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Abstract

Planet-scale photo geolocalization is the complex task of
estimating the location depicted in an image solely based on
its visual content. Due to the success of convolutional neu-
ral networks (CNNs), current approaches achieve super-
human performance. However, previous work has exclu-
sively focused on optimizing geolocalization accuracy. Due
to the black-box property of deep learning systems, their
predictions are difficult to validate for humans. State-of-
the-art methods treat the task as a classification problem,
where the choice of the classes, that is the partitioning of the
world map, is crucial for the performance. In this paper, we
present two contributions to improve the interpretability of
a geolocalization model: (1) We propose a novel semantic
partitioning method which intuitively leads to an improved
understanding of the predictions, while achieving state-of-
the-art results for geolocational accuracy on benchmark
test sets; (2) We introduce a metric to assess the importance
of semantic visual concepts for a certain prediction to pro-
vide additional interpretable information, which allows for
a large-scale analysis of already trained models. Source
code and dataset are publicly available1.

1. Introduction
Image geolocalization is the challenging task of predict-

ing the location of a photo in form of GPS coordinates based
only on its visual content. Almost all state-of-the-art ap-
proaches for planet-scale image geolocalization [20, 31, 42]
define the task as a classification problem, where the earth
is divided into geographical cells (called partitioning), and
train Convolutional Neural Networks (CNNs) with a huge
amount of labeled data in an end-to-end fashion. This strat-
egy and the large amount of parameters in the networks
turn them into a kind of black-box-systems, whose rea-
soning and predictions are not comprehensible – making

1https://github.com/jtheiner/semantic_geo_partitioning
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Figure 1. Example output of a geolocalization model with our pro-
posed semantic partitioning for more explainable geolocation esti-
mation (left) compared to an existing partitioning approach (right).
Additionally, we measure the influence of visible concepts on the
prediction of a model given an explanation and segmentation map.

it necessary to develop methods to understand their deci-
sions [5, 7]. This is particularly a requirement for geolo-
calization systems for two reasons. First, humans are far
worse at estimating locations than current deep learning ap-
proaches [42]; second, research has focused exclusively on
maximizing localization accuracy, but lacks proposals for
interpretable and explainable models.

While many approaches (e.g., [2, 21, 28, 29, 40]) re-
strict the problem of photo geolocalization to a part of the
earth (e.g., landmarks or mountains), predicting coordinates
at planet-scale without any restrictions is more complex.
Landmarks (usually tourist attractions) can partly be ver-
ified by humans, whereas many photos give little indica-
tion of the actual place or region. As a result, the question
arises which features have been learned and which image
features are relevant for a given prediction. Furthermore,
the quadratic boundaries of the s2 partitioning [42] are ar-
bitrary (see Figure 1) and the cells of CPlaNet [31] are ini-
tialized randomly which is counter-intuitive with regard to
comprehensibility. Following these considerations, a CNN-
based approach for geolocation estimation should therefore
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also be assessed with regard to the interpretability of its re-
sults.

In this paper, we address this issue and introduce a
novel semantic partitioning (SemP) method where the cells
are not rectangular or arbitrarily shaped as in previous ap-
proaches [20, 31, 42]. Instead, the partitioning consid-
ers real and interpretable locations derived from territo-
rial (e.g., streets, cities, or countries), natural (e.g., rivers,
mountains), or man-made boundaries (e.g., roads, railways,
or buildings) extracted from Open Street Map (OSM) [23]
data (Figure 1). This partitioning better reflects location en-
tities and we argue that photos taken within these bound-
aries also more likely share similar geographic attributes.
As a result, training and output of a model are more compre-
hensible to humans by default, while at the same time, state-
of-the-art results on common test sets are achieved. In addi-
tion, we suggest a concept influence metric to investigate the
post-hoc interpretability by measuring the influence of se-
mantic visual concepts on individual predictions (example
in Figure 1). Experimental results show that the novel se-
mantic partitioning method achieves (at least) state-of-the-
art performance, while the concept influence score provides
insights which visual concepts contribute to correct and in-
correct (or misleading) predictions.

The rest of the paper is organized as follows. Related
work for photo geolocation estimation is reviewed in Sec-
tion 2. The novel semantic partitioning method and concept
influence score are described in Section 3, while experimen-
tal results are reported in Section 4, both for accuracy and
interpretability of the results. Section 5 summarizes the pa-
per and outlines areas of future work.

2. Related Work
Whereas only few approaches [13, 20, 31, 41, 42] are

applicable at planet-scale without limitations, the major-
ity simplifies the task of geolocalization, for example, by
predicting landmarks and cities [2, 21, 28, 43], natural ar-
eas [3, 18, 29, 30, 40], or geo-related attributes [17].

