This is followed by
a refinement step to smooth out the confidence score, loca-
tion, and size of the bounding boxes within tubelets. This,
effectively, increases the confidence scores of weaker detec-
tions (which could be missed) and decreases the scores of
false detections.

RAPiD+REPP applies post-processing, similar to that of
REPP, to bounding boxes detected by RAPiD. As the input
to the learning-based similarity function, we use the follow-
ing features for a pair of rotated bounding boxes (e.g., from
consecutive frames):

¢ Euclidean distance between their centers,

* ratio of their widths and ratio of their heights,

* absolute difference between their angles,

¢ Intersection over Union (IoU) between them.

IoU is computed between the rotated bounding boxes which
is computationally much more expensive than computing
it for image-axes-aligned bounding boxes. In our experi-
ments, appearance embedding used in [36] did not improve
the performance, thus we did not include it as a feature.
Our learning-based similarity function is trained on bound-
ing boxes from CEPDOF using logistic regression. We form
bounding-box tubelets using the greedy algorithm described
in [36] with the similarity scores computed by the trained-
similarity function. Then, we apply the refinement step
from [36] to smooth out the confidence score, location, and
size of the bounding boxes within tubelets.
RAPiD+FGFA: FGFA is an end-to-end video-object de-
tection algorithm which aggregates feature maps computed
from past, current, and future frames to aid object detection
in the current frame. It consists of three parts. The first part
is called “feature extraction network™ and it takes a single
frame as input and produces a feature map. The second part
is called “flow-guided feature aggregation”. It uses optical
flow to warp feature maps of the past and future frames and
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produces their aggregate. Finally, the “detection network™
predicts bounding boxes for the current frame from the out-
put of the aggregation step.

FGFA uses backward warping to warp a feature map of
the j* frame (f;) to the i*" frame as follows, f;_; =
W(f;,M,;_,;), where W(-) is bilinear warping function,
M;_,; is an estimate of optical flow field from frame 7 to
j (computed using FlowNet [15]), and f;_,; represents f;
warped to frame :. The warped features are aggregated
as follows, fl = Z;if_ x Wj—ifj—i, where K represents
the number of past and future frames to be aggregated and
w;_,; are adaptive weights. For computing w;_,;, the fea-
ture maps f; and f;_,; are processed by a shallow neural
network which outputs ff and f7_,,, respectively. Then,
at each spatial location p, weight w;_,;(p) is computed as
the cosine similarity between ff(p) and f5_,;(p) followed
by the SoftMax function to normalize the weights, i.e.,
S cwjsi(p) = 1. In the last step, f; is fed into a
“detection network” to predict bounding boxes for frame .

Following the ideas introduced in FGFA [43] and sum-
marized above, we introduce RAPiD+FGFA which applies
temporal aggregation to each of the 3 feature maps gener-
ated by the “backbone” network of RAPiD (referred to as
Py, P, and P5 in [16]). We use the Farnebick algorithm
[18] to compute optical flow since it outperforms FlowNet
on OF videos. We also introduce RAPiD+FA which applies
feature aggregation with adaptive weights, but without fea-
ture warping, i.e., fj; = f;.

Tracking by Rotated Bounding-Box Association: As
discussed in Section 2.2, all existing object-tracking algo-
rithms are designed for standard cameras and image-axes-
aligned bounding boxes. We propose a simple people-
tracking algorithm for OF cameras using the following two-
step approach. First, we compute bounding-box predictions
on individual frames using one of the OF people-detection
algorithms. Then, we associate bounding boxes between
consecutive OF frames by applying the learning-based sim-
ilarity function used in RAPiD+REPP.

The source code of RAPiD+REPP, RAPiD+FA and
RAPiD+FGFA algorithms is available publicly.’