Previous work uses either image retrieval approaches or
models the task as a classification problem. The task of
geolocation estimation at planet-scale has an overlap with
methods from instance-level image retrieval [2, 6, 21, 26,
39] where benchmark datasets consist of popular places,
landmarks, and tourist attractions [14, 24, 25] which can
be verified by humans. Common to all is the usage of
triplet ranking or contrastive embeddings to learn discrim-
inative image representations, whereas Liu et al. [19] in-
troduce an alternative loss function. These representations
are used to retrieve the most similar images in a reference
database in order to determine the geolocation as proposed
by Im2GPS [8, 9]. Weyand et al. [42] introduce the classifi-
cation approach PlaNet, where a GPS coordinate is mapped
to a discrete class label using a quad-tree approach that

divides the surface of the earth into distinct regions us-
ing the s2 geometry library [27]. This s2 partitioning is
used at multiple spatial scales to exploit hierarchical knowl-
edge [20, 41]. A pre-classification step assigns a photo to
one of three scene types (natural, urban, indoor) and leads
to improvements [20]. Seo et al. [31] propose a combina-
torial partitioning where the overlaps of multiple coarse-
grained partitionings create one fine-grained partitioning.
Izbicki et al. [13] introduce the Mixture of von-Mises Fisher
(MvMF) loss function for the classification layer that ex-
ploits the earth’s spherical geometry and refines the geo-
graphical cell shapes in the partitioning. Kordopatis-Zilos
et al. [15] combine classification [13, 20] and retrieval tech-
niques to leverage the advantages of each approach, i.e.,
learning global knowledge from classification and exploit
local features via retrieval (landmark matching).

3. Interpretable Semantic Photo Geolocation

As the discussion of related work reveals, all ap-
proaches (classification and retrieval) rely on features from
CNNs that are learned with the use of a partitioning.
Their predictions are difficult to interpret and the construc-
tion of the partitioning is crucial for the system perfor-
mance [31, 41]. The following two subsections address two
issues with regard to interpretability. First, a novel partition-
ing method is proposed that relies on data that are derived
from a geographic database where metadata about many re-
gions and places such as their size or exact boundaries is
provided. Second, a method is presented to automatically
assess image features that are relevant for a model’s deci-
sion based on semantic visual concepts like waterfall or per-
son. Their workflows and connections are outlined in Fig-
ure 2.

3.1. Semantic Partitioning

State-of-the-art methods for photo geolocalization rely
on classification approaches [20, 31], where the design of
the classification layer is crucial for the model’s output with
respect to prediction accuracy, but also regarding the infor-
mation that is provided to users. The main idea is to di-
vide the earth surface into a discrete set of classes C based
on the dataset distribution to then train a classification net-
work [42]. We follow the same idea, but after all our cells
cover territorial borders (e.g., countries, cities), natural ge-
ological boundaries (e.g., rivers, mountains) or man-made
barriers (e.g., roads or railways that separate districts). In
addition to an improved understanding of the created cells,
the assumption is that a CNN learns better image repre-
sentations, since the resulting geographic cells might better
represent locations and are thus more distinguishable. The
following steps describe formally how that semantic parti-
tioning (SemP) is constructed.
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Figure 2. Overview of the bipartite system: Top (blue): Workflow
to create a semantic partitioning (SemP), bottom (orange): Com-
ponents to measure the concept influence for individual samples.

3.1.1 Reverse Geocoding & Hierachy Construction

Following the idea of classification, a mapping is needed
from the continuous GPS coordinate space to a discrete
set of existing locations which is called reverse geocod-
ing. Frameworks for reverse geocoding generate an address
vector, e.g., (Long Beach, Los Angeles County, Califor-
nia, USA) with a coordinate as input. We choose Nomina-
tim [22] since it is open source software and relies on OSM.
Formally, a reverse geocoder maps each coordinate y(i) =
(latitude, longitude) in a dataset D = {y(1), y(2), . . .} to an
address vector l(i) = (l1, . . . , lu) of arbitrary length u and
is ordered from fine to coarse. This mapping is denoted as
Dl = {l(1), l(2), . . .}.

Hierarchy Construction: Since hierarchical knowledge
is valuable with respect to performance [20, 42] and all
necessary information is already provided by the reverse
geocoder, we construct a hierarchy similar to the s2 li-
brary [42] but with semantically meaningful nodes and
edges. In order to create a partitioning from the obtained
addresses Dl, it is required to build a hierarchy where each
discrete location l (e.g., Long Beach) can be assigned to
its next coarser distinct location (e.g., Los Angeles County).
A directed (multi-) graph G = (V,E) can be constructed
using all edges that occur in the mapping Dl. The to-
tal number of nodes corresponds to the number of loca-
tions; an edge exists between two adjacent nodes encoded
in the mapping Dl, i.e., (li, li+1)∀i ∈ [1, . . . , u − 1] for
every l = (l1, . . . , lu) ∈ Dl. Nodes without outgoing
edges (roots) usually correspond to countries. Ideally, G
consists only of trees, where exactly one parent node is as-
signed to each node with the exception of the root nodes.

Otherwise, G must be transformed into a hierarchy. For
each location only the most frequent outgoing edge is kept.
Reasons for multiple parents are possible incorrect assign-
ments for some instances or missing assignments that cause
shortcuts. Therefore, the mapping Dl is subsequently re-
placed with the locations from the shortest path of the finest
location l1 in (l1, ..., lu) = l ∀l ∈ Dl to its root node in
the hierarchy G and is referred to as Dl∗ .

3.1.2 Partitioning Construction & Cell Assignment

In order to create the SemP, the set of coordinates D is first
transformed to a (hierarchical) multi-label dataset as de-
scribed in Section 3.1.1. A valid partitioning would be to
consider only the finest location l

(i)
1 for each l(i). In prac-

tice, a huge number of classes is not manageable and previ-
ous work (e.g., [42]) controls the granularity of a partition-
ing. This choice of granularity entails a trade-off problem.
While fewer but larger (in terms of geographic area) cells
decrease the geospatial resolution of the model outputs,
more but smaller cells are more challenging to distinguish.
They also make the model susceptible to overfitting due to
the lower number of available training images per cell [31].
Moreover, geographic information at different spatial reso-
lutions are important to identify locations of varying gran-
ularity (e.g., buildings, cities, or countries). To construct a
partitioning C at a certain spatial level, we first delete all
locations from the derived hierarchy G with less than τmin
images. As a result, we derive a mapping Dl∗ with the re-
maining locations in the graph. The finest locations in Dl∗

form a partitioning, i.e., all l1 from all l ∈ Dl∗ . To assign
a dataset Dnew to classes from a created partitioning C, two
steps are necessary. First, the same reverse geocoder has
to create an initial assignment Dl∗

new and these discrete lo-
cations are filtered by the available locations (now classes)
from the partitioning C. Given the i-th sample l(i) ∈ Dl∗

new,
the location l

(i)
1 from l(i) corresponds to the finest available

one according to the partitioning C.

3.1.3 Learning & Inference

With the classes C obtained from the presented partition-
ing method, a CNN can be trained directly on the classi-
fication task using the cross-entropy loss (LCE) where the
number of classes corresponds to the number of cells of the
partitioning. Initially, only a dataset of image-coordinate
pairs is necessary where the coordinates are transformed
to classes according to Section 3.1.2. Multiple partition-
ings can be combined to force the model to learn some kind
of hierarchical knowledge. Given a tuple of partitionings
P = (C1, ...,Cn) which differ only in τmin (i.e., controls the
number of classes) and are ordered from fine to coarse, each
cell in Ci can be assigned to its corresponding cell in Ci+1

752



by exploiting the hierarchy G. One fully-connected layer
per partitioning Ci is added on top of an appropriate CNN
architecture. During training, the multi-partitioning classi-
fication loss is defined as the sum of all individual losses
per partitioning Lmulti

CE =
∑|P|

i=1 Li
CE. During inference, the

class at the finest partitioning with the highest probability
after applying the softmax function corresponds to the pre-
dicted cell ĉ. We use the average GPS coordinate of the as-
signed samples from D during the partitioning process from
the respective class as geolocation prediction.

3.2. Measuring the Input Feature Importance

In the task of photo geolocalization, we do not know
which image regions are crucial for the model’s prediction
and cannot validate the decisions. While methods for the
visualization of feature attributions have been researched
in recent years, the main focus was on object recognition
where the highlighted areas are comprehensible at least to
humans [1]. Inspired by these approaches, we propose a
method to measure the influence of specific objects (e.g.,
vehicle or person) and semantic image regions (e.g., sky or
ground) regarding the model’s prediction. The goal is not
to identify a concrete concept that is responsible for the pre-
diction – which would be counter intuitive, since a decision
should not be reduced to image regions exclusively. Rather
it can be helpful to estimate the overall impact of a given se-
mantic concept, to identify misleading concepts, or to pro-
vide explanatory information in form of a more compre-
hensible (text and quantitative values) and summarized (re-
duced to relevant concepts) explanation map to users. At-
tribution maps also provide an importance value per pixel,
but also a lot of noise [33] and allow the observer freedom
in the interpretation.

Required Components: Formally, an input image x ∈
Rw×h×d and a CNN Ψ are required. Only two compo-
nents are needed to calculate the influence of concepts on
the prediction. An explanation map e assigns an impor-
tance score to each input pixel of x for a certain predic-
tion [32, 34, 36], e.g., a target class ĉ in case of a classifica-
tion model. The maximum over the (color) channel dimen-
sion d is taken as only image regions are of interest, hence
we define e : Rw×h×d 7→ Rw×h. Please note, that usually
only the gradients of the model Ψ have to be accessible for
the calculation. A segmentation map m divides image areas
into semantic groups (e.g., a region, object, or texture). The
segmentation mask for one concept s ∈ S is the indicator
function where the presence of s on a pixel is indicated by
m : Rw×h×d 7→ {0, 1}w×h and denoted as m(x, s).