5. Experiments
5.1. Algorithms and Implementation Details

As baseline algorithms, we use AA, AB [23], Tamura et
al. [38] and RAPID [16]°. We also report the results of
the spatio-temporal algorithms that we introduced in Sec-
tion 4: RAPiD+REPP, RAPiD+FA and RAPiD+FGFA.We
do not perform additional evaluations for the earlier datasets

Svip.bu.edu/rapid-t

SFor AA, AB and RAPiD, we use the authors’ publicly available imple-
mentations from vip.bu.edu/habbof and vip.bu.edu/rapid.
We implemented Tamura ef al. from scratch since it does not have a
publicly-available source code.

since the performance of RAPiD on them is already very
high (AP5¢ over 90% for videos recorded under normal-
light conditions, as reported in [17]).

All algorithms use YOLO v3 [32] as backbone and are
trained on MS COCO dataset [25] for 100,000 iterations.
RAPID and its variants are fine-tuned on the combination
of MW-R, HABBOF and CEPDOF for 5,000 iterations us-
ing the angle-aware loss function introduced in [16]. Since
AA, AB and Tamura et al. are not designed to be trained us-
ing rotated bounding boxes, fine-tuning on fisheye datasets
is not possible. While training the algorithms on COCO,
we use SGD with a learning rate of 0.001, momentum of
0.9 and weight decay of 0.0005. For fine-tuning on fisheye
datasets, we decrease the learning rate of SGD to 0.0001. In
all of our experiments, we use a minibatch size of 128 and
apply data augmentations in the form of random rotations,
flips, resizing and color transformations. During inference,
we use input resolution of 1,024 x 1,024, however dur-
ing training we use 608 x 608 due to memory limitations.
In RAPiD+REPP, similarly to the original paper [16], we
filter frame-wise bounding-box detections of RAPiD with
a confidence score threshold of 0.1 and use a similarity
score threshold of 0.7 to link bounding boxes in consecu-
tive frames. In RAPiD+FA and RAPID+FGFA, we use the
feature maps of 11 consecutive frames to predict the bound-
ing boxes of the middle frame (K=5). In all algorithms,
we perform cross-validation to first find the best-performing
network weights on the validation set in terms of AP5g, and
then to tune the confidence threshold in order to maximize
the F-Score.

5.2. Dataset Splits

Although WEPDTOF is significantly larger than the cur-
rent datasets in terms of the diversity of scenes, the number
of people, etc., it is not large enough in terms of the number
of videos to be split into training-validation-test sets. Also,
some of the challenges introduced by WEPDTOF appear
in only one video (e.g., distorted aspect ratio and children).
Thus, we use all the videos in WEPDTOF for performance
evaluation. A combination of existing datasets (MS COCO
[25], MW-R [16], HABBOF [23] and CEPDOF [16]) serves
as the training set for all reported algorithms. We evaluate
the algorithms on WEPDTOF using 2-fold cross-validation
(the last column of Table 2 identifies 2 sets of videos). In
cross-validation, we use one of the sets as a validation set
to find the best set of hyper-parameters and the other set for
reporting the performance on unseen videos, and then we
swap their roles.

5.3. People Detection

Evaluation Metrics: We use average precision (AP) at
50% IoU, denoted as APs, as the main evaluation metric.
Unlike regular bounding boxes, rotated bounding boxes of
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people are not unique since the same person can be anno-
tated with multiple, equally-good bounding boxes at differ-
ent angles. Thus, even a very good people-detection algo-
rithm could have a relatively low IoU with the ground truth.
Therefore, we do not report AP results for IoU above 50%.

In addition to APsp, similarly to the MS COCO chal-
lenge [25], we report AP5o for small, medium and large
bounding boxes denoted as AP?O, AP and APL,, respec-
tively. Fig. 4 shows the histogram of bounding-box areas
in WEPDTOF. We divide the bounding boxes into three
groups: small (area < 1,200), medium (1,200 < area
< 8,000) and large (8,000 < area) based on their areas
normalized to image size of 1,024 x 1,024. Then, we cal-
culate APg0 between small bounding-box annotations and
small bounding-box detections, and similarly for AP% and
APL). We compute each of these scores as the macro-
average of per-video results for the videos with at least 100
small, medium or large bounding-box annotations.

5.0% small medium large
4.0% J

3.0%

g
S
X

Percentage

1.0%

0.0% -

102 103 104
Normalized Bounding Box Area

Figure 4: Histogram of bounding-box areas in the annota-
tions of WEPDTOF. All areas are normalized to image size
of 1,024 x 1,024.

APsq can be described as the area under the Precision-
Recall curve produced by changing the confidence thresh-
old of the detections. Although this is very useful for sum-
marizing the performance of an algorithm with a single
number, in real-life applications the confidence threshold
must be fixed. An optimal confidence threshold can be cho-
sen as the one which results in the best F-Score on a vali-
dation set. We report Precision, Recall and F-Score metrics
of the algorithms using this optimal confidence threshold
found during validation.

Results: Table 3 reports the performance of baseline
and proposed algorithms on WEPDTOF. The performance
for individual videos is detailed in the supplementary ma-
terial. Among the baseline algorithms, RAPiD outperforms
its competitors on nearly all of the evaluation metrics. This
was to be expected since RAPID is the only algorithm that
uses fisheye images in training with an angle-aware loss
function. Surprisingly, Precision and F-Score of RAPiD
are surpassed by AA and AB. To analyze these results in
more detail, Fig. 5 shows plots of Precision versus Recall
and F-Score against the confidence-score threshold. Al-

though RAPiD produces a higher area under the PR curve,
the AA and AB algorithms perform better than RAPiD for
high confidence-score thresholds suggesting that RAPiD
produces bounding boxes with smaller confidence scores.
This is likely due to the fact that the AA and AB algorithms
compute bounding-box predictions in overlapped windows
extracted from the same image and combine these results
in a post-processing step. Thus, they can analyze the same
person at multiple orientations which may boost the confi-
dence score of the detection. Note, however, that RAPiD is
over 10 times faster than AA and AB.

The proposed extensions of RAPiD achieve 2-5%-points
better AP5o score than the original version. This demon-
strates the importance of temporal information for people
detection. REPP improves the bounding boxes produced
by RAPiID by changing their confidence scores, locations
and sizes, but does not introduce new detections that are
not produced by RAPiD. Thus, the performance gain of
RAPiD+REPP is limited. By using an end-to-end integra-
tion of the temporal information, RAPiD+FA outperforms
RAPiD+REPP in terms of APj5q, but it is still outperformed
in terms of the F-Score. RAPiD+FGFA outperforms both of
these extensions in terms of all of the metrics with the help
of optical flow. The performance gains of the proposed ex-
tensions come with a trade-off in terms of efficiency. When
applied to bounding boxes aligned with image axes, REPP
is proven to be very efficient with just a few milliseconds
of extra computing time per frame [36]. During inference,
REPP computes IoU between all pairs of bounding-box pre-
dictions in consecutive frames. While this computation is
efficient for bounding boxes aligned with image axes, it
requires computationally-expensive geometric libraries for
rotated bounding boxes thus making it inefficient.

Among all of the compared algorithms, AP;-?O is 4-7 times
lower than AP} and APL,. Both MS COCO and fisheye
people-detection datasets used for training are very limited
in terms of small bounding boxes and this makes it challeng-
ing for learning-based algorithms to predict small bounding
boxes. Clearly, this is an open research direction for people-
detection algorithms from overhead fisheye cameras.