Assuming that the area of the segmentation boundaries,
i.e., the border between two concepts is of interest for the
geo model resulting in activations in the explanation map,
the active area of the binary mask m(x, s) for concept s can

be enlarged β pixels around its shape boundary using a mor-
phological dilation, and is denoted as mβ(x, s) as seen in
Figure 2 (orange colorized area around the camel’s surface).

Concept Influence: The aim is to measure the influence
of a specific concept s using the explanation map e(x, ĉ)
and the segmentation map m(x, s) for a specific concept s.
As stated by Ghorbani et al. [4], in many settings only the
most important features are of explanatory interest. They
compute the pixel-wise intersection of the k most impor-
tant features from e(x, ĉ) to measure the difference between
two explanation maps (top-k intersection). However, this is
done for a slightly different purpose, that is generating and
evaluating manipulated explanation maps. Inspired by this,
we adapt this measure to define the influence of a concept s
visible in image x with respect to a geoprediction ĉ of the
model. We define the pixel-wise intersection tki between
the binary segmentation mask m(x, s) and the binary mask
of the top-k features ek(x, ĉ) as

tki =
1

k

w∑
i=1

h∑
j=1

m(x, s)i,j ∧ ek(x, ĉ)i,j (1)

where m(x, s) and ek(x, ĉ) are both in {0, 1}w×h and ∧ is
the pixel-wise boolean and operation. For instance, if all
top-k pixels are within the shape of the concept s then tki =
1. In our experiments, we set the parameter k to 1,000 as
proposed by Ghorbani et al. [4]. As large objects or areas
are preferred, a normalization step is crucial for application.
The defined top-k intersection (tki) is hence normalized by
the relative size of the concept which is defined as:

s :=
1

wh

w∑
i=1

h∑
j=1

(
m(x, s)

)
i,j

(2)

The resulting score is the definition of the concept influ-
ence (ci) metric ci

(
m(x, s), ek(x, ĉ)

)
= tki/s. A ci score

of less than or equal to one means that the top-k pixels of
the explanation map are more likely to be in other regions
of the image, i.e., class s has little or no influence on the
final prediction. The ci score indicates whether a concept
s contains relatively large number of activations of the ex-
plainer e. When fixing the minimum required relative con-
cept size to 0 < smin < 1, ci ∈ [0, 1

smin
] is well defined and

only those concepts are considered for the calculation that
cover at least this area. Additionally, we assume that small
concepts that cover only a minimal area in the image to be
irrelevant or noisy and set smin = 0.05 in our experiments.

Finally, given a segmentation map m and an explanation
map e for model Ψ, the introduced metric ci automatically
measures the impact of semantic image regions for the pre-
diction.
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4. Experimental Results
In this section, the proposed partitioning method is eval-

uated with respect to geolocational accuracy and its capabil-
ity of providing an improved interpretability (Section 4.1).
Afterwards, the concept influence metric introduced in Sec-
tion 3.2 is evaluated (Section 4.2).

4.1. Semantic Partitioning

We demonstrate the capability of our approach through a
comparison with several state-of-the-art models, including
a model that also exploits the hierarchical knowledge from
multiple partitionings [20], on three benchmark datasets.

4.1.1 Experimental Setup

Datasets & Evaluation Metric: We utilize the MediaEval
Placing Task 2016 (MP-16) [16] dataset which is a sub-
set from the Yahoo Flickr Creative Commons 100 Million
(YFCC100M) [38] both for partitioning construction and
training. Its only restriction is that an image contains a
GPS coordinate, thus it contains images of landmarks, land-
scape images, but also images with little to no geograph-
ical cues. Like Vo et al. [41], images are excluded from
training if there are photos taken by the same authors in the
Im2GPS3k test set and duplicates are removed, resulting in
a dataset size of 4,723,695 image-coordinate pairs. For val-
idation, a randomly sampled subset of 25,600 images from
YFCC100M without overlap to the training images is cre-
ated and denoted as YFCC-Val26k. For testing, we focus
on three popular benchmark datasets: YFCC4K [41] comes
from the same image domain as the training dataset but
is designed for general computer vision tasks making the
test set more challenging. In contrast, the Im2GPS [8] and
Im2GPS3k [41] datasets contain some landmarks, but the
majority of images is recognizable only in a generic sense
like landscapes.

For evaluation, the geolocational accuracy at multiple er-
ror levels, i.e., the tolerable error in terms of distance from
the predicted lpred to the ground-truth location lgt is calcu-
lated [41, 42]. Formally, the geolocational accuracy ar at
scale r (in km) is defined as follows for a set of N samples:

ar ≡ 1

N

N∑
i=1

u
(
d(l

(i)
gt , l

(i)
pred) < r

)
, (3)

where the distance function is the Great Circle Distance
(GCD) and u(·) is the indicator function whether the dis-
tance is smaller than the tolerated radius r.

Partitioning Parameters: First, the coordinates from
the MP-16 are transformed to a multi-label dataset contain-
ing 2,191,616 unique locations. To initially reduce the num-
ber, we delete all locations with less then 50 images. re-
sulting in manageable 46,240 unique locations. Due to the

proven importance of a multi-partitioning [20, 31, 41], we
directly evaluate this setting. For a fair comparison, we con-
struct a multi-partitioning that consists of three individual
partitionings (coarse, middle, fine) with a similar total num-
ber of unique classes compared to Müller-Budack et al. [20]
and follow their notation. To construct a multi-partitioning,
several thresholds τmin can be applied to get a similar num-
ber of classes, as shown in Table 1. For this reason, we
select the model that performs best on the validation set for
the comparison and evaluation on the test sets. Furthermore,
we investigate three additional settings: (1) To keep the pa-
rameters fixed, but applying one filter, i.e., utilization of lo-
cations that are associated with geographic area stored as a
(multi-)polygon according to OSM (denoted as SemPa); (2)
testing the hierarchical prediction variant (f vs. f∗); and (3)
testing the scalability by doubling the number of classes.

Network Training & Inference: We choose the com-
monly applied ResNet-50 [10, 11] and EfficientNet-B4 [37]
as network architectures with an input dimension of 224 ×
224× 3 and 300× 300× 3, respectively. As the ResNet-50
provides a good trade-off in terms of training time and per-
formance, it is applied for the ablation study (testing sev-
eral partitioning parameters). The classification layers are
added on top of the global pooling layer. Instead of initial-
izing the parameters of all models with ImageNet weights,
the weights from a model trained for ten epochs on coun-
tries is taken to derive features related to the problem. The
SGD method with an initial learning rate of 0.01, a momen-
tum of 0.9, and weight decay of 10−4 is used to optimize for
15 epochs. The learning rate is exponentially decreased by
a factor of 0.5, initially after every three epochs, and every
epoch from epoch 12 on. Training is performed with a batch
size of 200 and validation is done after 512,000 images. De-
tails for pre-training and image augmentation methods dur-
ing training are reported in the appendix. The model with
the lowest loss Lmulti

CE on the validation set is chosen. During
inference, five crops are made and the mean prediction after
applying softmax is taken.

Table 1. Experimental results on the validation set of YFCC-
Val26k for several multi-partitonings where |C| is the total number
of unique classes.

Configuration |C|
ar [%] @ km

1 25 200 750 2500

SemP({100, 125, 150}, f∗) 14877 4.8 11.0 18.5 33.6 53.9
SemP({100, 125, 150}, f) 14877 7.5 15.8 23.8 38.0 56.6
SemPa({100, 150, 250}, f) 12886 6.2 16.1 24.4 38.0 55.3
SemP({100, 150, 250}, f) 15127 6.6 16.4 24.0 37.6 55.4
SemP({100, 125, 250}, f) 15016 7.5 15.9 24.1 38.3 56.6
SemPa({75, 100, 150}, f) 16808 6.6 16.4 24.0 37.6 55.4
SemP({50, 75, 100}, f) 34049 8.9 16.6 24.1 37.9 56.3
s2(M, f∗) 15606 6.8 16.4 24.6 38.4 56.8

754



4.1.2 Results on the Validation Set

The geolocational accuracies on the YFCC-Val26k valida-
tion set are reported in Table 1. Results demonstrate that
the exact choice of partitioning hyperparameters is not es-
sential. All configurations with similar number of classes
perform similarly well. Surprisingly, the hierarchical pre-
diction (f∗) [20] is, in contrast to the assumptions, worse
than considering only the finest partitioning (f ). One tech-
nical reason might be the fundamental different underlying
structure of the hierarchy G in contrast to the quad-tree [42],
resulting in a significantly lower depth and more variable
number of child nodes. Humans may perceive locations hi-
erarchically, but these coarse regions are not the ones with
visually discriminative features.

4.1.3 Benchmark Results

From the models evaluated on the validation set, we
select the one that has the best geolocational accu-
racy (SemP({100, 125, 250}, f)), particularly for the er-
ror levels of 1 km, 750 km, and 2,500 km. Further,
we assess the performance of one model consider-
ing only locations where geographic areas are available
(SemPa({100, 150, 250}, f ), and where the number of
classes is doubled (SemP({50, 75, 100}, f)). As stated in
the experimental setup, we test these configurations with
two different CNN backbones. Quantitative results are re-
ported for three test sets in Table 2.