5.4. People Tracking

We use tracking by rotated bounding-box association
(see Section 4) to estimate tubelets in WEPDTOF videos.
We used a confidence threshold of 0.3 to filter bounding-
box predictions in each frame before the association step.
Folllowing the common practices in MOT, we use MOTA
[4], IDP, IDR and IDF1 [33] to compare the tracking per-
formance of the algorithms. Table 4 compares the per-
formance of RAPiD and its spatio-temporal extensions on
WEPDTOF. Similarly to the people-detection results, the
spatio-temporal extensions outperform RAPiD on almost
all metrics. RAPiD+REPP is significantly outperformed by
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Table 3: Performance of fisheye people-detection algorithms on WEPDTOF. Average run-times are computed on a node with

a single NVIDIA Tesla V100 GPU.

. .. Avg. run-time
Algorithm APsg AP?0 AP% APéO Precision Recall F-Score pger frame
Tamura ef al. [38] | 59.8 11.6 652 613 0.777 0.508 0.581 98 ms
Lietal. AA[23] 68.3 11.4  70.1 63.7 0.804 0.647 0.705 1477 ms
Li et al. AB [23] 69.8 158 713 63.1 0.818 0.643 0.702 1776 ms
RAPiID [16] 72.0 184 728 679 0.731 0.676 0.668 118 ms
RAPiD + REPP 73.7 198 742 70.2 0.794 0.679 0.703 1667 ms
RAPiD + FA 75.6 19.6 775 71.8 0.784 0.672 0.689 269 ms
RAPiD + FGFA 766 | 209 779 72.0 0.803 0.691 0.725 300 ms
10f —
07
08 0.6
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Figure 5: Performance of fisheye people-detection algorithms on WEPDTOF: Precision-Recall plots on left and F-Score
versus confidence threshold plots on right. Tamura et al. [38] is omitted since its performance is significantly lower.

Table 4: Performance of fisheye people-tracking algorithms
on WEPDTOF.

Algorithm MOTA IDP IDR |IDFI
RAPiD 383 567 413 450
RAPID + REPP | 3877 59.1 40.7 452
RAPiD + FA 477 672 479 533
RAPID + FGFA | 472 614 499 532

RAPiD+FA and RAPiD+FGFA. We believe this is due to
the end-to-end design of RAPiD+FA and RAPiD+FGFA.
Surprisingly, RAPiD+FA outperforms RAPiD+FGFA in
tracking although it was outperformed in detection.

We note that people-tracking performance scores shown
in Table 4 are significantly lower than respective people-
detection performance scores, e.g., IDFI versus F-Score.
This is likely due to the fact that we use simple post-
processing to compute the tubelets. We believe these track-
ing results can be improved by adapting ideas proposed in
MOT literature [8, 29] to OF cameras, a potentially promis-
ing future research direction.

6. Summary and Conclusions

We introduced WEPDTOF as a benchmark dataset to
evaluate the real-world performance of people-detection

and people-tracking algorithms for overhead fisheye cam-
eras. WEPDTOF is the only overhead-fisheye dataset
recorded in-the-wild and is much more diverse than the cur-
rent datasets, with 14 different scenes, 188 different iden-
tities and numerous real-life challenges. It is also consis-
tently labeled in time and thus suitable for the development
of people-tracking algorithms.

We evaluated the performance of 4 state-of-the-art
people-detection algorithms on WEPDTOF using multiple
metrics. Then, in order to increase the coherence of de-
tections across time, we introduced 3 spatio-temporal algo-
rithms for people detection from overhead fisheye images.
The proposed algorithms significantly outperform the cur-
rent state-of-the-art on nearly all of the reported metrics.

However, even the top algorithm, RAPiD+FGFA, is far
from perfect on WEPDTOF in terms of people detection
(AP5p of 76.6%), and in terms of people tracking (MOTA
of 47.2 and IDFI of 53.3%). Clearly, more research is
required to produce better performing algorithms that can
be used for real-world tasks. Computational efficiency is
another direction for future research — the current algo-
rithms are far from real-time execution. Further advances
in these areas are needed before people detection from over-
head cameras becomes a reliable tool in practice. We hope
WEPDTOF will prove beneficial in this quest.
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