State-of-the-Art Partitioning: To evaluate the effective-
ness of the proposed SemP to the commonly used s2
partitioning – which currently leads to state-of-the-art re-
sults [15] – we fix the entire setup and only compare the re-
spective partitioning methods. As s2(M,f∗) [20] provides
state-of-the-art results without the usage of ensembles or
other additional extensions, we reproduce the results using
a ResNet with 50 instead of 101 layers for a fair compari-
son. The reproduced results (s2(M,f∗) (rep.)) are slightly
better than the original (even using a less complex model)
which is caused by the modified training procedure. The
more complex EfficientNet architecture improves results in
general. However, it seems to have better capabilities for
SemP to extract relevant features than with the s2 partition-
ing. The advantage of SemP compared to s2 is only partially
seen when using the ResNet but tends to achieve slightly
better or very comparable results otherwise.

For the model trained on cells with existing geodata (area
shape boundaries), the performance drops at finer scale but
remains similar for the other scales since geodata is more
often available in OSM for coarser regions. While doubling
the classes can improve the accuracy at street level (less than
1 km error) it leads to worse results on coarser scales, as also
observed by previous work [13].

Table 2. Geolocational accuracy (ar) of SemP compared to sev-
eral geolocalization approaches on common benchmark datasets.
ResNet-50 and EfficientNet-B4 are applied for fair comparisons to
the state of the art. Retrieval extensions and ensembles typically
improve the performance and are colored gray.

ar [%] @ km
Approach 1 25 200 750 2500

Im2GPS3k [41] (2,997 images): geo-recognizable (generic)

[L]7011C [41] 4.0 14.8 21.4 32.6 52.4
[L]kNN, σ = 4 [41] 7.2 19.4 26.9 38.9 55.9
PlaNet [42] (rep.) [31] 8.5 24.8 34.3 48.4 64.6
CPlaNet[1-5, PlaNet] [31] 10.2 26.5 34.6 48.6 64.6
MvMFB4 (rep. [15]) 13.1 29.8 38.0 52.3 67.6
ISN(M, f∗, S3) [20] 10.5 28.0 36.6 49.7 66.0
s2B4(M, f∗) (rep. [15]) + RRM 13.2 29.1 37.8 52.0 68.1
MvMFB4 (rep. [15]) + RRM 15.0 30.0 38.0 52.3 67.6
s2B4(M, f∗) (rep.) 11.5 30.8 41.0 55.7 70.8
SemPB4({100, 125, 250}, f) 12.5 31.4 42.7 57.3 72.0
SemPB4({50, 75, 100}, f) 13.5 30.8 41.2 54.7 70.2
s2(M, f∗) [20] 9.7 27.0 35.6 49.2 66.0
s2(M, f∗) (rep.) 10.0 27.0 36.5 50.9 67.2
SemP({100, 125, 250}, f) 11.1 27.1 36.7 50.4 66.1
SemPa({100, 150, 250}, f) 9.6 26.9 36.8 49.7 65.1
SemP({50, 75, 100}, f) 11.5 27.0 36.3 49.3 65.9

YFCC4k [41] (4,536 images): no image restrictions

[L]kNN, σ = 4 [41] 2.3 5.7 11.0 23.5 42.0
PlaNet [42] (rep.) [31] 5.6 14.3 22.2 36.4 55.8
CPlaNet[1-5, PlaNet] [31] 7.9 14.8 21.9 36.4 55.5
MvMFB4 (rep. [15]) 6.8 14.4 21.9 37.5 56.4
s2B4(M, f∗) (rep. [15]) + RRM 7.2 13.3 21.6 36.5 55.4
MvMFB4 (rep. [15]) + RRM 7.9 14.3 21.9 37.4 56.5
s2B4(M, f∗) (rep.) 7.5 19.2 28.2 42.0 59.2
SemPB4({100, 125, 250}, f) 9.4 20.3 30.6 44.8 61.2
SemPB4({50, 75, 100}, f) 12.1 22.3 30.6 43.5 60.4
s2(M, f∗) (rep.) 6.6 16.4 24.1 36.8 55.1
SemP({100, 125, 250}, f) 7.3 15.3 23.9 37.2 54.3
SemPa({100, 150, 250}, f) 6.1 15.8 23.9 36.8 52.6
SemP({50, 75, 100}, f) 9.3 17.1 24.1 36.9 54.3

Im2GPS [8] (237 images): majority shows landmarks

Human [41] - - 3.8 13.9 39.3
Im2GPS [8] - 12.0 15.0 23.0 47.0
[L]kNN, σ = 4, 28M [41] 14.4 33.3 47.7 61.6 73.4
[L]7011C [41] 6.8 21.9 34.6 49.4 63.7
PlaNet [42] 8.4 24.5 37.6 53.6 71.3
CPlaNet[1-5, PlaNet] [31] 16.5 37.1 46.4 62.0 78.5
MvMF (c = 217) [13] 8.4 32.6 39.4 57.2 80.2
MvMFB4 (rep. [15]) 19.8 44.7 55.7 67.5 81.9
ISN(M, f*, S3) [20] 16.9 43.0 51.9 66.7 80.2
s2B4(M, f∗) (rep. [15]) + RRM 18.6 41.8 55.3 69.2 82.7
MvMFB4 (rep. [15]) + RRM 21.9 44.3 55.3 67.5 81.9
s2B4(M, f∗) (rep.) 14.3 42.6 55.7 71.3 81.9
SemPB4({100, 125, 250}, f) 16.9 42.6 56.1 69.6 84.8
SemPB4({50, 75, 100}, f) 19.4 41.2 56.1 68.0 81.0
s2(M, f) 14.8 39.7 49.8 64.1 79.7
s2(M, f∗) (rep.) 15.2 40.9 51.9 65.8 80.6
SemP({100, 125, 250}, f) 15.2 36.7 48.1 64.1 78.1
SemPa({100, 150, 250}, f) 12.7 37.1 48.1 64.6 78.1
SemP({50, 75, 100}, f) 16.0 38.4 49.4 63.7 78.5

State-of-the-Art Results: Especially when using the Ef-
ficientNet architecture, SemP is superior to state-of-the-art
models [13, 20, 31] on almost all scales and test sets in-
cluding re-implementations from [15] that use the same un-
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derlying architecture and training dataset. Superior results
are achieved even without using ensembles and additional
retrieval extensions (colored gray) that could be considered
for further improvements but is out of scope of this paper.

Qualitative Comparison: Nevertheless, the goal is to
develop a partitioning that is intuitively comprehensible to
humans, and yet delivers state-of-the-art results. In the fol-
lowing, we discuss the findings from some qualitative re-
sults in detail with a focus on the interpretability of in-
dividual predictions. In Figure 3 (the two lower rows)
four examples from Im2GPS3k are visualized where both
SemPa({75, 100, 150}, f) and s2(M,f) share the same
range of geolocational accuracy. For each partitioning, the
cells with the top probabilities (max. 25) are colored in the
zoomed region of the world map. The predicted label is
depicted below the maps. Both models are trained on two
different types of partitionings and achieve similar geoloca-
tional accuracies. However, there are two main advantages
of the proposed partitioning method over the s2 method dur-
ing inference. First, not only a coordinate is provided but
also the human-readable class label (e.g., ”la Sagrada Fa-
milia, Barcelona, Spain”) where its level of detail is ordered
according to the semantic hierarchy and provided metadata.
Second, the visualization on the relevant part of the world
map is much more clearly structured (Figure 3 third row)
since the boundaries of the cells are not arbitrary selected
but rather follow geographical borders which finally leads
to a better understanding of a prediction. In line with this,
the procedure of constructing smaller or more detailed cells
is more natural in semantic partitioning SemP, since it fol-
lows a real hierarchical structure (e.g., from city to district),
in contrast to the s2 algorithm with a hierarchy fixed to ex-
actly four finer cells due to its underlying quad-tree.

4.2. Understanding the Input Feature Importance

It is likely that certain visual concepts influence the pre-
dictions of a model differently at various geographical lev-
els. For instance, for landmarks, architectural features are
probably dominant, whereas for landscapes with few visual
clues to a concrete location, vegetation may provide some
cues for a rough estimate. To investigate the proposed ci
score for several concepts on such geographic levels, we
aggregate the ci score for each concept s ∈ S. We examine
three geographic levels, where we assume the model pre-
dicts the location correctly based on different geographic
properties. In particular, we consider [0 − 25) km for pre-
cisely predictable locations, [25− 750) km for regions, and
[750 − 2500) km for photos with few visual cues for a
concrete location. These are strict intervals where, for in-
stance, a photo with a GCD < 1 km is not considered for
the [25−750) km interval. To aggregate the ci, we compute
the median (cimedian) and use it instead of the mean to ig-
nore larger outlier(s). Please note, that similar conclusions
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Figure 3. Output of the proposed concept influence metric in ad-
dition to the explanation map [36] and qualitative comparison of
predictions from the SemPa model and s2(M, f) [20] (last two
rows). The top-25 classes and probabilities are visualized on the
zoomed world map. Below is the predicted class label whereas the
red marker is the predicted coordinate (blue is ground-truth).

can also be drawn from the mean value (see Appendix). Ac-
cording to its definition (Section 3.2), the ci score for con-
cepts with geographic clues is expected to be greater than
or equal to one, whereas the score for concepts without any
hints should be close to zero.

Setup: We apply the ci score to YFCC-Val26k due to its
larger size compared to the test sets, and focus on the repro-
duced s2(M,f∗) model in this experiment. Since current
segmentation models achieve high-quality results, we ap-
ply the HRNetV2 [35] which is trained on the ADE20k [44]
dataset that contains 150 object classes (e.g., person, car,
bottle) and concepts for scene parsing (e.g., sky, ground,
mountain) and is therefore well suited. According to a
study [12], the method of Integrated Gradients [36] is cho-
sen as explanation method, extended by SmoothGrad [33]
which seeks to alleviate noise in explanation maps. Insert-
ing random Gaussian noise in n copies of the input image
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Table 3. The concept influence (cimedian) aggregated for each visual concept (s) in YFCC-Val26k and binned into spatial intervals depending
on the achieved GCD error in km. Presented are the highest and lowest k = 10 concepts per spatial interval according to ci.

top-10 lowest-10
[0− 25) [25− 750) [750− 2500) [0− 25) [25− 750) [750− 2500)

s |s| ci s |s| ci s |s| ci s |s| ci s |s| ci s |s| ci

tower 58 1.51 windowpane 109 1.74 windowpane 119 2.13 floor 354 0.24 table 119 0.15 base 67 0.22
sky 2114 1.29 animal 142 1.4 animal 162 1.38 car 149 0.21 field 150 0.15 chair 70 0.19
animal 58 1.26 sky 2494 1.38 sky 1518 1.15 earth 486 0.16 path 54 0.14 sand 65 0.18
building 1851 1.13 house 92 1.3 person 2218 1.15 water 432 0.16 grass 761 0.12 grass 521 0.18
mountain 439 1.09 mountain 571 1.18 building 1083 1.1 plant 206 0.13 railing 61 0.12 field 78 0.17
windowpane 51 1.04 airplane 74 1.09 mountain 279 1.09 grass 380 0.11 bicycle 58 0.11 table 185 0.17
bridge 86 0.96 building 1658 1.06 airplane 53 1.09 sand 70 0.08 chair 66 0.09 bicycle 62 0.13
person 1223 0.79 person 2015 0.99 flower 103 1.06 field 66 0.08 road 620 0.08 seat 68 0.09
grandstand 61 0.79 flower 101 0.95 tree 1247 0.97 road 463 0.07 sand 114 0.08 sidewalk 198 0.09
wall 1092 0.74 tree 1889 0.9 painting 141 0.91 sidewalk 303 0.04 sidewalk 294 0.07 road 383 0.08
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Figure 4. Absolute cimedian scores for a selection of visual concepts
divided in three geographic intervals.

and then averaging the produced explanation maps cleans
up artifacts. The noise parameter is set to σ = 0.15 as
suggested by the authors, but the sample size is reduced
from 20 to 5 due to computing complexity without major
result changes. Please note, that the variant as in [12] is
used which squares each value before averaging.

Influence of Individual Concepts: We report results for
the top-k and lowest-k ci scores, i.e., concept label, cimedian,
and the number of concepts (|s|) that fall into the evaluation
interval. Table 3 shows results for concepts that occur in
at least 50 images and where the morphological dilation is
set to β = 0. The complete table containing all concepts
can be found in the Appendix. Figure 4 shows the absolute
cimedian per concept for the respective geographic interval
with a selection of concepts with high discrepancies. The
following observations can be made from Table 3. Concepts
like tower, building, bridge, or mountain have a high influ-
ence (cimedian ⪆ 1) at the [0, 25) km interval and correspond
to expected concepts to locate a place more precisely. On
the contrary, concepts like grass, road, water, or car have
very limited influence (cimedian ⪅ 0.2), which seems reason-
able since these concepts are rather general concepts that are
visually similar all over the world. The concept of sky has

an initially surprisingly large influence on the prediction.
The two examples in Figure 3 (last two images) indicate
that architectural details of buildings or peaks of mountain
ranges can be relevant, i.e., the sky-touching concepts. With
the introduction of the morphological dilation (mβ(x, s))
this area is covered. A repetition of this experiment with
the enlarged area (β = 3) confirmed this assumption. Since
the ci increases for windowpane, person, tree, or animal on
higher geographical levels, such concepts are more relevant
for rough estimations, where there are few visual clues to
a more concrete location. Lastly, the examples in Figure 3
show an additional property of the presented metric for sin-
gle instances. It does not determine the particular concept
that is crucial for a prediction but rather which concepts are
influential.

5. Conclusions

In this paper, we have presented a novel semantic photo
geolocalization system that allows for the interpretation of
results. To achieve this, we have proposed a semantic parti-
tioning method that leads to an improved comprehensibility
of predictions while at the same time achieving state-of-the-
art results on common benchmark test sets. In addition, we
have suggested a novel metric to assess the importance of
semantic visual concepts for a certain prediction to provide
additional explanatory information, and to allow for a large-
scale analysis of already trained models.

In the future, we plan to incorporate visual similarities
between classes based on geographical features during op-
timization, e.g., derived from a knowledge base, since cur-
rently visual and spatial proximate classes are equally pe-
nalized as visual and spatial dissimilar classes.
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